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Fractions

A set U is multiplicatively closed if any product of elements of U is in U,
including the “empty product” = 1.

Given a ring R, an R-module M, and a multiplicatively closed subset

U C R, we define the localization of M at U written M[U '] or U1 M,
to be the set of equivalence classes of pairs (m,u) with m € M and

u € U with equivalence relation (m,u) ~ (m/,u’) if there is an element

v € U such that v(u'm —um’) = 0 in M. The equivalence class of (m,u)
is denoted m /u.
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Fractions

We make M[U~!] into an R-module by defining
m' u'm+um/ m
()
U u! uu!

form,m' € M, u,v/ € U, and r € R.

The localization comes equipped with a natural map of R-modules

M — M[U™Y] carrying m to m/1.
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Fractions

If we apply the definition in the case M = R, the resulting localization is a

ring, with multiplication defined by

( r ) r rr!
U ! uu/

and in fact M[U~1] is an R[U~!]-module with action defined by

() () = s

forre R, me M, and u,u’ € U.
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Fractions

Proposition

Let U be a multiplicatively closed set of R, and let M be an R-module.
An element m € M goes to 0 in M[U~?] (that is, m/1 = 0) if and only if
m is annihilated by an element u € U. In particular, if M is finitely
generated, then M[U~1] = 0 if and only if M is annihilated by an element
of U.
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Fractions

As a first example, the quotient field of an integral domain R, which we
shall denote K (R), is the localization R[U~!] where U = R\ {0}.

The most useful analogue for an arbitrary ring R is to take U to be the set
of nonzerodivisors of R, and define the total quotient ring K(R) of R by
K(R) := R[U']. The ring K(R) is the “biggest” localization of R such
that the natural map R — R[U!] is an injection.
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Fractions

An ideal P C R is prime if and only if R\ P is multiplicatively closed set.
Localization at such a multiplicative set has its own notation. If P is a
prime ideal and U = R\ P, then we write Rp for R[U~!]. Similarly, for
any R -module M, we write Mp for M[U™1].

We write x(P) for the ring Rp/Pp, the residue class field of R at P.

For example, if R is a domain, so that 0 is a prime ideal, then the quotient
field of R is K(R) = Ry = x(0).
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Fractions

The local ring of an affine variety X at a point x € X may be defined as

follows. If R is the affine coordinate ring of X, and P C R is the ideal of
functions vanishing at z, then the local ring of X at x, obtained from R
by inverting all the functions that do not vanish at z, is the ring Rp.
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Fractions

If o : M — N is a map of R-modules, then there is a map of
R[U~'-modules
elU™: MUY — NU™Y

that takes m/u to ¢(m)/u, called the localization of (.

This makes localization into a functor from the category of R-modules to
the category of R[U~!]-modules.
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Fractions

If o : R — S is any homomorphism of rings with the elements of U going
to units, then the elements p(r)p(u)~! € S must satisfy the same
relations as those imposed on the fractions /u above. Thus, for any such
© there is a uniquely defined extension to a homomorphism

¢’ : R[U™Y] — S. This is the universal property of localization.

R Ld S
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Fractions

Proposition
Any ideal in R[U~!] is the extension of an ideal in R.

An ideal in R is the contraction of an ideal in R[U~] if and only if
RNU = 0.

This gives a one-to-one correspondence between ideals in R[U~!] and
ideals in R disjoint from U.
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Fractions

Corollary

A localization of a Noetherian ring is Noetherian.

Proof.

If I € R[U™!] is an ideal, then I = ¢~ Y(I)R[U 1], so I is generated by
the images in R[U~!] of the set of generators of o~ (I). If R is
Noetherian, then ¢ ~1(I) is finitely generated, so I is too. O

v
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Hom and Tensor

If M and N are R-modules, then we write Homp (M, N) for the abelian
group of homomorphism from M to N.

