

The Cross Product

William M. Faucette

University of West Georgia

Fall 2025

Outline

- 1 The Cross Product
- 2 How To Compute Determinants
- 3 Examples
- 4 Important Fact
- 5 Another Important Fact
- 6 And Another Important Fact
- 7 An Interesting Identity
- 8 Parallel Vectors
- 9 Properties of the Cross Product
- 10 Cross Products of the Standard Basis Vectors
- 11 The Length of the Cross Product
- 12 Triple Scalar Product

The Cross Product

The Cross Product

Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ be two vectors in space. Their **cross product** is defined by

$$\begin{aligned}\mathbf{u} \times \mathbf{v} &= \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix} \\ &= (u_2 v_3 - u_3 v_2) \mathbf{i} + (u_3 v_1 - u_1 v_3) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}.\end{aligned}$$

How To Compute Determinants

How To Compute Determinants

The determinant of a 2×2 matrix is defined by

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc.$$

How To Compute Determinants

The determinant of a 3×3 matrix M is done by **expansion by minors along the first row**.

If a_{ij} is the ij -entry of M , the ij -**minor**, M_{ij} , is the determinant of the 2×2 matrix gotten by deleting the i th row and the j th column of M .

The ij -**cofactor** is defined by $C_{ij} = (-1)^{i+j} M_{ij}$.

The determinant of the 3×3 matrix is given by

$$\det M = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}.$$

How To Compute Determinants

In particular,

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \det \begin{bmatrix} e & f \\ h & i \end{bmatrix} - b \det \begin{bmatrix} d & f \\ g & i \end{bmatrix} + c \det \begin{bmatrix} d & e \\ g & h \end{bmatrix}.$$

Examples

Example 1

Example

Find $\mathbf{u} \times \mathbf{v}$ if $\mathbf{u} = \langle 2, 3, 0 \rangle$ and $\mathbf{v} = \langle -1, 1, 0 \rangle$.

Example 1

Solution

We compute

$$\begin{aligned}\det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 0 \\ -1 & 1 & 0 \end{bmatrix} &= \mathbf{i} \det \begin{bmatrix} 3 & 0 \\ 1 & 0 \end{bmatrix} - \mathbf{j} \det \begin{bmatrix} 2 & 0 \\ -1 & 0 \end{bmatrix} + \mathbf{k} \det \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix} \\ &= [(3)(0) - (0)(1)] \mathbf{i} \\ &\quad + [(2)(0) - (0)(-1)] \mathbf{j} \\ &\quad + [(2)(1) - (3)(-1)] \mathbf{k} \\ &= 5 \mathbf{k}.\end{aligned}$$

Example 2

Example

Find a vector orthogonal to the plane containing $P(1, 0, 0)$, $Q(0, 1, 0)$, and $R(0, 0, 1)$.

Example 2

Solution

Since P , Q , and R are in the plane, the vectors $\overrightarrow{PQ} = \langle -1, 1, 0 \rangle$ and $\overrightarrow{PR} = \langle -1, 0, 1 \rangle$ are parallel to the plane. Hence a vector orthogonal to the plane is given by their cross product:

$$\begin{aligned} \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} &= \mathbf{i} \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \mathbf{j} \det \begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix} + \det \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \mathbf{k} \\ &= \mathbf{i} + \mathbf{j} + \mathbf{k}. \end{aligned}$$

Important Fact

Important Fact

Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$. The quantity $\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v})$ is given by

$$\det \begin{bmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}.$$

In particular, this means that $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$ and $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$, since the determinant of a matrix with two identical rows is zero.

Thus, $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} .

Another Important Fact

Another Important Fact

Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ be nonzero vectors in space. If \mathbf{u} and \mathbf{v} are not parallel, then

$$P = \{a\mathbf{u} + b\mathbf{v} \mid a, b \in \mathbf{R}\}$$

is the **plane spanned by** (or the **plane defined by**) \mathbf{u} and \mathbf{v} .

We remark that since $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} , it is also orthogonal to the plane P . Let $\mathbf{w} = a\mathbf{u} + b\mathbf{v}$ lie in P . Then

$$\begin{aligned}\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) &= (a\mathbf{u} + b\mathbf{v}) \cdot (\mathbf{u} \times \mathbf{v}) \\ &= a(\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v})) + b(\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v})) \\ &= a(0) + b(0) = 0.\end{aligned}$$

If \mathbf{u} and \mathbf{v} span P and \mathbf{w} lies in the plane P , then \mathbf{w} is orthogonal to $\mathbf{u} \times \mathbf{v}$.

And Another Important Fact

And Another Important Fact

Just as the dot product $\mathbf{u} \cdot \mathbf{v}$ equals the length of \mathbf{u} times the length of \mathbf{v} times the cosine of the angle between \mathbf{u} and \mathbf{v} , we have the following fact:

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$$

where θ is the angle between \mathbf{u} and \mathbf{v}

An Interesting Identity

An Interesting Identity

You can derive this formula from the identity

$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$

and what we already know: $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta$.

If you want to completely exhaust yourself, you can verify this identity for yourself.

Parallel Vectors

Parallel Vectors

Since we have that

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta,$$

we can conclude that \mathbf{u} and \mathbf{v} are parallel if and only if their cross product is zero.

If both \mathbf{u} and \mathbf{v} are nonzero, then the cross product being zero forces $\sin \theta = 0$, so the vectors are parallel.

If one of \mathbf{u} or \mathbf{v} is the zero vector, we just define the zero vector to be parallel to every vector.

