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The Cross Product

Let u = ⟨u1, u2, u3⟩ and v = ⟨v1, v2, v3⟩ be two vectors in space.
Their cross product is defined by

u× v = det

 i j k
u1 u2 u3
v1 v2 v3


= (u2v3 − u3v2) i+ (u3v1 − u1v3) j+ (u1v2 − u2v1) k.
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How To Compute Determinants
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How To Compute Determinants

The determinant of a 2× 2 matrix is defined by

det

[
a b
c d

]
= ad − bc.
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How To Compute Determinants

The determinant of a 3× 3 matrix M is done by expansion by
minors along the first row.

If aij is the ij-entry of M, the ij-minor, Mij , is the determinant of
the 2× 2 matrix gotten by deleting the ith row and the jth column
of M.

The ij-cofactor is defined by Cij = (−1)i+jMij .

The determinant of the 3× 3 matrix is given by

detM = a11C11 + a12C12 + a13C13.
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How To Compute Determinants

In particular,

det

a b c
d e f
g h i

 = a det

[
e f
h i

]
− b det

[
d f
g i

]
+ c det

[
d e
g h

]
.
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Examples
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Example 1

Example

Find u× v if u = ⟨2, 3, 0⟩ and v = ⟨−1, 1, 0⟩.
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Example 1

Solution

We compute

det

 i j k
2 3 0
−1 1 0

 = i det

[
3 0
1 0

]
− j det

[
2 0
−1 0

]
+ k det

[
2 3
−1 1

]
= [(3)(0)− (0)(1)] i

+ [(2)(0)− (0)(−1)] j

+ [(2)(1)− (3)(−1)] k

= 5 k.
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Example 2

Example

Find a vector orthogonal to the plane containing P(1, 0, 0),
Q(0, 1, 0), and R(0, 0, 1).
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Example 2

Solution

Since P, Q, and R are in the plane, the vectors
−→
PQ = ⟨−1, 1, 0⟩

and
−→
PR = ⟨−1, 0, 1⟩ are parallel to the plane. Hence a vector

orthogonal to the plane is given by their cross product:

det

 i j k
−1 1 0
−1 0 1

 = i det

[
1 0
0 1

]
− j det

[
−1 0
−1 1

]
+ det

[
−1 1
−1 0

]
k

= i+ j+ k.
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Important Fact
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Important Fact

Let u = ⟨u1, u2, u3⟩ , v = ⟨v1, v2, v3⟩, and w = ⟨w1,w2,w3⟩. The
quantity w · (u× v) is given by

det

w1 w2 w3

u1 u2 u3
v1 v2 v3

.
In particular, this means that u · (u× v) = 0 and v · (u× v) = 0,
since the determinant of a matrix with two identical rows is zero.

Thus, u× v is orthogonal to both u and v.
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Another Important Fact
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Another Important Fact

Let u = ⟨u1, u2, u3⟩ and v = ⟨v1, v2, v3⟩ be nonzero vectors in
space. If u and v are not parallel, then

P = {au+ bv | a, b ∈ R}

is the plane spanned by (or the plane defined by) u and v.

We remark that since u× v is orthogonal to both u and v, it is
also orthogonal to the plane P. Let w = au+ bv lie in P. Then

w · (u× v) = (au+ bv) · (u× v)

= a(u · (u× v)) + b(v · (u× v))

= a(0) + b(0) = 0.

If u and v span P and w lies in the plane P, then w is orthogonal
to u× v.
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And Another Important Fact
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And Another Important Fact

Just as the dot product u · v equals the length of u times the
length of v times the cosine of the angle between u and v, we have
the following fact:

∥u× v∥ = ∥u∥ ∥v∥ sin θ

where θ is the angle between u and v

Mark Faucette The Cross Product Fall 2025 19 / 34



An Interesting Identity
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An Interesting Identity

You can derive this formula from the identity

∥u× v∥2 = ∥u∥2∥v∥2 − (u · v)2

and what we already know: u · v = ∥u∥ ∥v∥ cos θ.

If you want to completely exhaust yourself, you can verify this
identity for yourself.
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Parallel Vectors
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Parallel Vectors

Since we have that

∥u× v∥ = ∥u∥ ∥v∥ sin θ,

we can conclude that u and v are parallel if and only if their cross
product is zero.

If both u and v are nonzero, then the cross product being zero
forces sin θ = 0, so the vectors are parallel.

If one of u or v is the zero vector, we just define the zero vector to
be parallel to every vector.
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Properties of the Cross Product
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Properties of the Cross Product

If u, v, and w are vectors and r , s are scalars then

1 u× v = −(v × u)

2 (ru)× (sv) = (rs)(u× v)

3 u× (v +w) = u× v + u×w

4 u× v = −v × u

5 (v +w)× u = v × u+w × u

6 0× u = 0

7 u× (v ×w) = (u ·w)v − (u · v)w

By the way, u× (v ×w) generally does NOT equal (u× v)×w.
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Cross Products of the Standard Basis Vectors
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Cross Products of the Standard Basis Vectors

Take the ordered basis i, j, k for space.

If you go through this list forward, looping around when you get
to the end, you get positive cross products:

i× j = k, j× k = i, k× i = j.

If you go through this list backward, looping around when you get
to the beginning, you get negative cross products:

i× k = −j, j× i = −k, k× j = −i.
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The Length of the Cross Product
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The Length of the Cross Product

Let u and v be vectors in space. Then the length of the cross
product is the area of the parallelogram spanned by u and v.

Figure: Area of a Parallelogram
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The Length of the Cross Product

Let u and v be vectors in space. Then the area of the triangle
formed by u and v is one-half the length of the cross product of u
and v

Figure: Area of a Triangle
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Triple Scalar Product
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Triple Scalar Product

Let u, v, and w be vectors in space. The triple scalar product of
u, v, and w is (u× v) ·w. The sign of the triple scalar product
tells you whether u, v, and w—in that order—is a left-handed or
right-handed basis for space.
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Triple Scalar Product

Geometrically, the absolute value of the triple scalar product is the
volume of the parallelepiped spanned by u, v, and w.

Figure: Triple Scalar Product
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Triple Scalar Product

If u = ⟨u1, u2, u3⟩, v = ⟨v1, v2, v3⟩, and w = ⟨w1,w2,w3⟩, then the
triple scalar product of u, v, and w is given by

det

u1 u2 u3
v1 v2 v3
w1 w2 w3

 .
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