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Diophantine Equations

A Little Number Theory

Diophantine Equations
A Diophantine equation is a polynomial equation, usually involving two
or more variables, so that the only solutions of interest are the integer ones.

A Diophantine equation of degree one is a linear Diophantine equation.

As an example, the Diophantine 3x + 2y = 10 has solutions{
x = 2 + 2t
y = 2− 3t

, t ∈ Z.
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First Problem: The Case n = 2

First Problem: The Case n = 2

Pythagorean Triples
Unquestionably one of the most famous Diophantine equations is that of
finding nontrivial integer solutions to the sides of a right triangle.

Problem
Find all nontrivial integer solutions of

x2 + y2 = z2

having no common factor.
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First Problem: The Case n = 2

First Problem: The Case n = 2

Problem
Find all nontrivial integer solutions of

x2 + y2 = z2

having no common factor.

We first note that if any two of x , y , or z are even, then the third must be
even, contradicting the hypothesis that x , y , and z have no common
factor.

So, at most one of x , y , and z can be even.
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First Problem: The Case n = 2

First Problem: The Case n = 2

Problem
Find all nontrivial integer solutions of

x2 + y2 = z2

having no common factor.

Suppose x and y are both odd. Then x2 and y2 are both odd, so their
sum, z2 is even. If z2 is even, then z must be even.
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First Problem: The Case n = 2

Problem

Problem
Find all nontrivial integer solutions of

x2 + y2 = z2

having no common factor.

Looking at the equation

x2 + y2 ≡ z2 mod 4,

Since z is even, then z2 ≡ 0 mod 4.
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First Problem: The Case n = 2

Problem

Problem
Find all nontrivial integer solutions of

x2 + y2 = z2

having no common factor.

On the other hand, since x and y are both odd, x , y ≡ 1 mod 2, so x2,
y2 ≡ 1 mod 4, and x2 + y2 ≡ 2 mod 4.

This contradicts the preceding slide where x2 + y2 = z2 ≡ 0 mod 4.

So, z must be odd and exactly one of x and y is even.
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Looking at a Larger Ring: Z[i]

Looking For Solutions in Z[i ]

Problem
Find all nontrivial integer solutions of

x2 + y2 = z2

having no common factor.

Rather than looking at solutions in the integers, we look at solutions in a
slightly larger ring, the Gaussian integers, denoted Z[i ]. This is the ring of
all complex numbers of the form {a + bi | a, b ∈ Z}.
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Looking at a Larger Ring: Z[i]

Looking For Solutions in Z[i ]

An element p in a ring R is prime if whenever p divides a product ab of
elements of R, then p divides a or p divides b.

An element u in a ring R is a unit if it has a multiplicative inverse.

A ring R is a unique factorization domain (a UFD) if every element of R
that is not a unit can be written as a product of prime elements, uniquely
up to order and multiplication by units.

The ring of Gaussian integers, Z[i ], is a unique factorization domain. The
units in this ring are ±1 and ±i .
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Looking at a Larger Ring: Z[i]

Looking For Solutions in Z[i ]

Problem
Find all nontrivial integer solutions of

x2 + y2 = z2

having no common factor.

In the ring of Gaussian integers, the left side of this equation factors:

(x + iy)(x − iy) = z2.
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Looking at a Larger Ring: Z[i]

Looking For Solutions in Z[i ]

Problem
Find all nontrivial integer solutions of

x2 + y2 = z2

having no common factor.

Suppose π is a prime element in Z[i ] which divides z . Then π2 divides z2,
whereby π2 divides

(x + iy)(x − iy).
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Looking at a Larger Ring: Z[i]

Looking For Solutions in Z[i ]

Suppose π divides both (x + iy) and (x − iy). Then π divides their sum,
2x . Hence π divides both z and 2x .

However, z and 2x are relatively prime integers (since z is odd and z and
x have no common factors), so there exist integers m, n so that

mz + 2nx = 1.

Since π divides both z and 2x , this equation tells us that π divides 1,
which says π is a unit. This is a contradiction.

So, (x + iy) and (x − iy) are relatively prime in Z[i ].
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Looking at a Larger Ring: Z[i]

Looking For Solutions in Z[i ]

In Z[i ], we have
(x + iy)(x − iy) = z2.

Any prime π which divides z must divide either (x + iy) or (x − iy), but
not both.

Since π2 divides z2, π2 divides either (x + iy) or (x − iy).

