Algebraic Curves by William Fulton Field Extensions

slideshow by William M. Faucette

University of West Georgia

Field Extensions

Suppose K is a subfield of a field L, and suppose L = K(v) for some $v \in L$. Let $\varphi : K[X] \to L$ be the homomorphism taking X to v. Let $Ker(\varphi) = (F)$, $F \in K[X]$ (since K[X] is a PID). K[X]/(F)is isomorphic to K[v], so (F) is prime. Two cases may occur:

```
Case 1: F = 0
Case 2: F ≠ 0
```

Let $K \subset L$ be two fields and suppose L = K(v) for some $v \in L$. Let $\varphi : K[X] \to L$ be the homomorphism taking X to v. Let (F) be the kernel of φ .

Case 1: (F = 0). Then K[v] is isomorphic to K[X], so K(v) = L is isomorphic to K(X). In this case L is not ring-finite (or module-finite) over K.

Let $K \subset L$ be two fields and suppose L = K(v) for some $v \in L$. Let $\varphi : K[X] \to L$ be the homomorphism taking X to v. Let (F) be the kernel of φ .

Case 2: $(F \neq 0)$. We may assume *F* is monic. Then (*F*) is prime, so *F* is irreducible and (*F*) is maximal; therefore K[v] is a field, so K[v] = K(v). And F(v) = 0, so *v* is algebraic over *K* and L = K[v] is module-finite over *K*.

To finish the proof of the Nullstellensatz, we must prove the claim (*) of Section 7; this says that if a field *L* is a ring-finite extension of an algebraically closed field *k*, then L = k. In view of Problem ??, it is enough to show that *L* is module-finite over *k*. The above discussion indicates that a ring-finite field extension is already module-finite. The next proposition shows that this is always true, and completes the proof of the Nullstellensatz.

Proposition

If a field L is ring-finite over a subfield K, then L is module-finite (and hence algebraic) over K.

Proof.

Suppose $L = K[v_1, ..., v_n]$. The case n = 1 is taken care of by the above discussion, so we assume the result for all extensions generated by n - 1 elements. Let $K_1 = K(v_1)$. By induction, $L = K_1[v_2, ..., v_n]$ is module-finite over K_1 . We may assume v_1 is not algebraic over K.

Proof.

Suppose $L = K[v_1, ..., v_n]$. The case n = 1 is taken care of by the above discussion, so we assume the result for all extensions generated by n - 1 elements. Let $K_1 = K(v_1)$. By induction, $L = K_1[v_2, ..., v_n]$ is module-finite over K_1 . We may assume v_1 is not algebraic over K.

Each v_i satisfies an equation $v_i^{n_i} + a_{i1}v_i^{n_i-1} + \cdots = 0$, $a_{ij} \in K_1$. If we take $a \in K[v_1]$ which is a multiple of all the denominators of the a_{ij} , we get equations $(av_i)^{n_i} + aa_{i1}(av_i)^{n_i-1} + \cdots = 0$. It follows from the fact that the set of elements of L integral over Kis a ring that for any $z \in L = K[v_1, \dots, v_n]$, there is an N such that $a^N z$ is integral over $K[v_1]$. In particular this must hold for $z \in K(v_1)$. But since $K(v_1)$ is isomorphic to the field of rational functions in one variable over K, this is impossible.