

Cylindrical and Spherical Coordinates

William M. Faucette

University of West Georgia

Fall 2025

Outline

- 1 Cylindrical Coordinates
- 2 Changing from Rectangular to Cylindrical Coordinates
- 3 Spherical Coordinates
- 4 Changing from Rectangular to Spherical Coordinates

Cylindrical Coordinates

Cylindrical Coordinates

Cylindrical coordinates are another coordinate system on space. All you do is put polar coordinates in the xy -plane with the third coordinate being the z -coordinate in Cartesian coordinates.

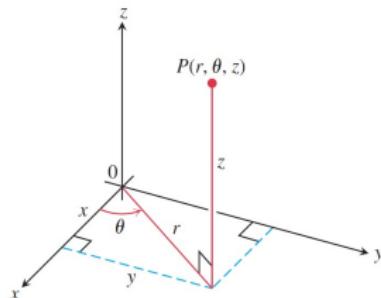


FIGURE 15.46 The cylindrical coordinates of a point in space are r , θ , and z .

Figure: Cylindrical Coordinates

Changing from Rectangular to Cylindrical Coordinates

Changing from Rectangular to Cylindrical Coordinates

The equations for changing rectangular coordinates to cylindrical coordinates should be very familiar.

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = z.$$

Another important conversion is

$$x^2 + y^2 = r^2.$$

Spherical Coordinates

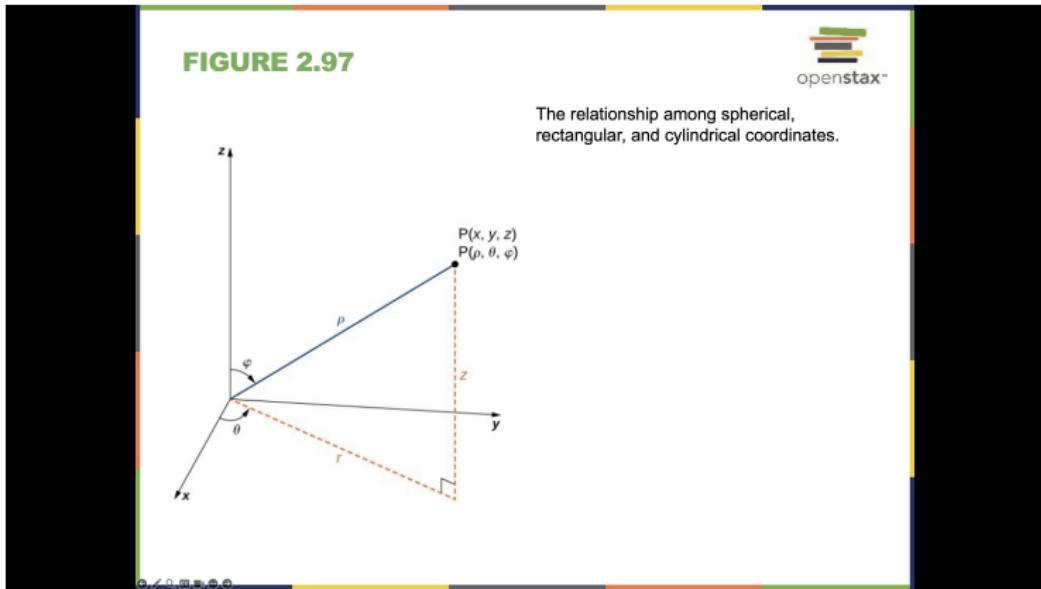
Spherical Coordinates

Spherical coordinates are another coordinate system on space. The coordinates are ordered triples (ρ, θ, φ) .

The first coordinate, ρ , is the distance from the origin to the point in space. The second coordinate, θ , is the angle from the positive x -axis to the projection of the segment from the origin to the point in space into the xy -plane. The third coordinate, φ , is the angle from the positive z -axis to the segment from the origin to the point in space.

See the figure on the next slide.

Figure: Spherical Coordinates



Changing from Rectangular to Spherical Coordinates

Changing from Rectangular to Spherical Coordinates

Theorem: Converting among Spherical, Cylindrical, and Rectangular Coordinates

Rectangular coordinates (x, y, z) and spherical coordinates (ρ, θ, φ) of a point are related as follows:

$$x = \rho \sin \varphi \cos \theta$$

$$y = \rho \sin \varphi \sin \theta$$

$$z = \rho \cos \varphi$$

$$\rho^2 = x^2 + y^2 + z^2$$

$$\tan \theta = \frac{y}{x}$$

$$\varphi = \arccos \left(\frac{z}{\sqrt{x^2 + y^2 + z^2}} \right)$$

Changing from Rectangular to Spherical Coordinates

Theorem: Converting among Spherical, Cylindrical, and Rectangular Coordinates

If a point has cylindrical coordinates (r, θ, z) then these equations define the relationship between cylindrical and spherical coordinates.

$$r = \rho \sin \varphi$$

$$\theta = \theta$$

$$z = \rho \cos \varphi$$

$$\rho = \sqrt{r^2 + z^2}$$

$$\theta = \theta$$

$$\varphi = \arccos \left(\frac{z}{\sqrt{r^2 + z^2}} \right)$$