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Double Integrals
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Double Integrals

Consider a function f (x , y) defined on a rectangular region R,

R : a ≤ x ≤ b, c ≤ y ≤ d

We divide the rectangle R into small subrectangles by choosing a
partition of the interval [a, b] and a partition of the interval [c , d ].

Figure: Partition of Rectangle R
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Double Integrals

The subrectangle has width ∆xk and height ∆yk . So, the area of
the subrectangle is ∆Ak = ∆xk∆yk .

We choose a point (xk , yk) inside the subrectangle, evaluate the
function f at this point, and multiply this by ∆Ak . This gives an
approximation of the volume under the surface z = f (x , y) over
the subrectangle (provided f (x , y) ≥ 0).
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Double Integrals

We add these up to get a Riemann sum.∑
k

f (xk , yk)∆Ak

Finally, we take the limit as both ∆xk and ∆yk go to zero.
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Double Integrals

The double integral of f (x , y) over the rectangle R is defined to be∫∫
R
f (x , y) dA = lim

∆x→0
∆y→0

∑
k

f (xk , yk)∆Ak ,

provided this limit exists.
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Properties of Double Integrals
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Properties of Double Integrals

Assume that the function f (x , y) and g(x , y) are integrable over
the rectangular region R; S and T are subregions of R; and
assume that m and M are real numbers.

i The sum f (x , y) + g(x , y) is integrable and∫∫
R
[f (x , y) + g(x , y)] dA =

∫∫
R
f (x , y) dA+

∫∫
R
g(x , y) dA.

ii If c is a constant, then c f (x , y) is integrable and∫∫
R
c f (x , y) dA = c

∫∫
R
f (x , y) dA.

Mark Faucette Double Integrals over Rectangular Regions Fall 2025 9 / 32



Properties of Double Integrals

Assume that the function f (x , y) and g(x , y) are integrable over
the rectangular region R; S and T are subregions of R; and
assume that m and M are real numbers.

iii If R = S ∪ T and S ∩ T = ∅ except an overlap on the
boundaries, then∫∫

R
f (x , y) dA =

∫∫
S
f (x , y) dA+

∫∫
T
f (x , y) dA.

iv If f (x , y) ≥ g(x , y) for (x , y) in R, then∫∫
R
f (x , y) dA ≥

∫∫
R
g(x , y) dA.

Mark Faucette Double Integrals over Rectangular Regions Fall 2025 10 / 32



Properties of Double Integrals

Assume that the function f (x , y) and g(x , y) are integrable over
the rectangular region R; S and T are subregions of R; and
assume that m and M are real numbers.

v If m ≤ f (x , y) ≤ M, then

m × A(R) ≤
∫∫

R
f (x , y) dA = M × A(R),

where A(R) is the area of the region R.
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Properties of Double Integrals

Assume that the function f (x , y) and g(x , y) are integrable over
the rectangular region R; S and T are subregions of R; and
assume that m and M are real numbers.

vi In the case where f (x , y) can be factored as a product of a
function g(x) of x only and a function h(y) of y only, then
over the region R = {(x , y) | a ≤ x ≤ b, c ≤ y ≤ d}, the
double integral can be written as∫∫

R
f (x , y) dA =

(∫ b

a
g(x) dx

)(∫ d

c
h(y) dy

)
.
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Iterated Integrals
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Iterated Integrals

Of course, you don’t want to compute the double integral directly
from the definition using Riemann sums, just as you don’t want to
compute single integrals in Calculus I from the definition using
Riemann sums.

