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Lines in Space
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Lines in Space

A line in space is determined by a nonzero direction vector v and
a point Py(xo, o, 20) lying on the line.

P(xy, 2)

Tty Po (X0, Yor 20)

Figure: Line In Space
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Lines in Space

First, you follow the position vector ro = (xp, Yo, z0) of the point
Py from the origin to the point Py. Now, you're on the line.

P(xy,2)

| >
ITo+tv Po (xo, Yo, Zo)

Figure: Line In Space
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Lines in Space

Second, you travel in the direction of the direction vector v for
some distance. This is the vector tv.

P(xy,2)

Tty Po (Xo, Yor 20)

Figure: Line In Space
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Lines in Space

The sum of those two vectors is the position vector of any point on

the line.

r(t) =ro+ tv
This is the vector equation of the line though Py with direction
vector v.

P(xy,2)

Po (Xo, Yo, 20)

Figure: Line In Space
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Lines in Space

If we write these out in terms of the component functions, we get

X = Xg + at
y =Yoo+ bt
zZ = 7y + Ct.

Here, Py = (X07.y0720) and v = <aa b, C>-

These are the parametric equations of the line though Py with
direction vector v.
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Lines in Space

If abc # 0, we can solve the parametric equations of the line
though Py with direction vector v for t and set them all equal.
This gives you the symmetric equations of the line though Py
with direction vector v.

X=X _Y—Yo_ Z—2
a b c

If one or two of a, b, or c is zero, this can still be done, it just
takes a slightly different form.
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Lines in Space

Theorem: Parametric and Symmetric Equations of a Line

A line L parallel to vector v = (a, b, ¢) and passing through point
P(xo, Y0, 20) can be described by the following parametric

equations:
X = Xp + ta
y =yo+tb
zZ =29+ tc

If the constants a, b, and ¢ are all nonzero, then L can be
described by the symmetric equation of the line:

X=X Y=Y Z—2
a b c
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Examples
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Example 1

Find the parametric equations for the line through (4, —2,3)
parallel to v =2i— j+ k.
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Example 1

Here ro =4i—2j+3k and v=2i— j+ k. So, the parametric
equations of the line are given by

x =4+ 2t
y=-2-—t
z=3+1t.
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Example 2

Find the parametric equations for the line through the points
P(1,2,—1) and Q(2,4,5).
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Example 2

Solution

The direction vector of the line is just the vector @ = (1,2,6).
We can use either point as the point on the line. Let's take
ro = (1,2,—1). Then the parametric equations of the line are

given by
x=1+t
y=2-+2t
z=—-1+6t.
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Line Segments in Space
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Line Segments in Space

Suppose you just want to parametrize the line segment from
P = (x0, Y0, 20) to the point Q = (x1,y1, z1).

The direction vector of the line is just the vector
@ = (x1 — X0, Y1 — Y0, 21 — 20). If we use the point P = (xo, y0, 20)
for our vector rg, then the line containing P and @ is given by

x=xp+ t(x1 —x0) = (1 — t)xo + tx1

y=yo+tli—yo) = (1= t)yo + tn
z=2z0+t(z1 —20) = (1 — t)z0 + tz1.

If we restrict the values of the parameter t to the interval [0, 1], we
get the line segment PQ. When t =0, you're at P. When t =1,
you're at Q.
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Example 3

Parametrize the line segment joining the points P(2,1,—1) and

Q(3,4,2)
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Example 3

We simply plug the points into the formula:

x=01-t)2)+t(3)=t+2
y=01-1t)1)+t(4)=3t+1
z=(1-t)(-1)+t(2)=3t—-1

for t in the interval [0, 1].
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The Distance from a Point to a Line in Space
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The Distance from a Point to a Line in Space

The distance from S to the line is
the length of PS times sin(8).

