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Fractions

A set U is multiplicatively closed if any product of elements of U is in U ,
including the “empty product”= 1.

Given a ring R, an R-module M , and a multiplicatively closed subset
U ⊂ R, we define the localization of M at U written M [U−1] or U−1M ,
to be the set of equivalence classes of pairs (m,u) with m ∈M and
u ∈ U with equivalence relation (m,u) ∼ (m′, u′) if there is an element
v ∈ U such that v(u′m− um′) = 0 in M . The equivalence class of (m,u)
is denoted m/u.
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Fractions

We make M [U−1] into an R-module by defining

m

u
+
m′

u′
=
u′m+ um′

uu′
and r

(m
u

)
=

(rm)

u

for m,m′ ∈M , u, u′ ∈ U , and r ∈ R.

The localization comes equipped with a natural map of R-modules
M →M [U−1] carrying m to m/1.
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Fractions

If we apply the definition in the case M = R, the resulting localization is a
ring, with multiplication defined by( r

u

)( r′
u′

)
=
rr′

uu′

and in fact M [U−1] is an R[U−1]-module with action defined by( r
u

)(m
u′

)
=
rm

uu′

for r ∈ R, m ∈M , and u, u′ ∈ U .
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Fractions

Proposition

Let U be a multiplicatively closed set of R, and let M be an R-module.
An element m ∈M goes to 0 in M [U−1] (that is, m/1 = 0) if and only if
m is annihilated by an element u ∈ U . In particular, if M is finitely
generated, then M [U−1] = 0 if and only if M is annihilated by an element
of U .
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Fractions

As a first example, the quotient field of an integral domain R, which we
shall denote K(R), is the localization R[U−1] where U = R \ {0}.

The most useful analogue for an arbitrary ring R is to take U to be the set
of nonzerodivisors of R, and define the total quotient ring K(R) of R by
K(R) := R[U−1]. The ring K(R) is the “biggest” localization of R such
that the natural map R→ R[U−1] is an injection.
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Fractions

An ideal P ⊂ R is prime if and only if R \ P is multiplicatively closed set.
Localization at such a multiplicative set has its own notation. If P is a
prime ideal and U = R \ P , then we write RP for R[U−1]. Similarly, for
any R -module M , we write MP for M [U−1].

We write κ(P ) for the ring RP /PP , the residue class field of R at P.

For example, if R is a domain, so that 0 is a prime ideal, then the quotient
field of R is K(R) = R0 = κ(0).
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Fractions

The local ring of an affine variety X at a point x ∈ X may be defined as
follows. If R is the affine coordinate ring of X, and P ⊂ R is the ideal of
functions vanishing at x, then the local ring of X at x, obtained from R
by inverting all the functions that do not vanish at x, is the ring RP .
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Fractions

If ϕ : M → N is a map of R-modules, then there is a map of
R[U−1]-modules

ϕ[U−1] : M [U−1]→ N [U−1]

that takes m/u to ϕ(m)/u, called the localization of ϕ.

This makes localization into a functor from the category of R-modules to
the category of R[U−1]-modules.
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Fractions

If ϕ : R→ S is any homomorphism of rings with the elements of U going
to units, then the elements ϕ(r)ϕ(u)−1 ∈ S must satisfy the same
relations as those imposed on the fractions r/u above. Thus, for any such
ϕ there is a uniquely defined extension to a homomorphism
ϕ′ : R[U−1]→ S. This is the universal property of localization.

R S

R[U−1]

ϕ

ϕ′
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Fractions

Proposition

Any ideal in R[U−1] is the extension of an ideal in R.

An ideal in R is the contraction of an ideal in R[U−1] if and only if
R ∩ U = ∅.

This gives a one-to-one correspondence between ideals in R[U−1] and
ideals in R disjoint from U .
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Fractions

Corollary

A localization of a Noetherian ring is Noetherian.

Proof.

If I ⊂ R[U−1] is an ideal, then I = ϕ−1(I)R[U−1], so I is generated by
the images in R[U−1] of the set of generators of ϕ−1(I). If R is
Noetherian, then ϕ−1(I) is finitely generated, so I is too.
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Hom and Tensor

If M and N are R-modules, then we write HomR(M,N) for the abelian
group of homomorphism from M to N .

