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Cylindrical Coordinates
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Cylindrical Coordinates

Cylindrical coordinates are another coordinate system on space. All
you do is put polar coordinates in the xy -plane with the third
coordinate being the z-coordinate in Cartesian coordinates.

See the figure on the next slide.
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Cylindrical Coordinates

Figure: Cylindrical Coordinates
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Changing from Rectangular to Cylindrical
Coordinates
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Changing from Rectangular to Cylindrical Coordinates

The equations for changing rectangular coordinates to cylindrical
coordinates should be very familiar.

x = r cos θ

y = r sin θ

z = z .

Another important conversion is

x2 + y2 = r2.
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The Volume Element in Cylindrical Coordinates

Mark Faucette Cylindrical and Spherical Coordinates Fall 2025 8 / 41



The Volume Element in Cylindrical Coordinates

To find the volume element in cylindrical coordinates, we have to
find the distortion in volume caused by the map from Cartesian
coordinates to cylindrical coordinates.

If we change by ∆r , then tangent vector in the image is〈
∂x

∂r
,
∂y

∂r
,
∂z

∂r

〉
∆r = ⟨cos θ, sin θ, 0⟩ ∆r .
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The Volume Element in Cylindrical Coordinates

Similarly, the tangent vectors in the other two coordinates are〈
∂x

∂θ
,
∂y

∂θ
,
∂z

∂θ

〉
∆θ = ⟨−r sin θ, r cos θ, 0⟩ ∆θ〈

∂x

∂z
,
∂y

∂z
,
∂z

∂z

〉
∆z = ⟨0, 0, 1⟩ ∆z
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The Volume Element in Cylindrical Coordinates

The volume of the image is the scalar triple product of these
vectors. If we compute that, we get

∆V = r ∆r ∆θ∆z .

The volume element in cylindrical coordinates is

dV = r dr dθ dz ,

in some order.
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The Volume Element in Cylindrical Coordinates

Theorem

The volume element in cylindrical coordinates is just the area
element in polar coordinates times dz.

dV = r dr dθ dz ,

in some order.
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Examples
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Example 1

Example

Evaluate the cylindrical coordinate integral∫ 2π

0

∫ 1

0

∫ √
2−r2

r
dz r dr dθ
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Example 1

Solution

∫ 2π

0

∫ 1

0

∫ √
2−r2

r
dz r dr dθ =

∫ 2π

0

∫ 1

0
(
√
2− r2 − r)r dr dθ

=

∫ 2π

0

∫ 1

0
(r
√

2− r2 − r2) dr dθ

=

∫ 2π

0
−1

3
(2− r2)3/2 − 1

3
r3
∣∣∣∣1
0

dθ

=

∫ 2π

0

2
√
2− 2

3
dθ

=
4π

3
(
√
2− 1).
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Example 2

Example

Convert the integral∫ 1

−1

∫ √
1−y2

0

∫ x

0
(x2 + y2) dz dx dy

to an equivalent integral in cylindrical coordinates and evaluate the
result.
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Example 2

Solution

First, we sketch the region. We sketch z = 0, z = x , x = 0,
x =

√
1− y2, and y = ±1.

See the sketch on the next slide.

The region we’re integrating over is the “cheese wedge” inside the
half-cylinder and below the diagonal plane and above the xy -plane.
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Example 2

Solution (cont.)

Figure: Sketch of Region
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Example 2

Solution (cont.)

We project onto the xy -plane and we get the half-unit disk to the
right of the y -axis. So, θ goes from −π/2 to π/2 and r goes from
0 to 1.

For a fixed point in the half-disk in the xy -plane, z must go from
the xy -plane up to the diagonal plane. So, z goes from 0 to
x = r cos θ.

We also note the integrand is x2 + y2 = r2.
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Example 2

Solution (cont.)

Now, we convert this integral to cylindrical coordinates using the
sketch to set the limits.∫ π/2

−π/2

∫ 1

0

∫ r cos θ

0
r2 dz r dr dθ =

∫ π/2

−π/2

∫ 1

0
(r cos θ)r2 r dr dθ

=

∫ π/2

−π/2

∫ 1

0
r4 cos θ dr dθ

=

∫ π/2

−π/2

1

5
cos θ dθ

=
1

5
sin θ|π/2−π/2 =

2

5
.
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Spherical Coordinates
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Spherical Coordinates

Spherical coordinates are another coordinate system on space. The
coordinates are ordered triples (ρ, θ, φ).

The first coordinate, ρ, is the distance from the origin to the point
in space. The second coordinate, θ, is the angle from the positive
x-axis to the projection of the segment from the origin to the point
in space into the xy -plane. The third coordinate, φ, is the angle
from the positive z-axis to the segment from the origin to the
point in space.

