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Double Integrals over General Regions
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Double Integrals over General Regions

Let R be a region in the xy -plane and let f (x , y) be a positive and
continuous function defined on R. Then the integral∫∫

R
f (x , y) dA

gives the volume under the graph z = f (x , y) and over the region
R.

In order to evaluate this integral, we need a stronger version of
Fubini’s Theorem—one that will allow us to compute over a region
which is not a rectangle.
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Fubini’s Theorem (Stronger Form)
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Fubini’s Theorem

Fubini’s Theorem (Stronger Form)

Let f (x , y) be continuous on a region R.

If R is defined by a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x), with g1 and g2
continuous on [a, b], then∫∫

R
f (x , y) dA =

∫ b

a

∫ g2(x)

g1(x)
f (x , y) dy dx .
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Fubini’s Theorem

Fubini’s Theorem (Stronger Form)

Let f (x , y) be continuous on a region R.

If R is defined by c ≤ y ≤ d , h1(y) ≤ x ≤ h2(y), with h1 and h2
continuous on [c , d ], then∫∫

R
f (x , y) dA =

∫ d

c

∫ h2(y)

h1(y)
f (x , y) dx dy .
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Setting Limits and Computing
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Setting Limits and Computing

1 Draw the region R of integration.

2 Choose an order of integration, either dx dy or dy dx .

3 Set the outside limits first. Set them so that they cover the
region R.

4 To set the inside limits, choose a fixed but arbitrary value for
the outside variable. This will give you a segment cutting
across R. The limits of the inside integral go from the
beginning of the segment to the end of the segment.

5 Now evaluate the iterated integral.
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Examples
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Example 1

Example

Write an iterated integral for
∫∫

R dA over the described region R
using vertical cross-sections.

See the sketch of the region R on the next slide.
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Example 1

Example

Figure: Sketch of the Region R
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Example 1

Solution

We are asked to write an iterated integral using vertical
cross-sections. This means we integrate dy dx . Now we set up the
integral using the sketch to find the limits.

To trace out the region, x must go from x = 0 to x = 2, since the
point (2, 8) is the point where the graph y = x3 crosses the line
y = 8. This gives the limits of the outside integral.
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Example 1

Solution (cont.)

Then, for a fixed value of x between 0 and 2, we look at the
vertical cross-section through R. This cross-section starts at the
bottom curve, where y = x3, to the top curve, where y = 8. This
gives the limits of the inside integral.

This gives us the iterated integral∫ 2

0

∫ 8

x3
dy dx .
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Example 2

Example

Write an iterated integral for
∫∫

R dA over the described region R
using horizontal cross-sections.

See the sketch of the region R on the next slide.
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Example 2

Example

Figure: Sketch of the Region R

Mark Faucette Double Integrals over General Regions Fall 2025 16 / 57



Example 2

Solution

We are asked to write an iterated integral using horizontal
cross-sections. This means we integrate dx dy . Now we set up the
integral using the sketch to find the limits.

To trace out the region, y must go from y = 0 to y = 8. This
gives the limits of the outside integral.
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Example 2

Solution (cont.)

Then, for a fixed value of y between 0 and 8, we look at the
horizontal cross-section through R. This cross-section starts at the
y -axis, where x = 0, to the right curve, where y = x3. At this
point, x = 3

√
y . This gives the limits of the inside integral.

This gives us the iterated integral∫ 8

0

∫ 3
√
y

0
dx dy .
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Example 3

Example

Sketch the region of integration and write an equivalent double
integral with the order of integration reversed.∫ 3/2

0

∫ 9−4x2

0
16x dy dx
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Example 3

Solution

First, we sketch the region of integration:

Figure: Sketch of the Region R
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Example 3

Solution (cont.)

From the sketch of the region R, we set the limits for the reversed
order of integration.

To trace out the region, y must go from 0 to 9.

Then, for a fixed value of y , x must go from 0 up to the parabola,
where x = 1

2

√
9− y .

