Commutative Algebra in Algebraic Geometry Localization

William M. Faucette

University of West Georgia

A B b A B b

< 4 ► 1

Outline

Hom and Tensor

3 The Construction of Primes

4 Rings and Modules of Finite Length

э

イロト イポト イヨト イヨト

Table of Contents

< □ > < □ > < □ > < □ > < □ > < □ >

A set U is multiplicatively closed if any product of elements of U is in U, including the "empty product" = 1.

Given a ring R, an R-module M, and a multiplicatively closed subset $U \subset R$, we define the **localization of** M at U written $M[U^{-1}]$ or $U^{-1}M$, to be the set of equivalence classes of pairs (m, u) with $m \in M$ and $u \in U$ with equivalence relation $(m, u) \sim (m', u')$ if there is an element $v \in U$ such that v(u'm - um') = 0 in M. The equivalence class of (m, u) is denoted m/u.

< 回 > < 回 > < 回 >

We make $M[U^{-1}]$ into an R-module by defining

$$\frac{m}{u} + \frac{m'}{u'} = \frac{u'm + um'}{uu'} \text{ and } r\left(\frac{m}{u}\right) = \frac{(rm)}{u}$$

for $m, m' \in M$, $u, u' \in U$, and $r \in R$.

The localization comes equipped with a natural map of R-modules $M \to M[U^{-1}]$ carrying m to m/1.

・ 同 ト ・ ヨ ト ・ ヨ ト …

If we apply the definition in the case M = R, the resulting localization is a ring, with multiplication defined by

$$\left(\frac{r}{u}\right)\left(\frac{r'}{u'}\right) = \frac{rr'}{uu'}$$

and in fact $M[U^{-1}]$ is an $R[U^{-1}]$ -module with action defined by

$$\left(\frac{r}{u}\right)\left(\frac{m}{u'}\right) = \frac{rm}{uu'}$$

for $r \in R$, $m \in M$, and $u, u' \in U$.

- 4 目 ト 4 日 ト

Proposition

Let U be a multiplicatively closed set of R, and let M be an R-module. An element $m \in M$ goes to 0 in $M[U^{-1}]$ (that is, m/1 = 0) if and only if m is annihilated by an element $u \in U$. In particular, if M is finitely generated, then $M[U^{-1}] = 0$ if and only if M is annihilated by an element of U. As a first example, the quotient field of an integral domain R, which we shall denote K(R), is the localization $R[U^{-1}]$ where $U = R \setminus \{0\}$.

The most useful analogue for an arbitrary ring R is to take U to be the set of nonzerodivisors of R, and define the **total quotient ring** $\mathbf{K}(\mathbf{R})$ of R by $K(R) := R[U^{-1}]$. The ring K(R) is the "biggest" localization of R such that the natural map $R \to R[U^{-1}]$ is an injection.

・ 同下 ・ ヨト ・ ヨト

An ideal $P \subset R$ is prime if and only if $R \setminus P$ is multiplicatively closed set. Localization at such a multiplicative set has its own notation. If P is a prime ideal and $U = R \setminus P$, then we write R_P for $R[U^{-1}]$. Similarly, for any R-module M, we write M_P for $M[U^{-1}]$.

We write $\kappa(P)$ for the ring R_P/P_P , the residue class field of **R** at **P**.

For example, if R is a domain, so that 0 is a prime ideal, then the quotient field of R is $K(R) = R_0 = \kappa(0)$.

< 回 > < 回 > < 回 > <

The local ring of an affine variety X at a point $x \in X$ may be defined as follows. If R is the affine coordinate ring of X, and $P \subset R$ is the ideal of functions vanishing at x, then the **local ring of** X **at** x, obtained from R by inverting all the functions that do not vanish at x, is the ring R_P .

・ロト ・ 同ト ・ ヨト ・ ヨト

If $\varphi:M\to N$ is a map of R-modules, then there is a map of $R[U^{-1}]\text{-modules}$ $\varphi[U^{-1}]:M[U^{-1}]\to N[U^{-1}]$

that takes m/u to $\varphi(m)/u$, called the localization of φ .

