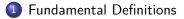
Algebraic Curves by William Fulton Algebraic Preliminaries

slideshow by William M. Faucette

University of West Georgia

Table of Contents



When we speak of a **ring**, we shall always mean a commutative ring with a multiplicative identity.

A **ring homomorphism** from one ring to another must take the multiplicative identity of the first ring to that of the second.

A **domain**, or integral domain, is a ring (with at least two elements) in which the cancellation law holds.

A **field** is a domain in which every nonzero element is a unit, i.e. has a multiplicative inverse.

The letter \mathbb{Z} will denote the domain of integers, while \mathbb{Q} , \mathbb{R} , and \mathbb{C} will denote the fields of rational, real, and complex numbers, respectively.

Any domain R has a quotient field K, which is a field containing R as a **subring**, and any element in K may be written (not necessarily uniquely) as a ratio of two elements of R.

Any one-to-one ring homomorphism from R to a field L extends uniquely to a ring homomorphism from K to L.

Any ring homomorphism from a field to a nonzero ring is one-to-one.

For any ring R, R[X] denotes the ring of polynomials with coefficients in R.

The **degree** of a nonzero polynomial $\sum a_i X^i$ is the largest integer *d* such that $a_d \neq 0$; the polynomial is **monic** if $a_d = 1$.

The ring of polynomials in *n* variables over *R* is written $R[X_1, \ldots, X_n]$.

We often write R[X, Y] or R[X, Y, Z] when n = 2 or 3.

The monomials in $R[X_1, \ldots, X_n]$ are the polynomials $X_1^{i_1}X_2^{i_2}\cdots X_n^{i_n}$, i_j nonnegative integers; the degree of the monomial is $i_1 + \cdots + i_n$. Every $F \in R[X_1, \ldots, X_n]$ has a unique expression $F = \sum a_{(i)}X^{(i)}$, where the $X^{(i)}$ are the monomials, $a_{(i)} \in R$.

We call *F* **homogeneous**, or a **form**, of degree *d*, if all coefficients $a_{(i)}$ are zero except for monomials of degree *d*.

Any polynomial F has a unique expression $F = F_0 + F_1 + \cdots + F_d$, where F_i is a form of degree i; if $F_d \neq 0$, d is the **degree** of F, written deg(F).

The terms F_0 , F_1 , F_2 , ... are called the **constant**, **linear**, **quadratic**, ... terms of F; F is **constant** if $F = F_0$.

The zero polynomial is allowed to have any degree.

If R is a domain, $\deg(FG) = \deg(F) + \deg(G)$.

The ring *R* is a subring of $R[X_1, \ldots, X_n]$, and $R[X_1, \ldots, X_n]$ is characterized by the following property: if φ is a ring homomorphism from *R* to a ring *S*, and s_1, \ldots, s_n are elements in *S*, then there is a unique extension of φ to a ring homomorphism $\tilde{\varphi}$ from $R[X_1, \ldots, X_n]$ to *S* such that $\tilde{\varphi}(X_i) = s_i$, for $1 \le i \le n$. The image of *F* under $\tilde{\varphi}$ is written $F(s_1, \ldots, s_n)$.

The ring $R[X_1, \ldots, X_n]$ is canonically **isomorphic** to $R[X_1, \ldots, X_{n-1}][X_n]$.

An element *a* in a ring *R* is **irreducible** if it is not a unit or zero, and for any factorization a = bc, $b, c \in R$, either *b* or *c* is a unit. A domain *R* is a **unique factorization domain**, written UFD, if every nonzero element in *R* can be factored uniquely, up to units and the ordering of the factors, into irreducible elements.

If R is a UFD with quotient field K, then (by Gauss) any irreducible element $F \in R[X]$ remains irreducible when considered in K[X]; it follows that if F and G are polynomials in R[X] with no common factors in R[X], they have no common factors in K[X].

If *R* is a UFD, then R[X] is also a UFD. Consequently $k[X_1, \ldots, X_n]$ is a UFD for any field *k*. The quotient field of $k[X_1, \ldots, X_n]$ is written $k(X_1, \ldots, X_n)$, and is called the **field of rational functions** in *n* variables over *k*.

If $\varphi : R \to S$ is a ring homomorphism, the set $\varphi^{-1}(0)$ of elements mapped to zero is the **kernel** of φ , written $\text{Ker}(\varphi)$. It is an **ideal** in R. An ideal Iin a ring R is **proper** if $I \neq R$. A proper ideal is **maximal** if it is not contained in any larger proper ideal. A **prime** ideal is an ideal I such that whenever $ab \in I$, either $a \in I$ or $b \in I$.

