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Field Extensions

Suppose K is a subfield of a field L, and suppose L = K (v) for
some v ∈ L. Let φ : K [X ] → L be the homomorphism taking X to
v . Let Ker(φ) = (F ), F ∈ K [X ] (since K [X ] is a PID). K [X ]/(F )
is isomorphic to K [v ], so (F ) is prime. Two cases may occur:

1 Case 1: F = 0
2 Case 2: F ̸= 0
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Case 1

Let K ⊂ L be two fields and suppose L = K (v) for some v ∈ L.
Let φ : K [X ] → L be the homomorphism taking X to v . Let (F )
be the kernel of φ.

Case 1: (F = 0). Then K [v ] is isomorphic to K [X ], so K (v) = L
is isomorphic to K (X ). In this case L is not ring-finite (or
module-finite) over K .

4 / 8



Case 2

Let K ⊂ L be two fields and suppose L = K (v) for some v ∈ L.
Let φ : K [X ] → L be the homomorphism taking X to v . Let (F )
be the kernel of φ.

Case 2: (F ̸= 0). We may assume F is monic. Then (F ) is prime,
so F is irreducible and (F ) is maximal; therefore K [v ] is a field, so
K [v ] = K (v). And F (v) = 0, so v is algebraic over K and
L = K [v ] is module-finite over K .
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To finish the proof of the Nullstellensatz, we must prove the claim
(∗) of Section 7; this says that if a field L is a ring-finite extension
of an algebraically closed field k, then L = k. In view of Problem
??, it is enough to show that L is module-finite over k. The above
discussion indicates that a ring-finite field extension is already
module-finite. The next proposition shows that this is always true,
and completes the proof of the Nullstellensatz.
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Zariski’s Theorem

Proposition
If a field L is ring-finite over a subfield K , then L is module-finite
(and hence algebraic) over K .
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Proof.
Suppose L = K [v1, . . . , vn]. The case n = 1 is taken care of by the
above discussion, so we assume the result for all extensions
generated by n − 1 elements. Let K1 = K (v1). By induction,
L = K1[v2, . . . , vn] is module-finite over K1. We may assume v1 is
not algebraic over K .

Each vi satisfies an equation vni
i + ai1vni −1

i + · · · = 0, aij ∈ K1. If
we take a ∈ K [v1] which is a multiple of all the denominators of
the aij , we get equations (avi)ni + aai1(avi)ni −1 + · · · = 0. It
follows from the fact that the set of elements of L integral over K
is a ring that for any z ∈ L = K [v1, . . . , vn], there is an N such
that aNz is integral over K [v1]. In particular this must hold for
z ∈ K (v1). But since K (v1) is isomorphic to the field of rational
functions in one variable over K , this is impossible.
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