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Introduction

Introduction

If we are given an algebraic set V , Proposition 1 from Chapter 1 gives a
criterion for telling whether V is irreducible or not. What is lacking is a
way to describe V in terms of a given set of polynomials which define V .

The preceding paragraph gives a beginning to this problem, but it is the
Nullstellensatz, or Zeros-theorem, which tells us the exact relationship
between ideals and algebraic sets.

We begin with a somewhat weaker theorem, and show how to reduce it to
a purely algebraic fact. In the rest of this section we show how to deduce
the main result from the weaker theorem, and give a few applications.

We assume throughout this section that k is algebraically closed.
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Weak Nullstellensatz

Weak Nullstellensatz

Theorem
If I is a proper ideal in k[X1, . . . ,Xn], then V (I) 6= ∅.

Proof.
We may assume that I is a maximal ideal, for there is a maximal ideal J
containing I, and V (J) ⊂ V (I). So L = k[X1, . . . ,Xn]/I is a field, and k
may be regarded as a subfield of L.

Suppose we knew that k = L. Then for each i there is an ai ∈ k such that
the I-residue of Xi is ai , or Xi − ai ∈ I. But (X1 − a1, . . . ,Xn − an) is a
maximal ideal, so I = (X1 − a1, . . . ,Xn − an), and
V (I) = {(a1, . . . , an)} 6= ∅.
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Weak Nullstellensatz

Weak Nullstellensatz

Thus we have reduced the problem to showing:

(∗) If an algebraically closed field k is a subfield of a field L,
and there is a ring homomorphism from k[X1, . . . ,Xn] onto
L (which is the identity on k), then k = L.

The algebra needed to prove this will be developed in the next two
lectures; (∗) will be proved after that.
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Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz

Theorem
Let I be an ideal in k[X1, . . . ,Xn] (k algebraically closed). Then
I(V (I)) = Rad(I).

In concrete terms, this says the following: if F1, . . . ,Fr , and G are in
k[X1, . . . ,Xn], and G vanishes wherever F1, . . . ,Fr vanish, then there is an
equation GN = A1F1 + · · ·+ ArFr , for some N > 0 and some
Ai ∈ k[X1, . . . ,Xn].
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Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz
Proof.
That Rad(I) ⊂ I(V (I)) is easy (Problem ??). Suppose that G is in the
ideal I(V (F1, . . . ,Fr )), Fi ∈ k[X1, . . . ,Xn]. Let
J = (F1, . . . ,Fr ,Xn+1G − 1) ⊂ k[X1, . . . ,Xn,Xn+1]. Then
V (J) ⊂ An+1(k) is empty, since G vanishes wherever all the Fi ’s are zero.
Applying the Weak Nullstellensatz to J , we see that 1 ∈ J , so there is an
equation

1 =
∑

Ai(X1, . . . ,Xn+1)Fi + B(X1, . . . ,Xn+1)(Xn+1G − 1).

Let Y = 1/Xn+1, and multiply the equation by a high power of Y , so that
an equation

Y N =
∑

Ci(X1, . . . ,Xn,Y )Fi + D(X1, . . . ,Xn,Y )(G − Y )

in k[X1, . . . ,Xn,Y ] results. Substituting G for Y gives the required
equation.

The above proof is due to Rabinowitsch. The first three corollaries are
immediate consequences of the theorem.
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Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz

Corollary
If I is a radical ideal in k[X1, . . . ,Xn], then I(V (I)) = I. So there is a
one-to-one correspondence between radical ideals and algebraic sets.

slideshow by William M. Faucette (UWG) Algebraic Curves by William Fulton 11 / 15



Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz

Corollary
If I is a prime ideal, then V (I) is irreducible. There is a one-to-one
correspondence between prime ideals and irreducible algebraic sets. The
maximal ideals correspond to points.
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Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz

Corollary
Let F be a nonconstant polynomial in k[X1, . . . ,Xn], F = F n1

1 . . .F nr
r the

decomposition of F into irreducible factors. Then
V (F ) = V (F1)∪ · · · ∪V (Fr ) is the decomposition of V (F ) into irreducible
components, and I(V (F )) = (F1 . . .Fr ). There is a one-to-one
correspondence between irreducible polynomials
F ∈ k[X1, . . . ,Xn] (up to multiplication by a nonzero element of k) and
irreducible hypersurfaces in An(k).
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Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz

Corollary

Let I be an ideal in k[X1, . . . ,Xn]. Then V (I) is a finite set if and only if
k[X1, . . . ,Xn]/I is a finite dimensional vector space over k. If this occurs,
the number of points in V (I) is at most dimk (k[X1, . . . ,Xn]/I).
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Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz

Proof.
Let P1, . . . ,Pr ∈ V (I). Choose F1, . . . ,Fr ∈ k[X1, . . . ,Xn] such that
Fi(Pj) = 0 if i 6= j , and Fi(Pi) = 1; let Fi be the I-residue of Fi . If∑
λiFi = 0, λi ∈ k, then

∑
λiFi ∈ I, so λj = (

∑
λiFi)(Pj) = 0. Thus the

Fi are linearly independent over k, so r ≤ dimk (k[X1, . . . ,Xn]/I).

Conversely, if V (I) = {P1, . . . ,Pr} is finite, let Pi = (ai1, . . . , ain), and
define Fj by Fj =

∏r
i=1(Xj − aij), j = 1,. . . ,n. Then Fj ∈ I(V (I)), so

FN
j ∈ I for some N > 0 (Take N large enough to work for all Fj). Taking

I-residues, FN
j = 0, so X rN

j is a k-linear combination of 1, X j ,. . . ,X
rN−1
j .

If follows by induction that X s
j is a k-linear combination of 1,

X j ,. . . ,X
rN−1
j for all s, and hence that {Xm1

1 · · · · · X
mn
n |mi < rN}

generate k[X1, . . . ,Xn]/I as a vector space over k.
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