Homp (M, N) is naturally an R-module by the definition

(rp)(m) :=re(m) = p(rm) for r € R and ¢ € Hompg(M, N).
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Properties of Homp(M, N)

© Homp(R,N) = N by the map ¢ — ¢(1).
@ Hom is functorial in the sense that if « : M/ — M and 3: N — N’
are homomorphisms, then there is an induced homomorphism

Hompg (M, N) — Homg(M',N'); ¢+ Bea.
This homomorphism is often denoted by Hompg(a, 3); or if 3 is the

identity map of N, by Hompg(a, N) (and similarly when « is the
identity map of M.)
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Properties of Homp(M, N)

© Hom takes direct sums in the first variable and direct products in the
second variable to direct products, in the sense that

Hompg(®;M;, N) = II; Homp(M;, N);
I‘IOHIR(]\47 Hij) = Hj I’IOIIIR(]\47 Nj)
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Hom and Tensor

@ The covariant functor Homp (M, —) is a left-exact functor. If
0A—-B—=C
is an exact sequence, then the sequence
0 — Homp(M, A) — Hompg(M, B) — Homp(M, C).

is an exact sequence.
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Hom and Tensor

© The contravariant functor Hompg(—, N) is a left-exact functor. If
A—-B—-C—=0
is an exact sequence, then the sequence
0 — Homp(C, N) - Hompg(B, N) — Homp (A4, N).

is an exact sequence.
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Hom and Tensor

If M, N, and P are R-modules, then a bilinear map from M x N to P if
a map of sets ¢» : M x N — P which is R-linear in the first entry and the
second entry. That is
Ylam +a'm',n) = ap(m,n) + a'yp(m’,n)
¢(m7 bn + b/n/) = bw(ma n) + b/¢(ma TL/)
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Hom and Tensor

Bilinear maps map be interpreted in terms of ordinary maps of R-modules
by introducing a new module, the tensor product M ®r N.

The definition of the tensor product is somewhat opaque, but what is
important is its universal property. First, there is a natural bilinear map
fromv: M x N — M ®&pg N given by v(m xn) — m®mn. Second, for any
bilinear map ¢ : M x N — P, there is a unique R-module homomorphism
¢ : M ®r N — P so that the following diagram commutes:

MxNL;P

\L ///
v e ,
P X7

M®RN
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Properties of M ®r N

© For any module M we have M ® p R=R®r M = M. Also,
M®rN =N ®pr M.

@ The tensor product is functorial in the sense that if o : M’ — M and
B: N’ — N are homomorphisms, then there is an induced
homomorphism

a®B: M @r N — M®prN;

that sends m’ @ n’ to a(m’) @ B(n’).
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Properties of M ®r N

© The tensor product preserves direct sums in the sense that if
M = @;M;, then M g N = ®;(M; @ N).

@ The tensor product is a right-exact functor. If
M —-M-—M"—0
is an exact sequence, then
M @r N —>MrN—-M'®rN—0

is an exact sequence.
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Hom and Tensor

If A and B are both R-algebras, then the A-module A ® g B is naturally
an R-algebra too, with multiplication (¢ ® b)(c ® d) = (ac) ® (bd).

This algebra is constructed as follows.

Given commutative R-algebras A and B with maps oo : A — R and

B : B — R,the map A x B — R given by (a,b) — (a(a), B(b)) is bilinear,
so it induces a homomorphism A ®z B — R, thus making A®pr B a
R-algebra with a map taking a ® b to a(a)3(b).
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Hom and Tensor

There is a universal property of R-algebras. Given commutative R-algebra
C with maps a: A — C and §: B — C,the map A x B — C given by
(a,b) — (a(a), (b)) is bilinear, so it induces a homomorphism

A®gr B — C of R-algebras with a map taking a ® b to a(a)B(b).