This gives us the integral∫ 9

0

∫ 1
2

√
9−y

0
16x dx dy .
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Example 4

Example

Sketch the region of integration and write an equivalent double
integral with the order of integration reversed.∫ e

1

∫ ln x

0
xy dy dx
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Example 4

Solution

First, we sketch the region of integration.

Figure: Sketch of the Region
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Example 4

Solution (cont.)

From the sketch of the region, we set the limits for the reversed
order of integration.

To trace out the region, y must go from 0 to 1.

Then, for a fixed value of y , x must go from the curve, where
x = ey to the line x = e.

This gives us the integral∫ 1

0

∫ e

ey
xy dx dy .
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Decomposing Regions
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Theorem 5.5: Decomposing Regions into Smaller Regions

Theorem 5.5: Decomposing Regions into Smaller Regions

Suppose the region D can be expressed as D = D1 ∪ D2 where D1

and D2 do not overlap except at their boundaries. Then∫∫
D
f (x , y) dA =

∫∫
D1

f (x , y) dA+

∫∫
D2

f (x , y) dA.
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Example
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Example 5

Example

Find the area of the region R in the plane bounded by the lines
x = y , x = 2y , and y = 2 using vertical strips.
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Example 5

Solution

First, we draw the region:

Figure: Sketch of the Region R
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Example 5

Solution (cont.)

We are told to use vertical strips, so we are integrating dy dx .

To trace out the region, x must go from 0 to 4.

These are the outside limits of integration.
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Example 5

Solution (cont.)

For a fixed value of x , the y -value always starts on the line x = 2y ,
so we have x/2 for the lower limit.

However, for 0 ≤ x ≤ 4, the top curve changes.

For 0 ≤ x ≤ 2, the top curve is the line y = x , so the top limit is
y = x .

For 2 ≤ x ≤ 4, the top curve is the line y = 2, so the top limit is
y = 2.
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Example 5

Solution (cont.)

We divide up the region R into two regions: R1 to the left of the
line x = 2 and R1 to the right of the line x = 2.

Then we have∫∫
R
dA =

∫∫
R1

dA+

∫∫
R2

dA

=

∫ 2

0

∫ x

x/2
dy dx +

∫ 4

2

∫ 2

x/2
dy dx
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Example 5

Solution (cont.)

Now we compute∫ 2

0

∫ x

x/2
dy dx +

∫ 4

2

∫ 2

x/2
dy dx

=

∫ 2

0
y |xx/2 dx +

∫ 4

2
y |2x/2 dx

=

∫ 2

0

(
x − 1

2
x

)
dx +

∫ 4

2

(
2− 1

2
x

)
dx

=

∫ 2

0

1

2
x dx +

∫ 4

2

(
2− 1

2
x

)
dx .
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Example 5

Solution (cont.)

Continuing, we get∫ 2

0

1

2
x dx +

∫ 4

2

(
2− 1

2
x

)
dx

=
1

4
x2
∣∣∣∣2
0

+

(
2x − 1

4
x2
)∣∣∣∣4

2

=
1

4
(22)− 0 +

(
2(4)− 1

4
(42)

)
−
(
2(2)− 1

4
(22)

)
= 1 + (8− 4)− (4− 1) = 2.
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Changing the Order of Integration
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Changing the Order of Integration

As we have already seen when we evaluate an iterated integral,
sometimes one order of integration leads to a computation that is
significantly simpler than the other order of integration. Sometimes
the order of integration does not matter, but it is important to
learn to recognize when a change in order will simplify our work.
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Example
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Example 6

Example

Change the order of integration and evaluate the integral:∫ π/2

−1

∫ x+1

0
sin x dy dx .
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Example 6

Solution

First, we need to graph the region of integration:

Figure: Sketch of the Region
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Example 6

Solution (cont.)

