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Tangent Planes
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Tangent Planes

Intuitively, it seems clear that, in a plane, only one line can be
tangent to a curve at a point. However, in three-dimensional
space, many lines can be tangent to a given point. If these lines lie
in the same plane, they determine the tangent plane at that point.
A tangent plane at a regular point contains all of the lines tangent
to that point.
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Tangent Planes

Definition

Let P0 = (x0, y0, z0) be a point on a surface S , and let C be any
curve passing through P0 and lying entirely in S . If the tangent
lines to all such curves C at P0 lie in the same plane, then this
plane is called the tangent plane to S at P0

See the sketch on the next slide.
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Tangent Planes
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Tangent Planes

To find the equation of the tangent plane to the surface
z = f (x , y) at the point (x0, y0, z0), we need a point on the plane
and the normal vector to the plane.

The point we have is (x0, y0, z0), where z0 = f (x0, y0).

Now we need to find the normal vector to the surface z = f (x , y)
at the point (x0, y0, z0).
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Tangent Planes

The plane y = y0 cuts out a curve on the surface passing through
the point (x0, y0, z0). The tangent line to this curve must lie in the
tangent plane to the surface.

That curve is parametrized by rx(x) = x i+ y0 j+ f (x , y0) k.

The tangent vector to the curve at the point (x0, y0, z0) is then
given by

r′x(x0) = i+ fx(x0, y0) k.
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Tangent Planes

Similarly, the plane x = x0 cuts out a curve on the surface passing
through the point (x0, y0, z0). The tangent line to this curve must
lie in the tangent plane to the surface.

That curve is parametrized by ry (y) = x0 i+ y j+ f (x0, y) k.

The tangent vector to the curve at the point (x0, y0, z0) is then
given by

r′y (y0) = j+ fy (x0, y0) k.
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Tangent Planes

Since both these vectors are tangent to the surface, they must lie
in the tangent plane, so their cross product gives a normal vector
to the surface at the point (x0, y0, z0).

r′y (y0)× r′x(y0) = det

 i j k
0 1 fy (x0, y0)
1 0 fx(x0, y0)


= fx(x0, y0) i+ fy (x0, y0) j− k.
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Tangent Planes

This gives the equation of the tangent plane to the surface
z = f (x , y) at the point (x0, y0, z0) by

(fx(x0, y0) i+ fy (x0, y0) j−k) · ((x−x0) i+(y −y0) j+(z−z0)k = 0,

which is

fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0)− (z − z0) = 0.

We can write this as

z = f (x0, y0) + fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0).
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Tangent Planes

Definition

Let S be a surface defined by a differentiable function z = f (x , y),
and let P0 = (x0, y0) be a point in the domain of f . Then, the
equation of the tangent plane to S at P0 is given by

z = f (x0, y0) + fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0).
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Example
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Example 1

Example

Find the equation of the tangent plane to the surface defined by
the function f (x , y) = x3 − x2y + y2 − 2x + 3y − 2 at point
(−1, 3).

Mark Faucette Tangent Planes and Linear Approximations Fall 2025 14 / 50



Example 1

Solution

We’re given the equation f (x , y) = x3 − x2y + y2 − 2x + 3y − 2.
We compute

fx(x , y) = 3x2 − 2xy − 2

fx(−1, 3) = 3(−1)2 − 2(−1)(3)− 2

= 7.

fy (x , y) = −x2 + 2y + 3

fy (−1, 3) = −(−1)2 + 2(3) + 3

= 8.
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Tangent Planes

Solution

So, the equation of the tangent line to the surface with equation
z = x3 − x2y + y2 − 2x + 3y − 2 at the point (−1, 3, 14) is

z = 14 + 7(x + 1) + 8(y − 3)

= 7x + 8y − 3.
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Linear Approximations
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Linear Approximations

In Calculus 1, we learned that a function f (x) can be approximated
using the tangent line to the graph y = f (x) at a point (a, f (a)):

y ≈ f (a) + f ′(a)(x − a),

for x near a.
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Linear Approximations

When working with a function of two variables, the tangent line is
replaced by a tangent plane, but the approximation idea is much
the same.
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Linear Approximations

Definition

Given a function z = f (x , y) with continuous partial derivatives
that exist at the point (x0, y0), the linear approximation of f at
the point (x0, y0) is given by the equation

L(x , y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0).
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Example
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Example 2

Example

Given the function f (x , y) = e5−2x+3y , approximate f (4.1, 0.9)
using the point (4, 1) for (x0, y0).