This makes localization into a functor from the category of R-modules to the category of $R[U^{-1}]$ -modules.

メボト イヨト イヨト ニヨ

If $\varphi: R \to S$ is any homomorphism of rings with the elements of U going to units, then the elements $\varphi(r)\varphi(u)^{-1} \in S$ must satisfy the same relations as those imposed on the fractions r/u above. Thus, for any such φ there is a uniquely defined extension to a homomorphism $\varphi': R[U^{-1}] \to S$. This is the **universal property** of localization.

< 回 > < 回 > < 回 >

Proposition

Any ideal in $R[U^{-1}]$ is the extension of an ideal in R.

An ideal in R is the contraction of an ideal in $R[U^{-1}]$ if and only if $R \cap U = \emptyset$.

This gives a one-to-one correspondence between ideals in $R[U^{-1}]$ and ideals in R disjoint from U.

< 回 > < 三 > < 三 >

Corollary

A localization of a Noetherian ring is Noetherian.

Proof.

If $I \subset R[U^{-1}]$ is an ideal, then $I = \varphi^{-1}(I)R[U^{-1}]$, so I is generated by the images in $R[U^{-1}]$ of the set of generators of $\varphi^{-1}(I)$. If R is Noetherian, then $\varphi^{-1}(I)$ is finitely generated, so I is too.

< 回 > < 三 > < 三 >

Table of Contents

4 Rings and Modules of Finite Length

William M. Faucette (UWG) Commutative Algebra in Algebraic Geometry

< □ > < □ > < □ > < □ > < □ > < □ >

If M and N are R-modules, then we write $\operatorname{Hom}_R(M, N)$ for the abelian group of homomorphism from M to N.

 $\operatorname{Hom}_R(M, N)$ is naturally an *R*-module by the definition

 $(r\varphi)(m) := r\varphi(m) = \varphi(rm) \text{ for } r \in R \text{ and } \varphi \in \operatorname{Hom}_R(M, N).$

Properties of $\operatorname{Hom}_R(M, N)$

- If $\operatorname{Hom}_R(R,N) \cong N$ by the map $\varphi \mapsto \varphi(1)$.
- 2 Hom is functorial in the sense that if $\alpha: M' \to M$ and $\beta: N \to N'$ are homomorphisms, then there is an induced homomorphism

$$\operatorname{Hom}_R(M, N) \to \operatorname{Hom}_R(M', N'); \quad \varphi \mapsto \beta \varphi \alpha.$$

This homomorphism is often denoted by $\operatorname{Hom}_R(\alpha,\beta)$; or if β is the identity map of N, by $\operatorname{Hom}_R(\alpha,N)$ (and similarly when α is the identity map of M.)

< 日 > < 同 > < 三 > < 三 > <

Properties of $\operatorname{Hom}_R(M, N)$

Hom takes direct sums in the first variable and direct products in the second variable to direct products, in the sense that

$$\operatorname{Hom}_{R}(\oplus_{i}M_{i}, N) = \Pi_{i}\operatorname{Hom}_{R}(M_{i}, N);$$

$$\operatorname{Hom}_{R}(M, \Pi_{j}N_{j}) = \Pi_{j}\operatorname{Hom}_{R}(M, N_{j}).$$

< □ > < □ > < □ > < □ > < □ > < □ >

• The covariant functor $\operatorname{Hom}_R(M, -)$ is a left-exact functor. If

$$0 \to A \to B \to C$$

is an exact sequence, then the sequence

 $0 \to \operatorname{Hom}_R(M, A) \to \operatorname{Hom}_R(M, B) \to \operatorname{Hom}_R(M, C).$

is an exact sequence.

5 The contravariant functor $\operatorname{Hom}_R(-, N)$ is a left-exact functor. If

$$A \to B \to C \to 0$$

is an exact sequence, then the sequence

 $0 \to \operatorname{Hom}_R(C, N) \to \operatorname{Hom}_R(B, N) \to \operatorname{Hom}_R(A, N).$

is an exact sequence.