It follows that x + iy is a square in Z[i ].
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Looking at a Larger Ring: Z[i]

Looking For Solutions in Z[i ]

Let’s say
x + iy = (a + ib)2, a, b ∈ Z.

Then
x + iy = (a2 − b2) + i(2ab)

and

z2 = x2 + y2

= (x + iy)(x − iy)
= [(a2 − b2) + i(2ab)][(a2 − b2)− i(2ab)]
= (a2 − b2)2 + 4a2b2

= (a2 + b2)2.
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Looking at a Larger Ring: Z[i]

Looking For Solutions in Z[i ]

From this, we can see that

x = a2 − b2

y = 2ab
z = a2 + b2,

where a, b are integers.

Since x , y and z are pairwise relatively prime, we must have a and b are
relatively prime and not both odd.

This representation will give us all primitive Pythagorean triples.
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Second Problem: Generalization to n = 3

Second Problem

Generalizing slightly, we get a problem that is very easy to solve.

Problem
Find all nontrivial integer solutions of

x3 + y3 = z3

having no common factor.
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Second Problem: Generalization to n = 3

Second Problem

Problem
Find all nontrivial integer solutions of

x3 + y3 = z3

having no common factor.

Once again, if 3 divides two of x , y , or z , then 3 divides all three,
contradicting the hypothesis that these numbers have no common factor.
So, we have two cases:

1 3 divides none of x , y , or z
2 3 divides exactly one of x , y , or z
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Second Problem: Generalization to n = 3

Second Problem

Problem
Find all nontrivial integer solutions of

x3 + y3 = z3

having no common factor.

We will only consider the first case: 3 divides none of x , y , or z .
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Second Problem: Generalization to n = 3

Second Problem

Problem
Find all nontrivial integer solutions of

x3 + y3 = z3

having no common factor.

In this case, the only cubes modulo 9 not divisible by 3 are ±1.

But then x3 + y3 ≡ −2, 0, or 2 mod 9.

But z3 ≡ ±1 mod 9. So, in the first case, x3 + y3 = z3 has no nontrivial
integer solutions.
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An Observation

An Observation

If we look at the equation xn + yn = zn for n composite, we have the
following observation. If p is a prime factor of n, say n = pm, then

xn + yn = zn

xpm + ypm = zpm

(xm)p + (ym)p = (zm)p.

From this we see if there is no solution for a prime exponent p, there is no
solution for any exponent that is a multiple of p.

So we need only show that if p > 3 is an odd prime, then xp + yp = zp

has no solution in the nonzero integers x , y , z .
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A Third Problem: xp + yp = zp
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A Third Problem: xp + yp = zp

Third Problem

This observation leads us to another generalization:

Problem
For a prime number p > 3, show the equation

xp + yp = zp

has no nonzero integral solution.

Again, we limit ourselves to the first case where p divides none of x , y , or
z .
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A Third Problem: xp + yp = zp

Looking at a Larger Ring: Z[ω]

Let ω = e2πi/p, a primitive pth root of unity. Then the pth roots of 1 are
1, ω, ω2, . . . , ωp−1 and each of these is a root of the polynomial tp − 1.
Since there are p of these, these are all the roots of this polynomial.

So, in the ring Z[ω], we have

tp − 1 = (t − 1)(t − ω)(t − ω2) · · · (t − ωp−1).

William M. Faucette (UWG) Exploring xn + yn = zn Summer 2021 29 / 59



A Third Problem: xp + yp = zp

We Need Two Lemmas

In the equation

tp − 1 = (t − 1)(t − ω)(t − ω2) · · · (t − ωp−1),

we can divide both sides by t − 1 to get

(t − ω)(t − ω2) · · · (t − ωp−1) = tp−1 + tp−2 + · · ·+ t + 1.

Setting t = 1, we get

Lemma

(1− ω)(1− ω2) · · · (1− ωp−1) = p.
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A Third Problem: xp + yp = zp

We Need Two Lemmas

In the equation

tp − 1 = (t − 1)(t − ω)(t − ω2) · · · (t − ωp−1),

set t = −x/y . Remembering that p is odd and doing a bit of algebra, we
get

Lemma

xp + yp = (x + y)(x + yω)(x + yω2) · · · (x + yωp−1)

What we have done here is to factor xp + yp into p linear factors in the
ring Z[ω].
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A Third Problem: xp + yp = zp

Looking at a Larger Ring: Z[ω]

Problem
For a prime number p > 3, show the equation

xp + yp = zp

has no nonzero integral solution.