Figure: The Distance from a Point to a Line
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The Distance from a Point to a Line in Space

We compute

Distance from S to the line = ||¥|| sin(0)
IPS] v sino)
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The Distance from a Point to a Line in Space

Theorem: Parametric and Symmetric Equations of a Line

Let L be a line in space passing through point P with direction
vector v. If S is any point not on L, then the distance from S to L
is
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Example 4

Find the distance from the point S(1,1,1) to the line

x=1—-t, y=2+t, z=3-2t

Mark Faucette Equations of Lines and Planes in Space Fall 2025 26 / 66



Example 4

Solution

The direction vector for this lineis v = (—1,1, —2). We need a
point P on the line. For this, we'll take (1,2, 3) which we get by

setting t = 0. Then ﬁg =(0,-1,-2).
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Example 4

Solution (cont.)

We compute

i j k
@ xv=det| 0 -1 -2
1 1 -2

= <4?2’_1>

HISSZ x v = \/42 422 4 (—1)2 = v21
[[v]| = \/(—1)2 +124 (=22 =6
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Example 4

Solution (cont.)

We have

IPS x vi| = /2 + 22+ (-1)2 = V2T
Ivll = /(12 + 12+ (=2 = V6.

So, the distance from S to the line is

IPSxv|  v21 V14
vl v6 2
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Relationships Between Lines
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Relationships Between Lines

Given two lines in the two-dimensional plane, the lines are equal,
they are parallel but not equal, or they intersect in a single point.
In three dimensions, a fourth case is possible. If two lines in space
are not parallel, but do not intersect, then the lines are said to be
skew lines.
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Relationships Between Lines

To classify lines as parallel but not equal, equal, intersecting, or
skew, we need to know two things: whether the direction vectors
are parallel and whether the lines share a point. (See Figure 2.68.)

Lines Share A Common Point?

Yes No
Yes Equal Parallel but not equal
Direction Vectors
Are Parallel?
No Intersecting Skew

Determine the relationship between two lines based on whether their direction vectors
are parallel and whether they share a point.
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An Equation for a Plane in Space
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An Equation for a Plane in Space

A plane IT in space is determined by a nonzero normal vector
n = (a, b, c) and a point Py(xo, yo, 20) lying in the plane.

Px,y, 2) n=<ab,c>

Figure: Plane In Space
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An Equation for a Plane in Space

The point P(x, y, z) is in the plane exactly when the vector
PoP = (x — x0,y — Y0,Z — 2p) lies in the plane.

Py, 2) n=<abc>

Po(Xo, Yor 20)

Figure: Plane In Space
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An Equation for a Plane in Space

The vector Poﬁ = (X — x0,Y — Y0, Z — 2p) lies in the plane exactly
when it is orthogonal to n. This happens when

n-P‘O?D:O.

Figure: Plane In Space
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An Equation for a Plane in Space

An equation of the plane in space containing the point
Po(xo0, Y0, 20) with normal vector n = (a, b, c¢) is

n-ﬁzo

<aab7C> ' <X_X0’y_y07z_20> =0
a(x = x0) + b(y — y0) + ¢(z —20) =0
ax + by + cz = axp + byy + czp.

Equation for a Plane in Space

ax + by + cz = axg + byy + czo,

where n = (a, b, ¢) is a normal vector and Py(xo, yo, 20) lies in the
plane.
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Examples
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Example 5

Find an equation for the plane through Py(4,—3,7) having normal
vector n = 3i — j + k.
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Example 5

Solution

We notice that the coefficients of the equation of the plane are the
components of the normal vector, so the equation of the plane is
3x — y + z = d for some constant d.

To find d, you just plug in the point Py(4,—3,7):
3(4) — (-3)+7=22.

So, an equation of the plane is 3x — y + z = 22.
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Example 6

Find an equation for the plane through the points P(1,0,0),
Q(0,2,0), and R(0,0,3).
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Example 6

Solution
Since P, @, and R are in the plane, the vectors @ =(-1,2,0)
and PR = (—1,0,3) are parallel to the plane. Hence, a normal

vector to the plane is given by their cross product:

PO x PR = (—1,2,0) x (~1,0,3)

i j k
=det|{—1 2 0
-1 0 3

= (6,3,2).
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Example 6

Solution (cont.)

A normal vector to the plane is n = (6, 3,2), so an equation of the
plane looks like

6x +3y +2z=d.