From the sketch, we see how to change the order of integration:∫ 1+π/2

0

∫ π/2

y−1
sin x dx dy =

∫ 1+π/2

0
[− cos x |π/2y−1 dy

=

∫ 1+π/2

0
cos(y − 1) dy

= [sin(y − 1)|1+π/2
0

= sin
(π
2

)
− sin(−1)

= 1 + sin 1.
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Calculating Volumes, Areas, and Average Values
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Calculating Volumes, Areas, and Average Value

We can use double integrals over general regions to compute
volumes, areas, and average values. The methods are the same as
those in double integrals over rectangular regions, but without the
restriction to a rectangular region, we can now solve a wider
variety of problems.
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Examples
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Example 7

Example

Let D be the region bounded by y = x3, y = x3 + 1, x = 0, and
x = 1. Find the volume of the solid under the graph of the
function f (x , y) = x + y and above the region D.
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Example 7

Solution

First, we sketch the region D, the area of integration, so we can
set up the limits of the iterated integral.

See the sketch on the next slide.
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Example 7

Solution (cont.)

Figure: Sketch of the Region D
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Example 7

Solution (cont.)

We will integrate over this region in the order dy dx .

To trace out the region D, we have 0 ≤ x ≤ 1.

For a fixed value of x between 0 and 1, y goes from the bottom
curve, y = x3, to the top curve y = x3 + 1.

So, the volume of the solid is given by∫ 1

0

∫ x3+1

x3
x + y dy dx .

Mark Faucette Double Integrals over General Regions Fall 2025 47 / 57



Example 7

Solution (cont.)

Now we compute . . .∫ 1

0

∫ x3+1

x3
x + y dy dx =

∫ 1

0

[
xy +

1

2
y2

∣∣∣∣x3+1

x3
dx

=

∫ 1

0
(x(x3 + 1) +

1

2
(x3 + 1)2)

− (x(x3) +
1

2
(x3)2) dx

=

∫ 1

0
x3 + x +

1

2
dx .
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Example 7

Solution (cont.)

Finishing the computation . . .∫ 1

0
x3 + x +

1

2
dx =

1

4
x4 +

1

2
x2 +

1

2
x

∣∣∣∣1
0

=
5

4
.
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Area of a Plane Region

Definition

The area of a plane-bounded region D is defined as the double
integral

∫∫
D 1 dA.
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Example

Example

Let D be the region bounded by y = x3, y = x3 + 1, x = 0, and
x = 1. Find the area of the region D.
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Example

Solution

We’ve already drawn this region and set up the iterated integral.
The area of the region D is∫ 1

0

∫ x3+1

x3
1 dy dx =

∫ 1

0
(x3 + 1)− x3 dx

=

∫ 1

0
1 dx

= x |10
= 1− 0 = 1.
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Average Value of a Function

Definition

If f (x , y) is integrable over a plane-bounded region D with positive
area A(D), then the average value of the function is

fave =
1

Area D

∫∫
D
f (x , y) dA.
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Example

Example

Let D be the region bounded by y = x3, y = x3 + 1, x = 0, and
x = 1. Find the average value of the function f (x , y) = 3xy on the
region D.
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Example

Solution

We’ve already drawn this region and set up the iterated integral.
We compute the integral of f (x , y) = 3xy on the region D:∫ 1

0

∫ x3+1

x3
3xy dy dx =

∫ 1

0
3x

∫ x3+1

x3
y dy dx

=

∫ 1

0
3x

[
1

2
y2

∣∣∣∣x3+1

x3
dx

=

∫ 1

0
3x

[
1

2
(x3 + 1)2 − 1

2
(x3)2

]
dx

=

∫ 1

0
3x4 +

3

2
x dx .
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Example

Solution (cont.)

Finishing the computation . . .∫ 1

0
3x4 +

3

2
x dx =

3

5
x5 +

3

4
x2
∣∣∣∣1
0

=
3

5
+

3

4

=
27

20
.
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Example

Solution (cont.)

So, the average value of the function f (x , y) = 3xy on the region
D is given by

fave =
1

Area D

∫∫
D
f (x , y) dA

=
1

1
· 27
20

=
27

20
.
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