If M, N, and P are R-modules, then a **bilinear map** from $M \times N$ to P if a map of sets $\psi : M \times N \to P$ which is R-linear in the first entry and the second entry. That is

$$\begin{split} \psi(am + a'm', n) &= a\psi(m, n) + a'\psi(m', n) \\ \psi(m, bn + b'n') &= b\psi(m, n) + b'\psi(m, n') \end{split}$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Bilinear maps map be interpreted in terms of ordinary maps of R-modules by introducing a new module, the **tensor product** $M \otimes_R N$.

The definition of the tensor product is somewhat opaque, but what is important is its **universal property**. First, there is a natural bilinear map from $\nu : M \times N \to M \otimes_R N$ given by $\nu(m \times n) \mapsto m \otimes n$. Second, for any bilinear map $\varphi : M \times N \to P$, there is a unique *R*-module homomorphism $\varphi' : M \otimes_R N \to P$ so that the following diagram commutes:

Properties of $M \otimes_R N$

- For any module M we have $M \otimes_R R = R \otimes_R M = M$. Also, $M \otimes_R N = N \otimes_R M$.
- $\textcircled{0} The tensor product is functorial in the sense that if $\alpha: M' \to M$ and $\beta: N' \to N$ are homomorphisms, then there is an induced homomorphism$

$$\alpha \otimes \beta : M' \otimes_R N' \to M \otimes_R N;$$

that sends $m' \otimes n'$ to $\alpha(m') \otimes \beta(n')$.

< 日 > < 同 > < 三 > < 三 > <

Properties of $M \otimes_R N$

- **③** The tensor product preserves direct sums in the sense that if $M = \bigoplus_i M_i$, then $M \otimes_R N = \bigoplus_i (M_i \otimes_R N)$.
- The tensor product is a right-exact functor. If

$$M' \to M \to M'' \to 0$$

is an exact sequence, then

$$M' \otimes_R N \to M \otimes_R N \to M'' \otimes_R N \to 0$$

is an exact sequence.

<日

<</p>

If A and B are both R-algebras, then the A-module $A \otimes_R B$ is naturally an R-algebra too, with multiplication $(a \otimes b)(c \otimes d) = (ac) \otimes (bd)$.

This algebra is constructed as follows.

Given commutative R-algebras A and B with maps $\alpha : A \to R$ and $\beta : B \to R$,the map $A \times B \to R$ given by $(a, b) \mapsto (\alpha(a), \beta(b))$ is bilinear, so it induces a homomorphism $A \otimes_R B \to R$, thus making $A \otimes_R B$ a R-algebra with a map taking $a \otimes b$ to $\alpha(a)\beta(b)$.

There is a universal property of R-algebras. Given commutative R-algebra C with maps $\alpha : A \to C$ and $\beta : B \to C$, the map $A \times B \to C$ given by $(a,b) \mapsto (\alpha(a),\beta(b))$ is bilinear, so it induces a homomorphism $A \otimes_R B \to C$ of R-algebras with a map taking $a \otimes b$ to $\alpha(a)\beta(b)$.

く 白 ト く ヨ ト く ヨ ト

The localization of modules can be described in terms of tensor products:

Lemma

The natural map $R[U^{-1}] \otimes_R M \to M[U^{-1}]$ defined by sending $r/u \otimes m$ to rm/u is an isomorphism.

We now turn to a central property of localization called flatness.

Definition

An *R*-module *F* is **flat** if for every monomorphism $M' \to M$ of *R*-modules, the induced map $F \otimes_R M' \to F \otimes_R M$ is again a monomorphism.

Since tensor products always preserve right-exact sequences, this is the same as saying that tensoring with F preserves all exact sequences—in particular, it preserves kernels and cokernels.

< 回 > < 三 > < 三 >

Proposition

For any multiplicatively closed subset $U \subset R$, the ring $R[U^{-1}]$ is flat as an R-module; that is, localization takes submodule to submodules, and thus preserves kernels and cokernels.

Proof.