If we substitute the point (1,0,0), we get that d = 6. So, an
equation of the plane is

6x + 3y + 2z = 6.

Mark Faucette Equations of Lines and Planes in Space Fall 2025 43 / 66



Parallel and Intersecting Planes
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Parallel and Intersecting Planes

We have discussed the various possible relationships between two
lines in two dimensions and three dimensions.

When we describe the relationship between two planes in space, we
have only two possibilities: the two distinct planes are parallel or
they intersect.

When two planes are parallel, their normal vectors are parallel.

When two planes intersect, the intersection is a line.
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Parallel and Intersecting Planes

If two planes have parallel normal vectors n; and ny, then the
planes are either parallel or equal. They are parallel if they share
no point and they are equal if the share a point.

If two planes have nonparallel normal vectors n; and ny, then the
planes intersect in a line. The direction vector v of the line of
intersection is given by v =nj X ny.
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Examples
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Example 7

Find a vector parallel to the line of intersection of the planes
x—2y+4z=2and x+y—2z=05.
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Example 7

A direction vector for the line of intersection is the cross product of
the two normal vectors to the two planes.

i ] k
ngxnp=det |l -2 4
1 1 -2

=6j+ 3k.
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Example 8

Find parametric equations for the line in which the planes
x —2y+4z=2and x + y — 2z =5 intersect.
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Example 8

Solution

We found the direction vector for the line of intersection in the last
example: v =6j+ 3k. So, all we need is to find any point on the
line. We arbitrarily set z = 0 to get the system of linear equations

X — 2y =2
x+y=2>5
Solving this system, we get x = 4 and y = 1. So, the point
(4,1,0) is on the line ¢.
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Example 8

Solution (cont.)

The parametric equations of the line of intersection is then

x=4
y=1+6t
z=3t
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Example 9

Find the point in which the line x =2, y =34 2t, z= -2 — 2t
meets the plane 6x + 3y — 4z = —12.
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Example 9

We substitute the parametric equations for the line into the
equation for the plane to find the value of t where the two meet.

6x + 3y —4z = —12

6(2) +3(3+2t) —4(—2—2t) = —-12
14t +29 = —12

41
TR
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Example 9

Solution (cont.)

To find the point of intersection, we simply evaluate the

parametric equations for the line at the point t = —%.
x =2
41 20
_ 2( —— ) =_—""
y=3+ < 14) 7

The point of intersection of the line and the plane is (2, -2, 27).
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Distance from a Point to a Plane
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Distance from a Point to a Plane

The distance from a point S to a plane is found by taking any
point P in the plane, constructing the vector PS, projecting this
vector onto the normal vector to the plane n, and taking the
length of the projection.

Figure: Distance from a Point to a Plane
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Distance from a Point to a Plane

Theorem: Distance from a Point to a Plane

If P is a point on a plane with normal n, then the distance from
any point S to the plane is the length of the vector projection of
PS onto n, as given in the following formula.

d:'%-ﬁ
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Example 10

Find the distance from the point S(2, —3,4) to the plane with
equation x + 2y + 2z = 13.
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Example 10

Solution
First, we find any point in the plane. The point P(1,3,3) will do.
The vector % is then (1,—6,1). A normal vector to the plane is

n=(1,2,2). Now we just have to project @ onto n and find the
length of the projection.

o P = P gy (2.2 = 5 (122) = ~(1.22)

The length of this projection is then /12 + 22 422 = 3,
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Angles Between Planes
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Angles Between Planes

The angle between two intersecting planes is just the acute angle
between their normal vectors.
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Example 11

Find the angle between the planes 5x + y — z = 10 and
x—2y+3z=-1.
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Example 11

Solution

The two normal vectors are n; = (5,1, —1) and np = (1,—-2,3). If
0 is the acute angle between the two planes, then

cosf — ni - Ny . (5, 1, —1> o (1, —2,3>
~Amallflm2ll 115, 1, =11 1I(1, =2, 3)]
_ (W) +O)(=2) +(=1)B)
V52 +12 + (—1)2 /12 + (—2)2 + 32
=0.

So, the angle between the two planes is 7/2.
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