What is the approximate value of f (4.1, 0.9) to four decimal
places?
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Example 2

Solution

For f (x , y) = e5−2x+3y , we compute

fx(x , y) = −2e5−2x+3y

fx(4, 1) = −2e5−2(4)+3(1)

= −2.

fy (x , y) = 3e5−2x+3y

fy (4, 1) = 3e5−2(4)+3(1)

= 3.
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Example 2

Solution

Using the formula for the linear approximation, we get

L(x , y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0)

= f (4, 1) + fx(4, 1)(4.1− 4) + fy (4, 1)(0.9− 1)

= 1− 2(0.1) + 3(−0.1)

= 0.5.

So, f (4.1, 0.9) ≈ 0.5000.

The actual value to four decimal places is 0.6065.
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Differentiability

Mark Faucette Tangent Planes and Linear Approximations Fall 2025 25 / 50



Differentiability

The concept of differentiability for functions of several variables is
more complicated than for single-variable functions because a point
in the domain can be approached along more than one path.

We start by reframing the definition of differentiability from
Calculus 1.
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Differentiability

Suppose y = f (x) is differentiable at a. Then

f ′(a) = lim
∆x→0

f (a+∆x)− f (a)

∆x
.

Let

ε =
f (a+∆x)− f (a)

∆x
− f ′(a).

Then
f (a+∆x)− f (a) = f ′(a)∆x + ε∆x

where ε → 0 as ∆x → 0.
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Differentiability

From the last slide, we have that

f (a+∆x)− f (a) = f ′(a)∆x + ε∆x

where ε → 0 as ∆x → 0.

Let E (x , y) = ε∆x = ε∆x . Then

f (a+∆x)− f (a) = f ′(a)∆x + E (x , y)

where

lim
x→a

E (x , y)

|x − a|
.
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Differentiability

Definition

A function f (x , y) is differentiable at P(x0, y0) if, for all points
(x , y) in a δ disk around P, write

f (x , y) = f (x0, y0)+ fx(x0, y0)(x−x0)+ fy (x0, y0)(y−y0)+E (x , y),

where the error term satisfies

lim
(x ,y)→(x0,y0)

E (x , y)√
(x − x0)2 + (y − y0)2

= 0.
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Example
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Example 3

Example

Show that the function f (x , y) = 3x − 4y2 is differentiable at
point (−1, 2).
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Example 3

Solution

We have f (x , y) = 3x − 4y2. So f (−1, 2) = −19.

We compute

fx(x , y) = 3

fx(−1, 2) = 3,

and

fy (x , y) = −8y

fy (−1, 2) = −16.
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Example 3

Solution

Now, we write

3x − 4y2 = f (y)

= f (x0, y0) + fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0)

+ E (x , y)

= −19 + 3(x + 1)− 16(y − 2) + E (x , y),

so that

E (x , y) = 3x − 4y2 − (−19 + 3(x + 1)− 16(y − 2))

= −16 + 16y − 4y2 = −4(y − 2)2.
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Example 3

Solution

Now, we compute

lim
(x ,y)→(−1,2)

|E (x , y)|√
(x + 1)2 + (y − 2)2

= lim
(x ,y)→(−1,2)

4(y − 2)2√
(x + 1)2 + (y − 2)2

≤ lim
(x ,y)→(−1,2)

4(y − 2)2√
(y − 2)2

≤ lim
(x ,y)→(−1,2)

4|y − 2|

≤ 0.
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Example 3

Solution

So,

lim
(x ,y)→(−1,2)

E (x , y)√
(x + 1)2 + (y − 2)2

= 0,

as required.
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Differentiability

We would like to have a convenient way to determine if a function
is differentiable without actually producing the error function
E (x , y) and showing it has the required properties.
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Differentiability

Theorem

Let z = f (x , y) be a function of two variables with (x0, y0) in the
domain of f . If f (x , y), fx(x , y), and fy (x , y) all exist in a
neighborhood of (x0, y0) and are continuous at (x0, y0), then
f (x , y) is differentiable at (x0, y0).
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Differentiability

Proof.