A—— ARrB +—— B

i

C
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Hom and Tensor

The localization of modules can be described in terms of tensor products:

Lemma

The natural map R[UY) ®@r M — M[U~'] defined by sending r/u ® m
to rm/u is an isomorphism.
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Hom and Tensor

We now turn to a central property of localization called flatness.
Definition

An R-module F is flat if for every monomorphism M’ — M of R-modules,
the induced map F ®gr M’ — F ®g M is again a monomorphism.

Since tensor products always preserve right-exact sequences, this is the
same as saying that tensoring with F' preserves all exact sequences—in
particular, it preserves kernels and cokernels.
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Hom and Tensor

Proposition

For any multiplicatively closed subset U C R, the ring R[U '] is flat as an
R-module; that is, localization takes submodule to submodules, and thus
preserves kernels and cokernels.

Proof.
Since R[U Y ®@r M’ =2 M'[U~ Y] and RIU Y| ®g M = M[U~1], this
follows from the fact that localization is an exact functor. O

v
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Hom and Tensor

Corollary

Localization preserves finite intersections: That is, if My, ..., My C M are

submodules, then

(N; M) [U™ =Ny (MzIUY).

Proof.
The point is that intersections can be defined in terms of kernels. The
submodule N; M; is the kernel of the map M — @®; M /M;. Now use the

fact that localization is an exact functor. 0)
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Hom and Tensor

For an R-module M, the support of M, written Supp M, is defined to be
the set of prime ideals such that Mp # 0. The last statement of the first
proposition of this slideshow immediately gives:

Corollary

If M is a finitely generated R-module, and P is a prime ideal of R, then
P € Supp M if and only if P contains the annihilator of M.
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Hom and Tensor

The statement that a function is zero if and only if it is zero locally at any
point has as its analogue the following extremely useful lemma.

Lemma

Let R be a ring and let M be an R-module.

Q Ifm e M, then m = 0 if and only if m goes to zero in each
localization My, of M at a maximal ideal m of R. Similarly,

@ M =0 if and only if My, = 0 for each maximal ideal m of R.
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Hom and Tensor

A map being monomorphism, epimorphism, or isomorphism is a local
property.

Corollary

If o : M — N is a map of R-modules, then ¢ is a monomorphism (or
epimorphism, or isomorphism) if and only if for every maximal ideal m of
R, the localized map

©Om : My — Ny

is @ monomorphism (or epimorphism, or isomorphism)
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Hom and Tensor

Proposition

Let R be a ring and let S be an R-algebra. If M and N are R-modules,
then there is a unique S-module homomorphism

QpN S®RHOIHR(M,N) —)HomS(S(X)RM,S@RN)

that takes an element 1 ® ¢ € S ®g Homp(M, N) to the S-module
homomorphism 1 ®r ¢ : S®r M — S®r N in Homg(S ®r M, S @ N).
If S is flat over R and M is finitely presented, the s is an isomorphism.
In particular, if M is finitely presented, then Homp (M, N) localizes in the
sense that the map « provides a natural isomorphism

Hom gir-1)(M[U'], N[U™"]) & Hompg (M, N)[U™"]

for any subset U C R.
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The Construction of Primes

The complement of a prime ideal is a multiplicatively closed subset. There
is a sort of converse.

Proposition

If R is any commutative ring, U C R a multiplicatively closed subset, and
I C R an ideal maximal among those not meeting U, then [ is prime.

Proof.

If f,g € R are not in I, then, by the maximality of I, both I + (f) and

I+ (g) meet U. So, there are elements of the form af + ¢ and bg+ j in U
with i,j € I. If fg were in I, then the product of af + i and bg + j would
be in I, contradicting the fact that I doesn't meet U. O
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The Construction of Primes

This proposition gives a formula for the radical of an ideal. Recall that if
I C Ris an ideal, thenrad I = {f € R | f" € I for some n}.

Corollary

If I is an ideal in a ring R, then rad I = Np~1 P where the intersection is
over all prime ideals containing I.

