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Double Integrals in Polar Form
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Double Integrals in Polar Form

We have studied how to set up and evaluate double integrals in
rectangular or Cartesian coordinates. Sometimes using other
coordinates makes the computations easier. Sometimes it's better
to use polar coordinates.
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Double Integrals in Polar Form

It's expected that you remember polar coordinates from
Precalculus, how they're defined, how polar points are plotted, how
to graph polar equations, and knowing the various types of polar
graphs, e.g. cardioids, lemniscates, roses, limagons, etc.
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When To Use Polar Coordinates

Generally speaking, you use polar coordinates in two situations:

When the region of integration is easily given in polar
coordinates, such as a disk.

When the integrand is easily simplified using polar coordinates.
That is, if the integrand contains expressions like x> + y?, etc.
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The Area Element in Polar Coordinates
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dA in Polar Coordinates

In rectangular coordinates, the area element is given by
dA = dx dy.

In polar coordinates, the area element is dA = r dr df.

The factor r in the area element reflects how the mapping taking
(r,0) to (x,y) = (rcos@, rsin @) distorts the area.
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dA is Polar Coordinates

Let's look at this a bit more closely.

The map from (r,8) coordinates (plotted rectangularly) to (x,y)
coordinates if given by

(r,0) — (rcos@,rsin@)

Look at the rectangular block in Cartesian coordinates with change
in x as Ar and change in y as Af. The area of this block is
Ar Af.

Mark Faucette Double Integrals in Polar Coordinates Fall 2025 9 /34



dA is Polar Coordinates

If we apply the polar mapping above to this block, it becomes a
section of a circular disk.

The vector Ari is taken to the vector

v, = (cosfi+sindj)Ar.

The vector Afj is taken to the vector
vg = (—rsinfi+ rcosfj) Ab.

So the rectangle with side lengths Ar and Af is taken to a
parallelogram spanned by v, and wvy.
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dA is Polar Coordinates

The area of a parallelogram is given by the length of the cross
product of the two vectors that span it.

We compute

i j k
vV, X vg = det cosOAr sin@Ar 0
—rsin@AO rcosOAOH 0

= [rcos® 0 Ar A — (—rsin® 0 Ar AB)] k
=rArAfk

The length of this vector is r Ar Af which gives you the area
element r dr df.
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Changing Rectangular Coordinates to Polar
Coordinates
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Changing Rectangular Coordinates to Polar Coordinates

There's not much to be said here. You use the equations you
learned in Precalculus to change rectangular coordinates to polar
coordinates.

X = rcosf
y =rsinf
X2+y2 _ 2
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Setting Limits for Integrals in Polar Coordinates

Mark Faucette Double Integrals in Polar Coordinates Fall 2025 14 / 34



Setting Limits for Integrals in Polar Coordinates

The crucial thing here is to know how polar coordinates work.

First sketch the region of integration. As with rectangular
coordinates, you set the outside limits first. Set them so the limits
cover the entire region.

Next, set a fixed arbitrary value for the outside limit of integration.

That cuts a segment across the region of integration. The inside
limit is set so that the integral covers that line segment.
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Examples
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Example 1

Example

Find the limits of integration for integrating over the region R that
lies inside the cardioid r = 1 + sin 6§ and outside the circle r = 1.

Find the area of the region.
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Example 1

Solution

First, we sketch the region.

Figure: Sketch of Region R
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Example 1

Solution (cont.)

Now, we set the limits of the integral. To trace out this region, 6
must go from 0 to 7. For a fixed value of 6, r must go from the
circle, r =1, to the cardioid, r =1 4 sinf. So, the integral to
compute the area of the region is

o= [ [ [ 35
:/0 < (1 +sin6)* — 1) do

= %/ (sin29+25in9) do.
0

1+sin 6
do

1
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Example 1

Solution (cont.)

Now we do a little Calculus 1 and 2:

Jhe=

/ (sm 0+ 2sinf) df
0

/ (l (1 — cos20) —|—25|n9> do
0o \2

1

2

/ ——cos20+2sm9d9

™

0 — Zsm29—2cos€

0

-4
H[(tre9) -] 2ok

I\)Il—l I\)II—‘ I\)II—‘ I\Z'II—l I\JI
o
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Example 2

Change the Cartesian integral into an equivalent polar integral.
Then evaluate the polar integral.

VaZ=x2
/ / dy dx
—aJ—Va2=x2
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Example 2

Solution

First, we need to identify the region of integration from the
Cartesian limit. We sketch x = +a and y = +v/a? — x? to find the
region.

See the sketch of the region of integration on the next slide.
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Example 2

Solutio
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Figure: Sketch of Region of Integration
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Example 2

Solution (cont.)

So, we are integrating over a disk of radius a. Now we set the
limits of the polar integral using the sketch we just made. The
angle 6 goes from 0 to 27 and for a fixed value of 8, r goes from 0
to a. So we get

Va2—x2 2r  ra
/ / dy dx = / / rdrdé.
—aJ—Va2—x2 0 0
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Example 2

Solution (cont.)

Now we compute:
a
do

27 a 27 1
/ /rdrom:/ =r
0 0 o 2 0
21
:/ 132d9
0o 2

1 27
= -a°0

2 0
= 7T32.

Of course, this just gives you the area of the circle of radius a.
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Polar Areas and Volumes
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Polar Areas and Volumes

We can find areas and volumes just as with double integrals in
rectangular coordinates.

To find area, you integrate 1 over the region.

To find the volume under a surface z = f(r, ), you integrate z
over the region.
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Examples
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Example 3

Compute the area of the part of the four-leaved rose r = 2sin 26
lying in the first quadrant.
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Example 3
First, we sketch the curve so we can set the limits of integration.

v
7 y=2sin20)

Figure: Sketch of Region
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Example 3

Solution (cont.)

We use the sketch set the limits and evaluate the integral. The variable 6
goes from 0 to /2 and for a fixed value of 6, r goes from 0 to the curve
r = 2sin 26.

w/2 [2sin20
// dA:/ / rdrdf
R 0 0
T 2sin 20
:/ /2 |:1r2 S
0 2

/2 1
:/ 1—cos40df = 60 — —sin40
0 4

/2
daz/ 2sin’ 20 df
0

0
/2

0

T 1 . 1 . T
= (E—Zsm27r> — <O—Zsm0> =5
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Example 3

Example

Find the volume of the solid situated in the first octant and
bounded by the paraboloid z = 1 — 4x?> — 4y? and the coordinate
planes.
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Example 3

Solution

To find the volume of the solid S in the first octant and bounded
by the paraboloid z =1 — 4x? — 4y?, we evaluate the integral

//deA,

where R is the region in the first quadrant determined by the
intersection of the paraboloid and the xy-plane. Hence R is just
the quarter of a disk of radius 1/2 centered at the origin.
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Example 3

Solution (cont.)

We compute

T/2 r1/2
//z:/ / (1—4r®)rdrdf
R 0 0

w/2 rl/2 /2

=/ / (r—4r3)drd6:/ [lﬁ—r“
o Jo o L2

:/ LAV _ (LY 4o
s 2\2 2

1/2
do

0
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