A set *S* of elements of a ring *R* generates an ideal $I = \{\sum a_i s_i \mid s_i \in S, a_i \in R\}$. An ideal is **finitely generated** if it is generated by a finite set $S = \{f_1, \ldots, f_n\}$; we then write $I = (f_1, \ldots, f_n)$.

An ideal is **principal** if it is generated by one element. A domain in which every ideal is principal is called a **principal ideal domain**, written PID. The ring of integers \mathbb{Z} and the ring of polynomials k[X] in one variable over a field k are examples of PID's.

Every PID is a UFD. A principal ideal I = (a) in a UFD is prime if and only if *a* is irreducible (or zero).

Let *I* be an ideal in a ring *R*. The **residue class ring** of *R* modulo *I* is written R/I; it is the set of equivalence classes of elements in *R* under the equivalence relation: $a \sim b$ if $a - b \in I$. The equivalence class containing *a* may be called the *I*-residue of *a*; it is often denoted by \overline{a} .

The classes R/I form a ring in such a way that the mapping $\pi : R \to R/I$ taking each element to its *I*-residue is a ring homomorphism.

The ring R/I is characterized by the following property: if $\varphi : R \to S$ is a ring homomorphism to a ring S, and $\varphi(I) = 0$, then there is a unique ring homomorphism $\overline{\varphi} : R/I \to S$ such that $\varphi = \overline{\varphi} \circ \pi$.

A proper ideal I in R is prime if and only if R/I is a domain, and maximal if and only if R/I is a field. Every maximal ideal is prime.

Let k be a field, I a proper ideal in $k[X_1, \ldots, X_n]$. The canonical homomorphism π from $k[X_1, \ldots, X_n]$ to $k[X_1, \ldots, X_n]/I$ restricts to a ring homomorphism from k to $k[X_1, \ldots, X_n]/I$. We thus regard k as a subring of $k[X_1, \ldots, X_n]/I$; in particular $k[X_1, \ldots, X_n]/I$ is a vector space over k.

Let *R* be a domain. The **characteristic** of *R*, char(*R*), is the smallest integer *p* such that $1 + \cdots + 1$ (*p* times)= 0, if such a *p* exists; otherwise char(*R*) = 0. If $\varphi : \mathbb{Z} \to R$ is the unique ring homomorphism from \mathbb{Z} to *R*, then Ker(φ) = (*p*), so char(*R*) is a prime number or zero.

If *R* is a ring, $a \in R$, $F \in R[X]$, and *a* is a root of *F*, then F = (X - a)G for a unique $G \in R[X]$. A field *k* is **algebraically closed** if any nonconstant $F \in k[X]$ has a root. It follows that $F = \mu \prod (X - \lambda_i)^{e_i}$, $\mu, \lambda_i \in k$, where the λ_i are the distinct roots of *F*, and e_i is the **multiplicity** of λ_i . A polynomial of degree *d* has *d* roots in *k*, counting multiplicities. The field \mathbb{C} of complex numbers is an algebraically closed field.

Let *R* be any ring. The **derivative** of a polynomial $F = \sum a_i X^i \in R[X]$ is defined to be $\sum ia_i X^{i-1}$, and is written either $\frac{\partial F}{\partial X}$ or F_X .

If $F \in R[X_1, ..., X_n]$, $\frac{\partial F}{\partial X_i} = F_{X_i}$ is defined by considering F as a polynomial in X_i with coefficients in $R[X_1, ..., X_{i-1}, X_{i+1}, ..., X_n]$.

The following rules are easily verified:

$$(aF+bG)_X = aF_X + bG_X, a, b \in R.$$

2 $F_X = 0$ if F is a constant.

3
$$(FG)_X = F_X G + FG_X$$
, and $(F^n)_X = nF^{n-1}F_X$.

• If $G_1, \ldots, G_n \in R[X]$, and $F \in R[X_1, \ldots, X_n]$, then

$$F(G_1,\ldots,G_n)_X=\sum_{i=1}^n F_{X_i}(G_1,\ldots,G_n)(G_i)_X.$$

\$\mathbf{F}_{X_iX_j} = \mathbf{F}_{X_jX_i}\$, where we have written \$\mathbf{F}_{X_iX_j}\$ for \$(\mathbf{F}_{X_i})_{X_j}\$.
\$(\mathbf{E}uler's Theorem)\$ If \$\mathbf{F}\$ is a form of degree \$m\$ in \$\mathbf{R}[X_1, \ldots, X_n]\$, then

$$mF = \sum_{i=1}^{n} X_i F_{X_i}$$

slideshow by William M. Faucette (UWG)