HomR(M,N) is naturally an R-module by the definition

(rϕ)(m) := rϕ(m) = ϕ(rm) for r ∈ R and ϕ ∈ HomR(M,N).
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Hom and Tensor

Properties of HomR(M,N)

1 HomR(R,N) ∼= N by the map ϕ 7→ ϕ(1).

2 Hom is functorial in the sense that if α : M ′ →M and β : N → N ′

are homomorphisms, then there is an induced homomorphism

HomR(M,N)→ HomR(M ′, N ′); ϕ 7→ βϕα.

This homomorphism is often denoted by HomR(α, β); or if β is the
identity map of N , by HomR(α,N) (and similarly when α is the
identity map of M .)

William M. Faucette (UWG) Commutative Algebra in Algebraic Geometry 17 / 48



Hom and Tensor

Properties of HomR(M,N)

3 Hom takes direct sums in the first variable and direct products in the
second variable to direct products, in the sense that

HomR(⊕iMi, N) = Πi HomR(Mi, N);

HomR(M,ΠjNj) = Πj HomR(M,Nj).
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Hom and Tensor

4 The covariant functor HomR(M,—) is a left-exact functor. If

0→ A→ B → C

is an exact sequence, then the sequence

0→ HomR(M,A)→ HomR(M,B)→ HomR(M,C).

is an exact sequence.
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Hom and Tensor

5 The contravariant functor HomR(—, N) is a left-exact functor. If

A→ B → C → 0

is an exact sequence, then the sequence

0→ HomR(C,N)→ HomR(B,N)→ HomR(A,N).

is an exact sequence.
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Hom and Tensor

If M , N , and P are R-modules, then a bilinear map from M ×N to P if
a map of sets ψ : M ×N → P which is R-linear in the first entry and the
second entry. That is

ψ(am+ a′m′, n) = aψ(m,n) + a′ψ(m′, n)

ψ(m, bn+ b′n′) = bψ(m,n) + b′ψ(m,n′)
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Hom and Tensor

Bilinear maps map be interpreted in terms of ordinary maps of R-modules
by introducing a new module, the tensor product M ⊗R N .

The definition of the tensor product is somewhat opaque, but what is
important is its universal property. First, there is a natural bilinear map
from ν : M ×N →M ⊗RN given by ν(m×n) 7→ m⊗n. Second, for any
bilinear map ϕ : M ×N → P , there is a unique R-module homomorphism
ϕ′ : M ⊗R N → P so that the following diagram commutes:

M ×N P

M ⊗R N

ϕ

ν
∃!ϕ′
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Hom and Tensor

Properties of M ⊗R N

1 For any module M we have M ⊗R R = R⊗RM = M . Also,
M ⊗R N = N ⊗RM .

2 The tensor product is functorial in the sense that if α : M ′ →M and
β : N ′ → N are homomorphisms, then there is an induced
homomorphism

α⊗ β : M ′ ⊗R N ′ →M ⊗R N ;

that sends m′ ⊗ n′ to α(m′)⊗ β(n′).
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Hom and Tensor

Properties of M ⊗R N

3 The tensor product preserves direct sums in the sense that if
M = ⊕iMi, then M ⊗R N = ⊕i(Mi ⊗R N).

4 The tensor product is a right-exact functor. If

M ′ →M →M ′′ → 0

is an exact sequence, then

M ′ ⊗R N →M ⊗R N →M ′′ ⊗R N → 0

is an exact sequence.
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Hom and Tensor

If A and B are both R-algebras, then the A-module A⊗R B is naturally
an R-algebra too, with multiplication (a⊗ b)(c⊗ d) = (ac)⊗ (bd).

This algebra is constructed as follows.

Given commutative R-algebras A and B with maps α : A→ R and
β : B → R,the map A×B → R given by (a, b) 7→ (α(a), β(b)) is bilinear,
so it induces a homomorphism A⊗R B → R, thus making A⊗R B a
R-algebra with a map taking a⊗ b to α(a)β(b).

William M. Faucette (UWG) Commutative Algebra in Algebraic Geometry 25 / 48



Hom and Tensor

There is a universal property of R-algebras. Given commutative R-algebra
C with maps α : A→ C and β : B → C,the map A×B → C given by
(a, b) 7→ (α(a), β(b)) is bilinear, so it induces a homomorphism
A⊗R B → C of R-algebras with a map taking a⊗ b to α(a)β(b).

