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Spin Around an Axis: The k-Component of Curl
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Spin Around an Axis: The k-Component of Curl

Say we have a vector field F = P(x , y) i+Q(x , y) j and we want to
compute the flow around a rectangle with side lengths ∆x and
∆y , as we see in the picture.

Figure: Sketch of Vector Field and Rectangle
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Spin Around an Axis: The k-Component of Curl

Figure: Sketch of Vector Field and Rectangle

The component of F along the bottom side is approximately

F(x , y) · i = P(x , y),

so the flow is P(x , y)∆x .
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Spin Around an Axis: The k-Component of Curl

Figure: Sketch of Vector Field and Rectangle

The component of F along the right side is approximately

F(x +∆x , y) · j = Q(x +∆x , y),

so the flow is Q(x +∆x , y)∆y .
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Spin Around an Axis: The k-Component of Curl

Figure: Sketch of Vector Field and Rectangle

The component of F along the top side is approximately

F(x , y +∆y) · −i = −P,

so the flow is −P(x , y +∆y)∆x .
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Spin Around an Axis: The k-Component of Curl

Figure: Sketch of Vector Field and Rectangle

The component of F along the left side is approximately

F(x , y) · −j = −Q,

so the flow is −Q(x , y)∆y .
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Spin Around an Axis: The k-Component of Curl

Adding these up, we get the flow around the rectangle:

P(x , y)∆x + Q(x +∆x , y)∆y − P(x , y +∆y)∆x − Q(x , y)∆y ,

which, after regrouping and factoring, can be written as

[P(x , y)− P(x , y +∆y)] ∆x + [Q(x +∆x , y)− Q(x , y)] ∆y .
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Spin Around an Axis: The k-Component of Curl

If we assume the F is differentiable, then

P(x , y)− P(x , y +∆y) ≈ −∂P

∂y
∆y

and

Q(x +∆x , y)− Q(x , y) ≈ ∂Q

∂x
∆x .
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Spin Around an Axis: The k-Component of Curl

Substituting these expressions into the approximation for the flow
around the rectangle, we get

−
(
∂P

∂y
∆y

)
∆x +

(
∂Q

∂x
∆x

)
∆y =

(
∂Q

∂x
− ∂P

∂y

)
∆x ∆y .

This leads us to the following definition.
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Circulation Density

Definition

The circulation density of a vector field F = P i+ Q j at the
point (x , y) is the scalar expression

∂Q

∂x
− ∂P

∂y
.

This expression is also called the k-component of the curl,
denoted by (curlF) · k.

This is the circulation around the rectangle from the bottom of the
last slide divided by the area of the rectangle. Hence, the term
circulation density.
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Divergence
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Divergence

Say we have a vector field F = P(x , y) i+Q(x , y) j and we want to
compute the flux across a rectangle (going outwards) with side
lengths ∆x and ∆y , as we see in the picture.

Figure: Sketch of Vector Field and Rectangle
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Divergence

Figure: Sketch of Vector Field and Rectangle

The component of F along the bottom side is approximately

F(x , y) · (−j) = −Q(x , y),

so the flux is −Q(x , y)∆x .
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Divergence

Figure: Sketch of Vector Field and Rectangle

The component of F along the right side is approximately

F(x +∆x , y) · i = P(x +∆x , y),

so the flux is P(x +∆x , y)∆y .
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Divergence

Figure: Sketch of Vector Field and Rectangle

The component of F along the top side is approximately

F(x , y +∆y) · j = Q(x , y +∆y),

so the flux is Q(x , y +∆y)∆x .
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Divergence

Figure: Sketch of Vector Field and Rectangle

The component of F along the left side is

F(x , y) · (−i) = −P(x , y),

so the flux is −P(x , y)∆y .
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Adding these up, we get the flux across the rectangle:

−Q(x , y)∆x +P(x +∆x , y)∆y +Q(x , y +∆y)∆x −P(x , y)∆y ,

which, after regrouping and factoring, can be written as

[P(x +∆x , y)− P(x , y)] ∆y + [Q(x , y +∆y)− Q(x , y)] ∆x .
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Divergence

If we assume the F is differentiable, then

P(x +∆x , y)− P(x , y) ≈ ∂P

∂x
∆x

and

Q(x , y +∆y)− Q(x , y) ≈ ∂Q

∂y
∆y .
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Divergence

Substituting these expressions into the approximation for the flux
across the rectangle, we get(

∂P

∂x
∆x

)
∆y +

(
∂Q

∂y
∆y

)
∆x =

(
∂P

∂x
+

∂Q

∂y

)
∆x ∆y .

This leads us to the following definition.
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Flux Density

Definition

The divergence (flux density) of a vector field F = P i+ Q j at
the point (x , y) is the scalar expression

divF =
∂P

∂x
+

∂Q

∂y
.