In the ring Z[ω], the left side of this equation factors:

(x + y)(x + yω)(x + yω2) · · · (x + yωp−1) = zp.
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A Third Problem: xp + yp = zp

Looking at a Larger Ring: Z[ω]

Our problem then is to show the equation

(x + y)(x + yω)(x + yω2) · · · (x + yωp−1) = zp,

has no nonzero integral solutions in Z[ω].
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A Third Problem: xp + yp = zp

Looking at a Larger Ring: Z[ω]

Assuming Z[ω] is a unique factorization domain, let π ∈ Z[ω] be a prime
dividing z .

Then πp divides zp, whereby πp divides

(x + y)(x + yω)(x + yω2) · · · (x + yωp−1).
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A Third Problem: xp + yp = zp

Looking For Solutions in Z[ω]

Suppose π divides more than one of the factors, say both (x + yωk) and
(x + yω`), 0 ≤ k < ` ≤ p − 1.

Then π divides the linear combination

(x + yω`)− ω`−k(x + yωk) = (1− ω`−k)x .
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A Third Problem: xp + yp = zp

Looking For Solutions in Z[ω]

Recalling our first lemma, we have that

(1− ω)(1− ω2) · · · (1− ωp−1)x = px .

and knowing that π divides (1− ω`−k)x , we have π divides px .

So, π divides both z and px .
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A Third Problem: xp + yp = zp

Looking For Solutions in Z[ω]

Since z and px are relatively prime in Z, there exist integers a, b so that
az + bpx = 1. It follows that π divides 1, a contradiction.

So, all the factors in the product

(x + y)(x + yω)(x + yω2) · · · (x + yωp−1)

are relatively prime in Z[ω].
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A Third Problem: xp + yp = zp

Looking For Solutions in Z[ω]

It now follows that each factor of the product is a pth power in Z[ω], so

x + yω = uαp

for some α, u ∈ Z[ω], with u a unit.

Thus we have a multiplicative problem in the ring Z[ω].
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A Third Problem: xp + yp = zp

Looking For Solutions in Z[ω]

So, assuming that Z[ω] is a UFD, it can be shown that x + yω has the
form uαp for some α ∈ Z[ω] and some unit u ∈ Z[ω].

It can then be shown that the equation x + yω = uαp, with x and y not
divisible by p, implies that x ≡ y mod p.

Similarly, writing xp + (−z)p = (−y)p, we obtain x ≡ −z mod p.

But then
2xp ≡ xp + yp = zp ≡ −xp mod p

implying that p | 3xp. Since p - x and p 6= 3, this is a contradiction.
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Big Oops!

Big Oops!

William M. Faucette (UWG) Exploring xn + yn = zn Summer 2021 40 / 59



Big Oops!

How Embarrassing!

In a famous incident, the French mathematician Gabriel Lamé gave a talk
at the Paris Academy in 1847 in which he claimed to prove Fermat’s last
theorem using the approach just presented.
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Big Oops!

How Embarrassing!

Joseph Liouville immediately questioned the step in Lamé’s proof in which
he assumed that, in order to show that each factor x + yωk is a pth power,
it suffices to show that the factors are relatively prime in pairs and their
product is a pth power.

In other words, Liouville questioned Lamé’s assumption that Z[ω] is a
UFD.

Lamé couldn’t justify his assumption and Fermat’s Last Theorem remained
unproved for almost 150 years.
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Big Oops!

Looking For Solutions in Z[ω]

Ernst Kummer attempted to prove Fermat’s conjecture by considering
whether the unique factorization property in Z and Z[i ] generalizes to the
ring Z[ω].

Unfortunately it does not. For example if p = 23, then not all members of
Z[ω] factor uniquely into irreducible elements. In other words Z[ω] is not a
unique factorization domain (UFD) for p = 23.

It is, however, a UFD for all primes less than 23. For these primes it is not
difficult to show that xp + yp = zp has no case 1 solutions.
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Can We Fix This?

Can We Fix This?

Kummer and mathematician Richard Dedekind (1831–1916) discovered
that unique factorization was lost simply because there were “not enough
numbers” in Z[ω].

They investigated the idea of adding “ideal points” to Z[ω] so that we
again have unique factorization.
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Can We Fix This?

Can We Fix This?