In particular, the intersection of all primes of R is the radical of (0), which
is the set of all nilpotent elements of R.

Proof.

One containment is clear: If f € rad I, then f is in every prime ideal
containing I. Conversely, if f is not in rad I, then an ideal maximal
among those containing I and disjoint from {f™ | n > 1} is prime, so f is
not contained in this prime ideal. O
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Rings and Modules of Finite Length

Definition
If M is a module, then a chain of submodules of M is a sequence of
submodules with strict inclusions

M=MyD> M D---DM,.

Such a chain is said to have length n.
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Rings and Modules of Finite Length

Definition
A chain
M=DMy>DM D---DM,.

is said to be a composition series if each A; /M, is a nonzero simple
module. Equivalently, a composition series is a maximal chain of
sumodules of M.

We define the length of M to be the least length of a composition series
for M, or oo if M has no finite composition series.

We shall prove that every composition series for M has the same length.
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Rings and Modules of Finite Length

The next result, which tells something of the structure of modules of finite
length, includes the Jordan-Holder theorem for modules and the Chinese
remainder theorem.
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Rings and Modules of Finite Length

Theorem

Let R be a ring, and let M be an R-module. M has a finite composition
series if and only if M is Artinian and Noetherian. If M has a finite
composition series M = My D My D --- D M, = 0 of length n, then
© Every chain of submodules of M has length < n, and can be refined
to a composition series.
@ The sum of the localization maps M — Mp, for P a prime ideal,
gives an isomorphism of R-modules

M= @pMp,

where the sum is taken over all maximal ideals P such that some
M;/M;11 = R/P. The number of M;/M;1 isomorphic to R/P is
the length of Mp as a module over Rp, and is thus independent of
the composition series chosen.

© We have M = Mp if and only if M is annihilated by some power of
P.
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Rings and Modules of Finite Length

Theorem

Let R be a ring. The following conditions are equivalent:

© R is Noetherian and all the prime ideals in R are maximal.
@ R is of finite length as an R-module.
© R is Artinian.

If these conditions are satisfied, then R has only finitely many maximal
ideals.

For more on this result, see Chapter 8 in Introduction to Commutative
Algebra by Atiyah and Macdonald.
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Rings and Modules of Finite Length

Applying this result in a geometric context, we get:

Corollary

Let X be an affine algebraic set over a field k. The following are
equivalent:

@ X is finite.

@ A(X) is a finite dimensional vector space over k, whose dimension is
the number of points in X.

@ A(X) is Artinian.
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Rings and Modules of Finite Length

Combining Theorem 12 with Theorem 11(b), we deduce a sort of structure
theorem for Artinian rings:

Corollary

Any Artinian ring is a finite direct product of local Artinian rings.

William M. Faucette (UWG) Commutative Algebra in Algebraic Geometry 45 /48



Rings and Modules of Finite Length

We can also characterize modules of finite length over Noetherian rings.

Corollary

Let R be a Noetherian ring, and let M be finitely generated R-module.
The following are equivalent:

@ M has finite length.

@ Some finite product of maximal ideal [[}"_, P; annihilates M.
© AIll the primes that contain the annihilator of M are maximal.
© R/ Ann(M) is an Artinian ring.
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Rings and Modules of Finite Length

We can also characterize modules of finite length over Noetherian rings.

Corollary

Let R be a Noetherian ring, 0 # M a finitely generated R-module, I the
annihilator of M, and P a prime ideal containing I. The Rp-module Mp
is a nonzero module of finite length if and only if P is minimal among
primes containing I.
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Rings and Modules of Finite Length

The most useful special case of these results is where M = R/I (so that
in particular I = Ann(M)).

Corollary
Let I be an ideal in a Noetherian ring R. The following are equivalent for
a prime P containing I:

© P is minimal among primes containing 1.

@ Rp/Ip is Artinian.

© In the localization Rp we have P5 C Ip for all n > 0.
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