

Calculus of Vector-Valued Functions

William M. Faucette

University of West Georgia

Fall 2025

Outline

- 1 Derivatives of Vector-Valued Functions
- 2 Differentiation Rules for Vector Functions
- 3 Tangent Vectors and Unit Tangent Vectors
- 4 Integrals of Vector-Valued Functions

Derivatives of Vector-Valued Functions

Derivatives of Vector-Valued Functions

Definition

The **derivative** of a vector-valued function $\mathbf{r}(t)$ is

$$\mathbf{r}'(t) = \lim_{\Delta t \rightarrow 0} \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t}$$

provided the limit exists. If $\mathbf{r}'(t)$ exists, then \mathbf{r} is **differentiable** at t . If $\mathbf{r}'(t)$ exists for all t in an open interval (a, b) , then \mathbf{r} is **differentiable over the interval** (a, b) .

Derivatives of Vector-Valued Functions

Definition

For the function to be **differentiable over the closed interval** $[a, b]$, it must be differentiable on the open interval (a, b) and the following two limits must exist as well:

$$\mathbf{r}'(a) = \lim_{\Delta t \rightarrow 0^+} \frac{\mathbf{r}(a + \Delta t) - \mathbf{r}(a)}{\Delta t}$$
$$\mathbf{r}'(b) = \lim_{\Delta t \rightarrow 0^-} \frac{\mathbf{r}(b + \Delta t) - \mathbf{r}(b)}{\Delta t}.$$

Derivatives of Vector-Valued Functions

The derivative of $\mathbf{r}(t)$ with respect to t is then

$$\begin{aligned}\frac{d\mathbf{r}}{dt} &= \lim_{t \rightarrow t_0} \frac{\Delta\mathbf{r}}{\Delta t} = \lim_{t \rightarrow t_0} \left[\frac{x(t + \Delta t) - x(t)}{\Delta t} \mathbf{i} + \frac{y(t + \Delta t) - y(t)}{\Delta t} \mathbf{j} \right. \\ &\quad \left. + \frac{z(t + \Delta t) - z(t)}{\Delta t} \mathbf{k} \right] \\ &= \left[\lim_{t \rightarrow t_0} \frac{x(t + \Delta t) - x(t)}{\Delta t} \mathbf{i} + \lim_{t \rightarrow t_0} \frac{y(t + \Delta t) - y(t)}{\Delta t} \mathbf{j} \right. \\ &\quad \left. + \lim_{t \rightarrow t_0} \frac{z(t + \Delta t) - z(t)}{\Delta t} \mathbf{k} \right] \\ &= \frac{dx}{dt} \mathbf{i} + \frac{dy}{dt} \mathbf{j} + \frac{dz}{dt} \mathbf{k}.\end{aligned}$$

So, to take the derivative of a vector-valued function, you simply take the derivative of each component function.

Derivatives of Vector-Valued Functions

The Bottom Line

The vector function $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ has **derivative** (or **is differentiable at**) t if x , y , and z have derivatives at t . The derivative is the vector function

$$\mathbf{r}'(t) = \frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k}.$$

A vector function $\mathbf{r} = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ is **differentiable** if it is differentiable at each point of its domain. The curve traced by \mathbf{r} is **smooth** if dx/dt , dy/dt , and dz/dt are continuous and never simultaneously zero.

Derivatives of Vector-Valued Functions

This vector $\mathbf{r}'(t_0)$ is defined to be the **vector tangent** to the curve at the point $\mathbf{r}(t_0)$ for t_0 in the domain of \mathbf{r} .

The tangent line to the curve at the point $\mathbf{r}(t_0)$ is then

$$\ell(t) = \mathbf{r}(t_0) + t \mathbf{r}'(t_0).$$

The fact that $\mathbf{r}(t)$ is smooth guarantees that $\mathbf{r}'(t_0)$ is never zero and the curve has no edges or corners or cusps.

If $\mathbf{r}(t)$ is composed of a finite sequence of smooth curves joined at their endpoints, the curve is said to be **piecewise smooth**.

