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The Hilbert Basis Theorem

The Hilbert Basis Theorem

Although we have allowed an algebraic set to be defined by any set of
polynomials, in fact a finite number will always do.

Theorem
Every algebraic set is the intersection of a finite number of hypersurfaces.

Proof.
Let the algebraic set be V (I) for some ideal I ⊂ k[X1, . . . ,Xn]. It is
enough to show that I is finitely generated, for if I = (F1, . . . ,Fr ), then
V (I) = V (F1) ∩ · · · ∩ V (Fr ).

To prove this fact we need some algebra.
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The Hilbert Basis Theorem

A ring is said to be Noetherian if every ideal in the ring is finitely
generated. Fields and PID’s are Noetherian rings. The theorem, therefore,
is a consequence of the

Hilbert Basis Theorem
If R is a Noetherian ring, then R[X1, . . . ,Xn] is a Noetherian ring.
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Proof.
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