Algebraic Curves by William Fulton Modules; Finiteness Conditions

slideshow by William M. Faucette

University of West Georgia

Table of Contents

Modules

Let *R* be a ring. An **R-module** is a commutative group *M* (the group law on *M* is written +; the identity of the group is 0, or 0_M) together with a scalar multiplication, i.e., a mapping from $R \times M$ to *M* (denote the image of (a, m) by $a \cdot m$ or am) satisfying:

9
$$1_R \cdot m = m$$
 for $m \in M$, where 1_R is the multiplicative identity in R .

Modules

Examples

- A \mathbb{Z} -module is just a commutative group, where $(\pm a)m = \pm (m + \dots + m)$ (a times) for $a \in \mathbb{Z}$, $a \ge 0$.
- If R is a field, an R-module is the same thing as a vector space over R.
- Solution: The multiplication in R makes any ideal of R into an R-module.
- If φ : R → S is a ring homomorphism, we define r ⋅ s for r ∈ R, s ∈ S, by the equation r ⋅ s = φ(r)s. This makes S into an R-module. In particular, if a ring R is a subring of a ring S, then S is an R-module.

Modules

A subgroup N of an R-module M is called a **submodule** if $am \in N$ for all $a \in R$, $m \in N$; N is then an R-module.

If S is a set of elements of an R-module M, the **submodule generated** by S is defined to be $\{\sum r_i s_i \mid r_i \in R, s_i \in S\}$; it is the smallest submodule of M which contains S. If $S = \{s_1, \ldots, s_n\}$ is finite, the submodule generated by S is denoted $\sum Rs_i$.

The module M is said to be **finitely generated** if $M = \sum Rs_i$ for some $s_1, \ldots, s_n \in M$. Note that this concept agrees with the notions of finitely generated commutative groups and ideals, and with the notion of a finite-dimensional vector space if R is a field.

Table of Contents

Let R be a subring of a ring S. There are several types of finiteness conditions for S over R, depending on whether we consider S as an R-module, a ring, or (possibly) a field.

S is said to be **module-finite** over R, if S is finitely generated as an R-module. If R and S are fields, and S is module finite over R, we denote the dimension of S over R by [S : R].

Let $v_1, \ldots, v_n \in S$. Let $\varphi : R[X_1, \ldots, X_n] \to S$ be the ring homomorphism taking X_i to v_i . The image of φ is written $R[v_1, \ldots, v_n]$. It is a subring of S containing R and v_1, \ldots, v_n , and it is the smallest such subring. Explicitly, $R[v_1, \ldots, v_n] = \{\sum_{i=1}^{n} a_{(i)} v_1^{i_1} \ldots v_n^{i_n} | a_{(i)} \in R\}$. The ring S is **ring-finite** over R if $S = R[v_1, \ldots, v_n]$ for some $v_1, \ldots, v_n \in S$.

Suppose R = K, S = L are fields. If $v_1, \ldots, v_n \in L$, we let $K(v_1, \ldots, v_n)$ be the quotient field of $K[v_1, \ldots, v_n]$. We regard $K(v_1, \ldots, v_n)$ as a subfield of L; it is the smallest subfield of L containing K and v_1, \ldots, v_n . The field L is said to be a **finitely generated field extension** of K if $L = K(v_1, \ldots, v_n)$ for some $v_1, \ldots, v_n \in L$.