A A⊗R B B

C
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Hom and Tensor

The localization of modules can be described in terms of tensor products:

Lemma

The natural map R[U−1]⊗RM →M [U−1] defined by sending r/u⊗m
to rm/u is an isomorphism.
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Hom and Tensor

We now turn to a central property of localization called flatness.

Definition

An R-module F is flat if for every monomorphism M ′ →M of R-modules,
the induced map F ⊗RM ′ → F ⊗RM is again a monomorphism.

Since tensor products always preserve right-exact sequences, this is the
same as saying that tensoring with F preserves all exact sequences—in
particular, it preserves kernels and cokernels.
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Hom and Tensor

Proposition

For any multiplicatively closed subset U ⊂ R, the ring R[U−1] is flat as an
R-module; that is, localization takes submodule to submodules, and thus
preserves kernels and cokernels.

Proof.

Since R[U−1]⊗RM ′ ∼= M ′[U−1] and R[U−1]⊗RM ∼= M [U−1], this
follows from the fact that localization is an exact functor.
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Hom and Tensor

Corollary

Localization preserves finite intersections: That is, if M1, . . . ,Mt ⊂M are
submodules, then

(∩jMj) [U−1] = ∩j
(
Mj [U

−1]
)
.

Proof.

The point is that intersections can be defined in terms of kernels. The
submodule ∩iMi is the kernel of the map M → ⊕iM/Mi. Now use the
fact that localization is an exact functor.
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Hom and Tensor

For an R-module M , the support of M , written SuppM , is defined to be
the set of prime ideals such that MP 6= 0. The last statement of the first
proposition of this slideshow immediately gives:

Corollary

If M is a finitely generated R-module, and P is a prime ideal of R, then
P ∈ SuppM if and only if P contains the annihilator of M .
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Hom and Tensor

The statement that a function is zero if and only if it is zero locally at any
point has as its analogue the following extremely useful lemma.

Lemma

Let R be a ring and let M be an R-module.

1 If m ∈M , then m = 0 if and only if m goes to zero in each
localization Mm of M at a maximal ideal m of R. Similarly,

2 M = 0 if and only if Mm = 0 for each maximal ideal m of R.
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Hom and Tensor

A map being monomorphism, epimorphism, or isomorphism is a local
property.

Corollary

If ϕ : M → N is a map of R-modules, then ϕ is a monomorphism (or
epimorphism, or isomorphism) if and only if for every maximal ideal m of
R, the localized map

ϕm : Mm → Nm

is a monomorphism (or epimorphism, or isomorphism)
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Hom and Tensor

Proposition

Let R be a ring and let S be an R-algebra. If M and N are R-modules,
then there is a unique S-module homomorphism

αM : S ⊗R HomR(M,N)→ HomS(S ⊗RM,S ⊗R N)

that takes an element 1⊗ ϕ ∈ S ⊗R HomR(M,N) to the S-module
homomorphism 1⊗R ϕ : S ⊗RM → S ⊗RN in HomS(S ⊗RM,S ⊗RN).
If S is flat over R and M is finitely presented, the αM is an isomorphism.
In particular, if M is finitely presented, then HomR(M,N) localizes in the
sense that the map α provides a natural isomorphism

HomR[U−1](M [U−1], N [U−1]) ∼= HomR(M,N)[U−1]

for any subset U ⊂ R.
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The Construction of Primes

The complement of a prime ideal is a multiplicatively closed subset. There
is a sort of converse.

Proposition

If R is any commutative ring, U ⊂ R a multiplicatively closed subset, and
I ⊂ R an ideal maximal among those not meeting U , then I is prime.

Proof.

If f, g ∈ R are not in I, then, by the maximality of I, both I + (f) and
I + (g) meet U . So, there are elements of the form af + i and bg+ j in U
with i, j ∈ I. If fg were in I, then the product of af + i and bg + j would
be in I, contradicting the fact that I doesn’t meet U .
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The Construction of Primes

This proposition gives a formula for the radical of an ideal. Recall that if
I ⊂ R is an ideal, then rad I = {f ∈ R | fn ∈ I for some n}.

Corollary

If I is an ideal in a ring R, then rad I = ∩P⊃IP where the intersection is
over all prime ideals containing I.