Since $R[U^{-1}] \otimes_R M' \cong M'[U^{-1}]$ and $R[U^{-1}] \otimes_R M \cong M[U^{-1}]$, this follows from the fact that localization is an exact functor.

・ 同下 ・ ヨト ・ ヨト

Corollary

Localization preserves finite intersections: That is, if $M_1, \ldots, M_t \subset M$ are submodules, then

$$\left(\cap_{j} M_{j}\right) \left[U^{-1}\right] = \cap_{j} \left(M_{j}\left[U^{-1}\right]\right).$$

Proof.

The point is that intersections can be defined in terms of kernels. The submodule $\cap_i M_i$ is the kernel of the map $M \to \bigoplus_i M/M_i$. Now use the fact that localization is an exact functor.

- 4 回 ト 4 三 ト 4 三 ト

For an R-module M, the **support** of M, written Supp M, is defined to be the set of prime ideals such that $M_P \neq 0$. The last statement of the first proposition of this slideshow immediately gives:

Corollary

If M is a finitely generated R-module, and P is a prime ideal of R, then $P \in \text{Supp } M$ if and only if P contains the annihilator of M.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The statement that a function is zero if and only if it is zero locally at any point has as its analogue the following extremely useful lemma.

Lemma

Let R be a ring and let M be an R-module.

- If $m \in M$, then m = 0 if and only if m goes to zero in each localization $M_{\mathfrak{m}}$ of M at a maximal ideal \mathfrak{m} of R. Similarly,
- 2 M = 0 if and only if $M_{\mathfrak{m}} = 0$ for each maximal ideal \mathfrak{m} of R.

・ 何 ト ・ ヨ ト ・ ヨ ト

A map being monomorphism, epimorphism, or isomorphism is a local property.

Corollary

If $\varphi: M \to N$ is a map of R-modules, then φ is a monomorphism (or epimorphism, or isomorphism) if and only if for every maximal ideal \mathfrak{m} of R, the localized map

 $\varphi_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$

is a monomorphism (or epimorphism, or isomorphism)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proposition

Let R be a ring and let S be an R-algebra. If M and N are R-modules, then there is a unique S-module homomorphism

 $\alpha_M: S \otimes_R \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_S(S \otimes_R M, S \otimes_R N)$

that takes an element $1 \otimes \varphi \in S \otimes_R \operatorname{Hom}_R(M, N)$ to the *S*-module homomorphism $1 \otimes_R \varphi : S \otimes_R M \to S \otimes_R N$ in $\operatorname{Hom}_S(S \otimes_R M, S \otimes_R N)$. If *S* is flat over *R* and *M* is finitely presented, the α_M is an isomorphism. In particular, if *M* is finitely presented, then $\operatorname{Hom}_R(M, N)$ localizes in the sense that the map α provides a natural isomorphism

$$\operatorname{Hom}_{R[U^{-1}]}(M[U^{-1}], N[U^{-1}]) \cong \operatorname{Hom}_{R}(M, N)[U^{-1}]$$

for any subset $U \subset R$.

イロト 不得 トイヨト イヨト

Table of Contents

< □ > < □ > < □ > < □ > < □ > < □ >

The complement of a prime ideal is a multiplicatively closed subset. There is a sort of converse.

Proposition

If R is any commutative ring, $U \subset R$ a multiplicatively closed subset, and $I \subset R$ an ideal maximal among those not meeting U, then I is prime.

Proof.

If $f, g \in R$ are not in I, then, by the maximality of I, both I + (f) and I + (g) meet U. So, there are elements of the form af + i and bg + j in U with $i, j \in I$. If fg were in I, then the product of af + i and bg + j would be in I, contradicting the fact that I doesn't meet U.

・ロト ・ 同ト ・ ヨト ・ ヨト

This proposition gives a formula for the radical of an ideal. Recall that if $I \subset R$ is an ideal, then rad $I = \{f \in R \mid f^n \in I \text{ for some } n\}$.

Corollary

If I is an ideal in a ring R, then rad $I = \bigcap_{P \supset I} P$ where the intersection is over all prime ideals containing I.