See the figure on the next slide.
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Figure: Spherical Coordinates
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Changing from Rectangular to Spherical
Coordinates
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Changing from Rectangular to Spherical Coordinates

Here are the equations for changing rectangular coordinates to
spherical coordinates:

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ.

You can work this out for yourself using the figure on the preceding
slide and basic trigonometry.

Other handy identities are

x2 + y2 = ρ2 sin2 φ

x2 + y2 + z2 = ρ2.
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The Volume Element in Spherical Coordinates
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The Volume Element in Spherical Coordinates

To find the volume element in spherical coordinates, we have to
find the distortion in volume caused by the map from Cartesian
coordinates to spherical coordinates.

If we change by ∆ρ, then tangent vector in the image is〈
∂x

∂ρ
,
∂y

∂ρ
,
∂z

∂ρ

〉
∆ρ = ⟨sinφ cos θ, sinφ sin θ, cosφ⟩ ∆ρ.
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The Volume Element in Spherical Coordinates

Similarly, the tangent vectors in the other two coordinates are〈
∂x

∂φ
,
∂y

∂φ
,
∂z

∂φ

〉
∆φ = ⟨ρ cosφ cos θ, ρ cosφ sin θ,−ρ sinφ⟩ ∆φ,〈

∂x

∂θ
,
∂y

∂θ
,
∂z

∂θ

〉
∆θ = ⟨−ρ sinφ sin θ, ρ sinφ cos θ, 0⟩ ∆θ.
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The Volume Element in Spherical Coordinates

The volume of the image is the scalar triple product of these
vectors. If we compute that, we get

∆V = ρ2 sinφ∆ρ∆θ∆φ.

The volume element in spherical coordinates is

dV = ρ2 sinφ dρ dθ dφ,

in some order.
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The Volume Element in Spherical Coordinates

Theorem

The volume element in spherical coordinates is

dV = ρ2 sinφ dρ dθ dφ

in some order.
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Example

Mark Faucette Cylindrical and Spherical Coordinates Fall 2025 31 / 41



Example 3

Example

Evaluate the spherical coordinate integral∫ π

0

∫ π

0

∫ 2 sinφ

0
ρ2 sinφ dρ dθ dφ.
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Example 3

Solution

∫ π

0

∫ π

0

∫ 2 sinφ

0
ρ2 sinφ dρ dφ dθ

=

∫ π

0

∫ π

0

1

3
ρ3 sinφ

∣∣∣∣2 sinφ
0

dφ dθ

=

∫ π

0

∫ π

0

8

3
sin4 φ dφ dθ
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Example 3

Solution (cont.)

∫ π

0

∫ π

0

8

3
sin4 φ dφ dθ

=
8

3

∫ π

0

∫ π

0

[
1

2
(1− cos 2φ)

]2
dφ dθ

=
2

3

∫ π

0

∫ π

0
(1− 2 cos 2φ+ cos2 2φ) dφ dθ
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Example 3

Solution (cont.)

2

3

∫ π

0

∫ π

0
(1− 2 cos 2φ+ cos2 2φ) dφ dθ

=
2

3

∫ π

0

∫ π

0

(
1− 2 cos 2φ+

[
1

2
(1 + cos 4φ)

])
dφ dθ

=
2

3

∫ π

0

(
φ− sin 2φ+

[
1

2

(
φ+

1

4
sin 4φ

)])∣∣∣∣π
0

dθ

=
2

3

∫ π

0

3π

2
dθ = π2.
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Example 4

Example

Let E be the region bounded below by the cone z =
√
x2 + y2

and above the sphere z = x2 + y2 + z2. Set up a triple integral in
spherical coordinates to find the volume of the region, using the
order of integration dρ dφ dθ. Do not evaluate the integral.
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Example 4

Solution

First, we sketch the region in space:

Figure: Sketch for Example 4
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Example 4

Solution (cont.)

Figure: Sketch for Example 4

Notice the region is above the cone z =
√
x2 + y2 and below the

sphere z = x2 + y2 + z2. This is the ice cream cone.
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Example 4

Solution (cont.)

The limits for the region are as follow. Th variable φ goes from 0
to π/4 and ρ goes from 0 to the sphere. The variable θ goes from
0 to 2π (or you could go from 0 to π/2 and multiply by 4 since the
region is symmetric about the z-axis).
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Example 4

Solution (cont.)

When a point is on the sphere, we have

x2 + y2 + z2 = z

ρ2 = ρ cosφ

ρ = cosφ

So, ρ goes from 0 to cosφ for a fixed value of φ.
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Example 4

Solution (cont.)

We set up the integral as∫ 2π

0

∫ π/4

0

∫ cosφ

0
ρ2 sinφ dρ dφ dθ.
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