This is the flux across the rectangle from the bottom of the last
slide divided by the area of the rectangle. Hence, the term flux
density.
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Two Forms for Green’s Theorem
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Two Forms for Green’s Theorem

Green’s Theorem (Circulation-Curl or Tangential Form)

Let C be a piecewise smooth, simple closed curve enclosing a
region R in the plane. Let F = P i+ Q j be a vector field with P
and Q having continuous first partial derivatives in an open region
containing R. Then the counterclockwise circulation of F around
C equals the double integral of (curlF) · k over R.∮

C
F · T ds =

∮
C
P dx + Q dy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dx dy
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Two Forms for Green’s Theorem

Green’s Theorem (Flux-Divergence or Normal Form)

Let C be a piecewise smooth, simple closed curve enclosing a
region R in the plane. Let F = P i+ Q j be a vector field with P
and Q having continuous first partial derivatives in an open region
containing R. Then the outward flux of F across C equals the
double integral of divF over the region R enclosed by C .

∮
C
F · n ds =

∮
C
P dy − Q dx =

∫∫
R

(
∂P

∂x
+

∂Q

∂y

)
dx dy
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Example
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Example 1

Example

Verify both forms of Green’s Theorem for the vector field −y i+ x j
where R is the disk of radius a and C is the circle of radius a.
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Example 1

Solution

We parametrize the curve in the usual way.

r(t) = (a cos t) i+ (a sin t) j, 0 ≤ t ≤ 2π.

Then we compute the two line integrals.
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Example 1

Solution

For the first line integral, we get∮
C
F · T ds =

∫
C
−y dx + x dy

=

∫ 2π

0
[−(a sin t)(−a sin t) + (a cos t)(a cos t)] dt

=

∫ 2π

0
a2(sin2 t + cos2 t) dt

=

∫ 2π

0
a2 dt

= 2πa2.
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Example 1

Solution

For the second line integral, we get∮
C
F · n ds =

∫
C
−y dy − x dx

=

∫ 2π

0
[(−a sin t)(a cos t)− (a cos t)(−a sin t)] dt

=

∫ 2π

0
0 dt = 0.
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Example 1

Solution

Now, we compute the two double integrals.

The first double integral gives us∫∫
R

∂Q

∂x
− ∂P

∂y
dA =

∫∫
R
(1)− (−1) dA

= 2 · (area of R)

= 2πa2
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Example 1

Solution

Now, we compute the two double integrals.

Second second double integral gives us∫∫
R

∂P

∂x
+

∂Q

∂y
dA =

∫∫
R
0 dA = 0.
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Using Green’s Theorem to Evaluate Line Integrals
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Using Green’s Theorem to Evaluate Line Integrals

The marvelous thing about Green’s Theorem is that you can
compute a double integral in order to compute a line integral.

Let’s look at some examples.
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Examples
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Example 2

Example

Evaluate ∮
C
(3y dx + 2x dy)

where C is the boundary of 0 ≤ x ≤ π, 0 ≤ y ≤ sin x .

Mark Faucette Green’s Theorem Fall 2025 36 / 44



Example 2

Solution

We compute using Green’s Theorem∮
C
(3y dx + 2x dy) =

∫∫
R

∂

∂x
(2x)− ∂

∂y
(3y) dA

=

∫ π

0

∫ sin x

0
−1 dy dx

=

∫ π

0
− sin x dx

= cos x |π0
= −2.

where C is the boundary of 0 ≤ x ≤ π, 0 ≤ y ≤ sin x.
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Example 3

Example

Compute the outward flux for the field F = (x2 + 4y) i+ (x + y2) j
across the square bounded by x = 0, x = 1, y = 0, y = 1.
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Example 3

Solution

We compute∮
C (x

2 + 4y) dy + (x + y2) dx

=
∫∫

R

(
∂
∂x (x

2 + 4y) + ∂
∂y (x + y2)

)
dA

=
∫ 1
0

∫ 1
0 (2x + 2y) dx dy

=
∫ 1
0 x2 + 2xy

∣∣1
0
dy

=
∫ 1
0 1 + 2y dy = y + y2

∣∣1
0
= 2.
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Green’s Theorem on General Regions
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Green’s Theorem on General Regions

Green’s theorem, as stated, applies only to regions that are simply
connected—that is, Green’s theorem as stated so far cannot handle
regions with holes. Here, we extend Green’s theorem so that it
does work on regions with finitely many holes.
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Green’s Theorem on General Regions

We say that C is positively oriented if, as we walk along C in the
direction of orientation, region D is always on our left. Therefore,
the counterclockwise orientation of the boundary of a disk is a
positive orientation, for example.

Curve C is negatively oriented if, as we walk along C in the
direction of orientation, region D is always on our right. The
clockwise orientation of the boundary of a disk is a negative
orientation, for example.
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Green’s Theorem on General Regions

Let D be a connected region bounded by a curve C oriented
counterclockwise. Suppose D contains finitely many holes bounded
by curves C1, . . . , Cn oriented counterclockwise.

The boundary of D is defined to be

∂D = C −
n⋃

i=1

Ci

That is, the boundary of D has C oriented counter-clockwise, but
C1, . . . , Cn oriented clockwise.

Mark Faucette Green’s Theorem Fall 2025 43 / 44



Green’s Theorem on General Regions

Green’s Theorem on General Regions

Let F = P i+ Q j be a vector field in the plane. Let D be a
connected region bounded by a curve C oriented counterclockwise.
Suppose D contains finitely many holes bounded by curves C1, . . . ,
Cn oriented counterclockwise.
Then ∮

∂D
F · T ds =

∫∫
D

∂Q

∂x
− ∂P

∂y
dA
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