Properties of the Cross Product

Properties of the Cross Product

If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors and r , s are scalars then

- 1 $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$
- 2 $(r\mathbf{u}) \times (s\mathbf{v}) = (rs)(\mathbf{u} \times \mathbf{v})$
- 3 $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$
- 4 $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$
- 5 $(\mathbf{v} + \mathbf{w}) \times \mathbf{u} = \mathbf{v} \times \mathbf{u} + \mathbf{w} \times \mathbf{u}$
- 6 $\mathbf{0} \times \mathbf{u} = \mathbf{0}$
- 7 $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$

By the way, $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ generally does **NOT** equal $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$.

Cross Products of the Standard Basis Vectors

Cross Products of the Standard Basis Vectors

Take the ordered basis $\mathbf{i}, \mathbf{j}, \mathbf{k}$ for space.

If you go through this list **forward**, looping around when you get to the end, you get positive cross products:

$$\mathbf{i} \times \mathbf{j} = \mathbf{k}, \quad \mathbf{j} \times \mathbf{k} = \mathbf{i}, \quad \mathbf{k} \times \mathbf{i} = \mathbf{j}.$$

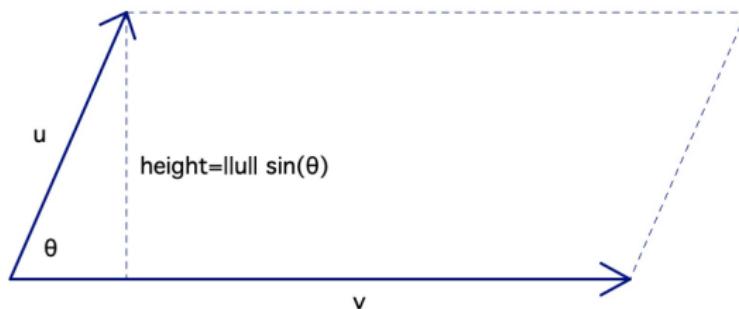
If you go through this list **backward**, looping around when you get to the beginning, you get negative cross products:

$$\mathbf{i} \times \mathbf{k} = -\mathbf{j}, \quad \mathbf{j} \times \mathbf{i} = -\mathbf{k}, \quad \mathbf{k} \times \mathbf{j} = -\mathbf{i}.$$

The Length of the Cross Product

The Length of the Cross Product

Let \mathbf{u} and \mathbf{v} be vectors in space. Then the length of the cross product is the area of the parallelogram spanned by \mathbf{u} and \mathbf{v} .

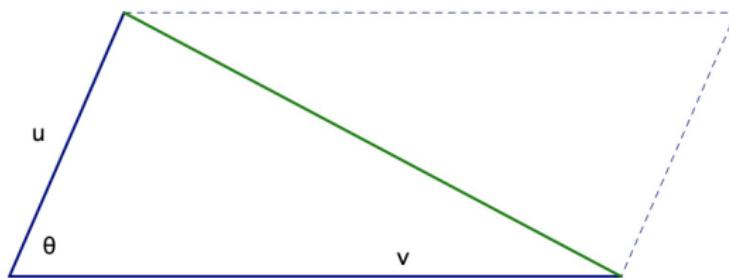


$$\text{Area} = (\text{base})(\text{height}) = \|\mathbf{v}\| \|\mathbf{u}\| \sin(\theta) = \|\mathbf{u} \times \mathbf{v}\|$$

Figure: Area of a Parallelogram

The Length of the Cross Product

Let \mathbf{u} and \mathbf{v} be vectors in space. Then the area of the triangle formed by \mathbf{u} and \mathbf{v} is one-half the length of the cross product of \mathbf{u} and \mathbf{v}



Area of the triangle

$$= \frac{1}{2} \text{ (Area of the Parallelogram)}$$

$$= \frac{1}{2} \|\mathbf{u} \times \mathbf{v}\|$$

Figure: Area of a Triangle

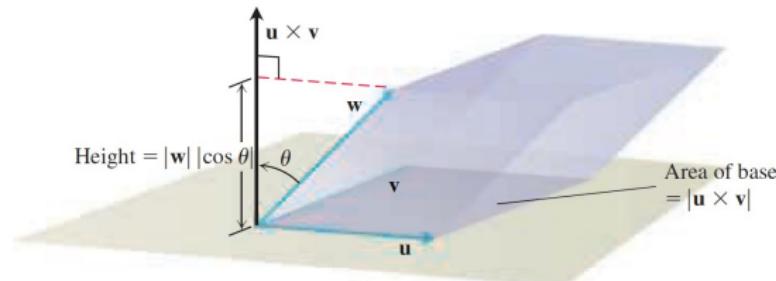
Triple Scalar Product

Triple Scalar Product

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in space. The **triple scalar product** of \mathbf{u} , \mathbf{v} , and \mathbf{w} is $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$. The sign of the triple scalar product tells you whether \mathbf{u} , \mathbf{v} , and \mathbf{w} —in that order—is a left-handed or right-handed basis for space.

Triple Scalar Product

Geometrically, the absolute value of the triple scalar product is the volume of the parallelepiped spanned by \mathbf{u} , \mathbf{v} , and \mathbf{w} .



$$\begin{aligned}\text{Volume} &= \text{area of base} \cdot \text{height} \\ &= |\mathbf{u} \times \mathbf{v}| |\mathbf{w}| |\cos \theta| \\ &= |(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|\end{aligned}$$

Figure: Triple Scalar Product

Triple Scalar Product

If $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$, then the triple scalar product of \mathbf{u} , \mathbf{v} , and \mathbf{w} is given by

$$\det \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix}.$$