The proof of this theorem is beyond the scope of this course.
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Differentiability

We also have this result analogous the similar result in Calculus 1.
If f is differentiable at a point, then f is continuous at that point.

Theorem

Let z = f (x , y) be a function of two variables with (x0, y0) in the
domain of f . If f (x , y) is differentiable at (x0, y0), then f (x , y) is
continuous at (x0, y0).
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Differentiability

Proof.

This follows immediately from taking the limit of f (x , y) as (x , y)
goes to (x0, y0) and using the definition of differentiable at (x0, y0):

lim
(x ,y)→(x0,y0)

f (x , y) = lim
(x ,y)→(x0,y0)

[f (x0, y0) + fx(x0, y0)(x − x0)

+fy (x0, y0)(y − y0) + E (x , y)]

= f (x0, y0) + fx(x0, y0)(x0 − x0)

+ fy (x0, y0)(y0 − y0) + lim
(x ,y)→(x0,y0)

E (x , y)

= f (x0, y0),

so f is continuous at (x0, y0).
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Differentials
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Differentials

In Calculus 1, we studied the notion of differentials.

There, the differential dy is defined to be f ′(x) dx . The differential
approximates ∆y = f (x +∆x)− f (x), where ∆x = dx .

Extending this idea to the linear approximation of a function of
two variables at the point (x0, y0) yields the formula for the total
differential for a function of two variables.
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Differentials

Definition

Let z = f (x , y) be a function of two variables with (x0, y0) in the
domain of f , and let ∆x and ∆y be chosen so that
(x0 +∆x , y0 +∆y) is also in the domain of f .

If f is differentiable at the point (x0, y0), then the differentials dx
and dy are defined as

dx = ∆x and dy = ∆y .

The differential dz , also called the total differential of z = f (x , y)
at (x0, y0), is defined to be

dz = fx(x0, y0) dx + fy (x0, y0) dy .
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Example
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Example 3

Example

Find the differential dz of the function f (x , y) = 4y2 + x2y − 2xy
and use it to approximate ∆z at point (1,−1). Use ∆x = 0.03
and ∆y = −0.02.

What is the exact value of ∆z?
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Differentials

Solution

For z = 4y2 + x2y − 2xy, we compute

dz = fx(x0, y0) dx + fy (x0, y0) dy

= (2xy − 2y) dx + (8y + x2 − 2x) dy

= (2(1)(−1)− 2(−1)) dx + (8(−1) + (1)2 − 2(1)) dy

= −9 dy .
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Differentials

Solution

Using dx = ∆x = 0.03 and dy = ∆y = −0.02, we compute

dz = −9 dy = −9(−0.02) = 0.18.

The actual value of ∆z is

∆z = f (1.03,−1.02)− f (1,−1)

= 5.18068− 5 = 0.18068.
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Differentiability of a Function of Three Variables
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Differentiability of a Function of Three Variables

Definition

A function f (x , y , z) is differentiable at a point P(x0, y0, z0) if for
all points (x , y , z) in a δ disk around P we can write

f (x , y , z) = f (x0, y0, z0) + fx(x0, y0, z0)(x − x0)

+ fy (x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0)

+ E (x , y , z),

where the term E satisfies

lim
(x ,y ,z)→(x0,y0,z0)

E (x , y , z)√
(x − x0)2 + (y − y0)2 + (z − z0)2

= 0.
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Differentiability of a Function of Three Variables

If a function of three variables is differentiable at a point
(x0, y0, z0), then it is continuous there.

Furthermore, continuity of first partial derivatives at that point
guarantees differentiability.
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