Algebraic Curves by William Fulton Algebraic Subsets of the Plane

slideshow by William M. Faucette

University of West Georgia

Algebraic Subsets of the Plane

Table of Contents

Algebraic Subsets of the Plane

Frame Title

Proposition

Let F and G be polynomials in k[X, Y] with no common factors. Then $V(F, G) = V(F) \cap V(G)$ is a finite set of points.

Proof.

Since *F* and *G* have no common factors in k[X][Y], they also have no common factors in k(X)[Y] (see Lecture 1). Since k(X)[Y] is a PID, (F, G) = (1) in k(X)[Y], so RF + SG = 1 for some $R, S \in k(X)[Y]$. There is a nonzero $D \in k[X]$ such that DR = A, $DS = B \in k[X, Y]$. Therefore AF + BG = D. If $(a, b) \in V(F, G)$, then D(a) = 0. But *D* has only a finite number of zeros. This shows that only a finite number of *X*-coordinates appear among the points of V(F, G). Since the same reasoning applies to the *Y*-coordinates, there can be only a finite number of points.

Corollary

If F is an irreducible polynomial in k[X, Y] such that V(F) is infinite, then I(V(F)) = (F), and V(F) is irreducible.

Proof.

If $G \in I(V(F))$, then V(F, G) is infinite, so F divides G by the proposition, i.e. $G \in (F)$. Therefore $(I(V(F)) \subset (F))$, and the fact that V(F) is irreducible follows since the ideal (F) is prime.

Corollary

Suppose k is infinite. Then the irreducible algebraic subsets of $\mathbb{A}^2(k)$ are: $\mathbb{A}^2(k)$, \emptyset , points, and irreducible plane curves V(F), where F is an irreducible polynomial and V(F) is infinite.

Proof.

Let V be an irreducible algebraic set in $\mathbb{A}^2(k)$. If V is finite or I(V) = (0), V is of the required type. Otherwise I(V) contains a nonconstant polynomial F; since I(V) is prime, some irreducible factor of F belongs to I(V), so we may assume F is irreducible. Then I(V) = (F); for if $G \in I(V)$, $G \notin (F)$, then $V \subset V(F, G)$ is finite.

Corollary

Assume k is algebraically closed, F a nonconstant polynomial in k[X, Y]. Let $F = F_1^{n_1} \dots F_r^{n_r}$ be the decomposition of F into irreducible factors. Then $V(F) = V(F_1) \cup \dots \cup V(F_r)$ is the decomposition of V(F) into irreducible components, and $I(V(F)) = (F_1 \dots F_r)$.

Proof.

No F_i divides any F_j , $j \neq i$, so there are no inclusion relations among the $V(F_i)$. And $I(\bigcup_i V(F_i)) = \bigcap_i I(V(F_i)) = \bigcap_i (F_i)$. Since any polynomial divisible by each F_i is also divisible by $F_1 \dots F_r$, $\bigcap_i (F_i) = (F_1 \dots F_r)$. Note that the $V(F_i)$ are infinite since k is algebraically closed.