In particular, the intersection of all primes of R is the radical of (0), which
is the set of all nilpotent elements of R.

Proof.

One containment is clear: If f ∈ rad I, then f is in every prime ideal
containing I. Conversely, if f is not in rad I, then an ideal maximal
among those containing I and disjoint from {fn | n ≥ 1} is prime, so f is
not contained in this prime ideal.
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Rings and Modules of Finite Length

Table of Contents

1 Fractions

2 Hom and Tensor

3 The Construction of Primes

4 Rings and Modules of Finite Length

William M. Faucette (UWG) Commutative Algebra in Algebraic Geometry 38 / 48



Rings and Modules of Finite Length

Definition

If M is a module, then a chain of submodules of M is a sequence of
submodules with strict inclusions

M = M0 ⊃M1 ⊃ · · · ⊃Mn.

Such a chain is said to have length n.
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Rings and Modules of Finite Length

Definition

A chain
M = M0 ⊃M1 ⊃ · · · ⊃Mn.

is said to be a composition series if each Mj/Mj+1 is a nonzero simple
module. Equivalently, a composition series is a maximal chain of
sumodules of M .

We define the length of M to be the least length of a composition series
for M , or ∞ if M has no finite composition series.

We shall prove that every composition series for M has the same length.
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Rings and Modules of Finite Length

The next result, which tells something of the structure of modules of finite
length, includes the Jordan-Hölder theorem for modules and the Chinese
remainder theorem.
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Rings and Modules of Finite Length

Theorem

Let R be a ring, and let M be an R-module. M has a finite composition
series if and only if M is Artinian and Noetherian. If M has a finite
composition series M = M0 ⊃M1 ⊃ · · · ⊃Mn = 0 of length n, then

1 Every chain of submodules of M has length ≤ n, and can be refined
to a composition series.

2 The sum of the localization maps M →MP , for P a prime ideal,
gives an isomorphism of R-modules

M ∼= ⊕PMP ,

where the sum is taken over all maximal ideals P such that some
Mi/Mi+1

∼= R/P . The number of Mi/Mi+1 isomorphic to R/P is
the length of MP as a module over RP , and is thus independent of
the composition series chosen.

3 We have M = MP if and only if M is annihilated by some power of
P .
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Rings and Modules of Finite Length

Theorem

Let R be a ring. The following conditions are equivalent:

1 R is Noetherian and all the prime ideals in R are maximal.

2 R is of finite length as an R-module.

3 R is Artinian.

If these conditions are satisfied, then R has only finitely many maximal
ideals.

For more on this result, see Chapter 8 in Introduction to Commutative
Algebra by Atiyah and Macdonald.
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Rings and Modules of Finite Length

Applying this result in a geometric context, we get:

Corollary

Let X be an affine algebraic set over a field k. The following are
equivalent:

1 X is finite.

2 A(X) is a finite dimensional vector space over k, whose dimension is
the number of points in X.

3 A(X) is Artinian.
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Rings and Modules of Finite Length

Combining Theorem 12 with Theorem 11(b), we deduce a sort of structure
theorem for Artinian rings:

Corollary

Any Artinian ring is a finite direct product of local Artinian rings.
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Rings and Modules of Finite Length

We can also characterize modules of finite length over Noetherian rings.

Corollary

Let R be a Noetherian ring, and let M be finitely generated R-module.
The following are equivalent:

1 M has finite length.

2 Some finite product of maximal ideal
∏n
i=1 Pi annihilates M .

3 All the primes that contain the annihilator of M are maximal.

4 R/Ann(M ) is an Artinian ring.
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Rings and Modules of Finite Length

We can also characterize modules of finite length over Noetherian rings.

Corollary

Let R be a Noetherian ring, 0 6= M a finitely generated R-module, I the
annihilator of M , and P a prime ideal containing I. The RP -module MP

is a nonzero module of finite length if and only if P is minimal among
primes containing I.
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Rings and Modules of Finite Length

The most useful special case of these results is where M = R/I (so that
in particular I = Ann(M )).

Corollary

Let I be an ideal in a Noetherian ring R. The following are equivalent for
a prime P containing I:

1 P is minimal among primes containing I.

2 RP /IP is Artinian.

3 In the localization RP we have PnP ⊂ IP for all n� 0.
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