We need iterated integrals and Fubini’s Theorem.
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Iterated Integrals

An iterated integral is a nested sequence of integrals. The integrals
are evaluated using the Fundamental Theorem of Calculus
beginning with the innermost integral and working your way to the
outside.
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Iterated Integrals

Definition

Assume a, b, c , and d are real numbers. We define an iterated
integral for a function f (x , y) over the rectangular region
R = [a, b]× [c , d ] as

a ∫ b

a

∫ d

c
f (x , y) dy dx =

∫ b

a

[∫ d

c
f (x , y) dy

]
dx

b ∫ d

c

∫ b

a
f (x , y) dx dy =

∫ d

c

[∫ b

a
f (x , y) dx

]
dy
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Examples
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Example 1

Example

Evaluate the iterated integral∫ 2

0

∫ 1

−1
(x − y) dy dx .
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Example 1

Solution

We evaluate this from the inside out.∫ 2

0

∫ 1

−1
(x − y) dy dx =

∫ 2

0

(
xy − 1

2
y2

)∣∣∣∣1
y=−1

dx

=

∫ 2

0

(
x(1)− 1

2
(1)2

)
−
(
x(−1)− 1

2
(−1)2

)
dx

=

∫ 2

0
2x dx

= x2|20 = 4.
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Example 2

Example

Evaluate the iterated integral∫ 4

1

∫ e

1

ln x

xy
dx dy .
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Example 2

Solution

We evaluate this from the inside out.∫ 4

1

∫ e

1

ln x

xy
dx dy =

∫ 4

1

(ln x)2

2y

∣∣∣∣e
x=1

dy

=

∫ 4

1

(ln e)2

2y
− (ln 1)2

2y

∣∣∣∣e
1

dy

=

∫ 4

1

1

2y
dy =

1

2
ln y |41 =

1

2
ln 4 = ln 2.
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Fubini’s Theorem
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Fubini’s Theorem

The theorem that allows you to use iterated integrals to evaluate
double integrals is Fubini’s Theorem.

Theorem 5.2: Fubini’s Theorem

Suppose thtat f (x , y) is a function of two variables that is
continuous over a rectangular region
R = {(x , y ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d}. Then the double
integral of f over the region equals the iterated integral,∫∫

R
f (x , y) dA =

∫ b

a

∫ d

c
f (x , y) dy dx =

∫ d

c

∫ b

a
f (x , y) dx dy .

More generally, Fubini’s Theorem is true if f is bounded on R
and f is discontinuous on a finite number of continuous curves. In
other words, f has to be integrable over R.
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Examples
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Example 3

Example

Evaluate ∫∫
R
(6y2 − 2x) dA, R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2
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Example 3

Solution

We compute this as an iterated integral using Fubini’s Theorem.∫∫
R
(6y2 − 2x) dA =

∫ 1

0

∫ 2

0
(6y2 − 2x) dy dx

=

∫ 1

0
(2y3 − 2xy)

∣∣2
y=0

dx

=

∫ 1

0
16− 4x dx = 16x − 2x2

∣∣1
0
= 14.
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Example 4

Example

Find the volume of the region bounded above by the circular
paraboloid z = 16− x2 − y2 and below by the square R:
0 ≤ x ≤ 2, 0 ≤ y ≤ 2.
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Example 4

Solution

The volume is given by∫∫
R
z dA =

∫ 2

0

∫ 2

0
16− x2 − y2 dx dy

=

∫ 2

0

[
16x − 1

3
x3 − xy2

∣∣∣∣2
0

dy

=

∫ 2

0
32− 8

3
− 2y2 dy =

∫ 2

0

88

3
− 2y2 dy

=
88

3
y − 2

3
y3

∣∣∣∣2
0

=
160

3
.
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Applications of Double Integrals
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Applications of Double Integrals

You can find the area of a region R by integrating 1 over R.

Area of R =

∫∫
R
1 dA.
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Applications of Double Integrals

If z = f (x , y) is nonnegative on a region R, you can find the
volume of a solid S under the surface z = f (x , y) and over the
region R by integrating f (x , y) over R.

Volume of S =

∫∫
R
f (x , y) dA.
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Applications of Double Integrals

Definition

The average value of a function of two variables over a region R is

fave =
1

Area R

∫∫
R
f (x , y) dA.
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