Differentiation Rules for Vector Functions

Differentiation Rules for Vector Functions

Let \mathbf{u} and \mathbf{v} be differentiable vector function of t , \mathbf{C} a constant vector, c any scalar, and f any differentiable scalar function.

- 1 Constant Function Rule: $\frac{d}{dt} \mathbf{C} = \mathbf{0}$
- 2 Constant Multiple Rule: $\frac{d}{dt} [c\mathbf{u}(t)] = c\mathbf{u}'(t)$
- 3 Scalar Multiple Rule: $\frac{d}{dt} [f(t)\mathbf{u}(t)] = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)$
- 4 Sum Rule: $\frac{d}{dt} [\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)$

Differentiation Rules for Vector Functions

Let \mathbf{u} and \mathbf{v} be differentiable vector function of t , \mathbf{C} a constant vector, c any scalar, and f any differentiable scalar function.

5 Difference Rule: $\frac{d}{dt}[\mathbf{u}(t) - \mathbf{v}(t)] = \mathbf{u}'(t) - \mathbf{v}'(t)$

6 Dot Product Rule: $\frac{d}{dt}[\mathbf{u}(t) \cdot \mathbf{v}(t)] = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$

7 Cross Product Rule:

$$\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$

8 Chain Rule: $\frac{d}{dt}[\mathbf{u}(f(t))] = f'(t)\mathbf{u}'(f(t))$

Tangent Vectors and Unit Tangent Vectors

Tangent Vectors and Unit Tangent Vectors

Definition

Let C be a curve defined by a vector-valued function \mathbf{r} , and assume that $\mathbf{r}'(t)$ exists when $t = t_0$. A tangent vector \mathbf{v} at $t = t_0$ is any vector such that, when the tail of the vector is placed at point $\mathbf{r}(t_0)$ on the graph, vector \mathbf{v} is tangent to curve C . Vector $\mathbf{r}'(t_0)$ is an example of a tangent vector at point $t = t_0$. Furthermore, assume that $\|\mathbf{r}'(t)\| \neq 0$.

The **principal unit tangent vector** at t is defined to be

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|},$$

provided $\|\mathbf{r}'(t)\| \neq 0$

Integrals of Vector-Valued Functions

Integrals of Vector-Valued Functions

Definition

Let f , g , and h be integrable real-valued functions over the closed interval $[a, b]$.

- 1 The **indefinite integral of a vector-valued function**

$$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$$

$$\int [f(t)\mathbf{i} + g(t)\mathbf{j}] dt = \left[\int f(t) dt \right] \mathbf{i} + \left[\int g(t) dt \right] \mathbf{j}$$

Integrals of Vector-Valued Functions

Definition

Let f , g , and h be integrable real-valued functions over the closed interval $[a, b]$.

- 2 The **definite integral of a vector-valued function**

$$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$$

$$\int_a^b [f(t)\mathbf{i} + g(t)\mathbf{j}] dt = \left[\int_a^b f(t) dt \right] \mathbf{i} + \left[\int_a^b g(t) dt \right] \mathbf{j}$$

Integrals of Vector-Valued Functions

Definition

Let f , g , and h be integrable real-valued functions over the closed interval $[a, b]$.

- 3 The **indefinite integral of a vector-valued function**

$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ is

$$\int [f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}] dt$$

$$= \left[\int f(t) dt \right] \mathbf{i} + \left[\int g(t) dt \right] \mathbf{j} + \left[\int h(t) dt \right] \mathbf{k}.$$

Integrals of Vector-Valued Functions

Definition

Let f , g , and h be integrable real-valued functions over the closed interval $[a, b]$.

4 The **definite integral of a vector-valued function**

$\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ is

$$\begin{aligned} \int_a^b [f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}] dt \\ = \left[\int_a^b f(t) dt \right] \mathbf{i} + \left[\int_a^b g(t) dt \right] \mathbf{j} + \left[\int_a^b h(t) dt \right] \mathbf{k}. \end{aligned}$$