Algebraic Curves by William Fulton Integral Elements

slideshow by William M. Faucette

University of West Georgia

Integral Elements

Let *R* be a subring of a ring *S*. An element $v \in S$ is said to be **integral** over *R* if there is a monic polynomial $F = X^n + a_1 X^{n-1} + \cdots + a_n \in R[X]$ such that F(v) = 0. If *R* and *S* are fields, we usually say that *v* is **algebraic** over *R* if *v* is integral over *R*.

Proposition

Let *R* be a subring of a domain *S*, $v \in S$. Then the following are equivalent:

- 1 v is integral over R.
- **2** R[v] is module-finite over R.
- 3 There is a subring R' of S containing R[v] which is module-finite over R.

Integral Elements

Proof.

- (1) implies (2): If $v^n + a_1 v^{n-1} + \dots + a_n = 0$, then $v^n \in \sum_{i=0}^{n-1} Rv^i$. It follows that $v^m \in \sum_{i=0}^{n-1} Rv_i$ for all m, so $R[v] = \sum_{i=0}^{n-1} Rv^i$.
- (2) implies (3): Let R' = R[v].

(3) implies (1): If $R' = \sum_{i=1}^{n} Rw_i$, then $vw_i = \sum_{j=1}^{n} a_{ij}w_j$, $a_{ij} \in R$. Then $\sum_{j=1}^{n} (\delta_{ij}v - a_{ij})w_j = 0$ for all *i*, where $\delta_{ij} = 0$ if $i \neq j$, $\delta_{ii} = 1$. If we consider these equations in the quotient field of *S*, we see that (w_1, \ldots, w_n) is a nontrivial solution, so $\det(\delta_{ij}v - a_{ij}) = 0$. Since *v* appears only in the diagonal of the matrix, this determinant has the form $v^n + a_1v^{n-1} + \cdots + a_n$, $a_i \in R$. So *v* is integral over *R*.

Corollary

The set of elements of S which are integral over R is a subring of S containing R.

Proof.

If a, b are integral over R, then b is integral over $R[a] \supset R$, so R[a, b] is module-finite over R. And $a \pm b$, $ab \in R[a, b]$, so they are integral over R by the proposition.

We say that S is **integral** over R if every element of S is integral over R. If R and S are fields, we say that S is an **algebraic extension** of R if S is integral over R. The proposition and corollary extend to the case where S is not a domain, with essentially the same proofs, but we won't need that generality.