In particular, the intersection of all primes of R is the radical of (0), which is the set of all nilpotent elements of R.

Proof.

One containment is clear: If $f \in \operatorname{rad} I$, then f is in every prime ideal containing I. Conversely, if f is not in $\operatorname{rad} I$, then an ideal maximal among those containing I and disjoint from $\{f^n \mid n \ge 1\}$ is prime, so f is not contained in this prime ideal.

イロト 不良 トイヨト イヨト

Table of Contents

< □ > < □ > < □ > < □ > < □ > < □ >

Definition

If M is a module, then a ${\bf chain}$ of submodules of M is a sequence of submodules with strict inclusions

$$M = M_0 \supset M_1 \supset \cdots \supset M_n.$$

Such a chain is said to have **length** n.

< 同 ト < 三 ト < 三 ト

Definition

A chain

$$M = M_0 \supset M_1 \supset \cdots \supset M_n.$$

is said to be a **composition series** if each M_j/M_{j+1} is a nonzero simple module. Equivalently, a composition series is a maximal chain of sumodules of M.

We define the **length of** M to be the least length of a composition series for M, or ∞ if M has no finite composition series.

We shall prove that every composition series for M has the same length.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The next result, which tells something of the structure of modules of finite length, includes the Jordan-Hölder theorem for modules and the Chinese remainder theorem.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let R be a ring, and let M be an R-module. M has a finite composition series if and only if M is Artinian and Noetherian. If M has a finite composition series $M = M_0 \supset M_1 \supset \cdots \supset M_n = 0$ of length n, then

- Severy chain of submodules of M has length ≤ n, and can be refined to a composition series.
- ② The sum of the localization maps M → M_P, for P a prime ideal, gives an isomorphism of R-modules

$$M \cong \oplus_P M_P,$$

where the sum is taken over all maximal ideals P such that some $M_i/M_{i+1} \cong R/P$. The number of M_i/M_{i+1} isomorphic to R/P is the length of M_P as a module over R_P , and is thus independent of the composition series chosen.

We have M = M_P if and only if M is annihilated by some power of P.

くぼう ヘヨト ヘヨト

Theorem

Let R be a ring. The following conditions are equivalent:

- \bigcirc R is Noetherian and all the prime ideals in R are maximal.
- **2** R is of finite length as an R-module.
- Is Artinian.

If these conditions are satisfied, then R has only finitely many maximal ideals.

For more on this result, see Chapter 8 in *Introduction to Commutative Algebra* by Atiyah and Macdonald.

Applying this result in a geometric context, we get:

Corollary

Let X be an affine algebraic set over a field k. The following are equivalent:

- X is finite.
- A(X) is a finite dimensional vector space over k, whose dimension is the number of points in X.
- **3** A(X) is Artinian.

.

Combining Theorem 12 with Theorem 11(b), we deduce a sort of structure theorem for Artinian rings:

Corollary

Any Artinian ring is a finite direct product of local Artinian rings.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

We can also characterize modules of finite length over Noetherian rings.

Corollary

Let R be a Noetherian ring, and let M be finitely generated R-module. The following are equivalent:

- M has finite length.
- **2** Some finite product of maximal ideal $\prod_{i=1}^{n} P_i$ annihilates M.
- **③** All the primes that contain the annihilator of *M* are maximal.
- R/Ann(M) is an Artinian ring.

We can also characterize modules of finite length over Noetherian rings.

Corollary

Let R be a Noetherian ring, $0 \neq M$ a finitely generated R-module, I the annihilator of M, and P a prime ideal containing I. The R_P -module M_P is a nonzero module of finite length if and only if P is minimal among primes containing I.

The most useful special case of these results is where M = R/I (so that in particular I = Ann(M)).

Corollary

Let I be an ideal in a Noetherian ring R. The following are equivalent for a prime P containing I:

- P is minimal among primes containing I.
- **2** R_P/I_P is Artinian.
- **③** In the localization R_P we have $P_P^n \subset I_P$ for all $n \gg 0$.