Kummer and Dedekind generalized the following facts about divisibility of
integers:

1 An ideal point α should divide 0.
2 If α divides a and b, then α must divide a ± b.
3 If α divides a, then α divides ra for any r ∈ Z[ω].
4 An ideal point π is prime if, whenever π divides a product ab in Z[ω],

then π divides a or π divides b.
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Can We Fix This?

Can We Fix This?

If we convert Kummer and Dedekind’s work into modern terms, let I be a
subset of a ring R.

1 0 should be an element in I.
2 If a and b are in I, then a ± b are in I.
3 If a is in I, then ra is in I for all r ∈ R.
4 An ideal point I is prime if, whenever ab is in I, either a is in I or b is

in I.
We now recognize “ideal points” as ideals in a ring and “prime ideal
points” as prime ideals in a ring.

And now you know where the terminology came from.
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Can We Fix This?

Can We Fix This?

Mathematician Richard Dedekind (1831–1916) discovered that although
elements of Z[ω] will not factor uniquely into irreducible elements, ideals
in this ring always factor uniquely into a product of prime ideals. For
primes p that are “regular”—yet another technical use of an overused
word in mathematics—an ideal must be principal which forces x + yω to
be a pth power of a prime ideal.
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Can We Fix This?

Looking For Solutions in Z[ω]

As we noted before, this leads to a contradiction, showing that
xp + yp = zp has no case 1 solutions (i.e., solutions for which p - xyz)
when p is a regular prime.
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Can We Fix This?

Looking For Solutions in Z[ω]

It is also possible, although somewhat more difficult to show that no
case 2 solution exist for regular primes. Thus Fermat’s conjecture can be
proved for all regular primes p, hence for all integers n which have at least
one regular prime factor. Unfortunately, irregular primes exist. For
example, 37, 59, 67,. . . . In fact there are infinitely many. On the other
hand, it is not known if there are infinitely many regular primes.
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Can We Fix This?

A Definition

We define an equivalence relation on the set of ideals of Z[ω] as follows:
For ideals A and B in Z[ω], A ∼ B if αA = βB for some α, β ∈ Z[ω].

It turns out there are only finitely many equivalence classes of ideals under
∼. The number of classes is the class number of the ring Z[ω] is finite and
denoted by the letter h. The class number is then a function of p. The
equivalence classes of ideals, called ideal classes, form an abelian group
under multiplication, the ideal class group.
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Can We Fix This?

A Definition

A prime p is regular if p does not divide the order h of its ideal class
group.

In this case, the ideal class group contains no element of order p. It
follows from Lagrange’s Theorem, that if Ip is principal, i.e. the identity in
the ideal class group, then I is also principal.

William M. Faucette (UWG) Exploring xn + yn = zn Summer 2021 52 / 59



A Partial Solution

A Partial Solution
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A Partial Solution

A Partial Solution

Shortly after Lamé’s embarrassing lecture, Kummer used his result on the
arithmetic of the fields Q(ω), the fraction field of the integral domain Z[ω]
to prove Fermat’s last theorem for all regular primes, i.e., for all primes p
such that p does not divide the class number of Q(ω), for ω is a primitive
pth root of 1.
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A Complete Solution

A Complete Solution
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A Complete Solution

A Complete Solution

Fermat’s Last Theorem was proved by Andrew Wiles as a consequence of
his proof of the Shimura-Taniyama-Weil conjecture. The results were first
announced in a series of lectures at Cambridge in June 1993.

As often happens in the case of complicated proofs of extremely difficult
problems, there were some gaps in the argument that had to be filled in,
and this process was not completed until 1995.
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A Complete Solution

A Complete Solution

Wiles was educated at Merton College, Oxford (B.A., 1974), and Clare
College, Cambridge (Ph.D., 1980). Following a junior research fellowship
at Cambridge (1977–80), Wiles held an appointment at Harvard
University, Cambridge, Massachusetts, and in 1982 he moved to Princeton
University, where he became professor emeritus in 2012. Wiles
subsequently joined the faculty at Oxford.
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A Complete Solution

A Complete Solution

In recognition of his proof of the Shimura-Taniyama-Weil conjecture, he
was awarded a special silver plaque—he was beyond the traditional age
limit of 40 years for receiving the gold Fields Medal—by the International
Mathematical Union in 1998. He also received the Wolf Prize (1995–96),
the Abel Prize (2016), and the Copley Medal (2017).
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A Complete Solution

A Note of Thanks

Thank you for attending.
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