Commutative Algebra in Algebraic Geometry Roots of Commutative Algebra

William M. Faucette

University of West Georgia

3

イロン イ理 とく ヨン イ ヨン

We say that a ring R is **Noetherian** if every ideal of R is finitely generated.

This is equivalent to the **ascending chain condition on ideals of** R, which says that a strictly ascending chain of ideals must terminate.

This is also equivalent to every nonempty collection of ideals in ${\cal R}$ has a maximal element.

- 4 回 ト 4 三 ト 4 三 ト

Hilbert Basis Theorem

If a ring R is Noetherian, then the polynomial ring R[x] is Noetherian.

The following notion will be useful in the proof and later:

If $f = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in R[x]$, with $a_n \neq 0$, we define the **initial term** of f to be $a_n x^n$, and we define the **initial coefficient** of f to be a_n .

< 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Proof.

Let $I \subset R[x]$ be an ideal; we shall show that I is finitely generated. Choose a sequence of elements $f_1, f_2, \dots \in I$ as follows: Let f_1 be a nonzero element of least degree in I. For $i \geq 1$, if $(f_1, \dots, f_i) \neq I$, then choose f_{i+1} to be an element of least degree among those in I but not in (f_1, \dots, f_i) . If $(f_1, \dots, f_i) = I$ stop choosing elements.

Let a_j be the initial coefficient of f_j . Since R is Noetherian, the ideal $J = (a_1, a_2, ...)$ of all the a_i produced is finitely generated. We may choose a set of generators from among the a_i themselves. Let m be the first integer such that $a_1, ..., a_m$ generate J. We claim that $I = (f_1, ..., f_m)$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Proof (continued)

In the contrary case, our process chose an element f_{m+1} . We may write $a_{m+1} = \sum_{j=1}^{m} u_j a_j$, for some $u_j \in R$. Since the degree of f_{m+1} is at least as great as the degree of any of the f_1, \ldots, f_m , we may define a polynomial $g \in R$ having the same degree and initial term as f_{m+1} by the formula

$$g = \sum_{j=1}^{m} u_j f_j x^{\deg f_{m+1} - \deg f_j} \in (f_1, \dots, f_m).$$

The difference $f_{m+1} - g$ is in I but not in (f_1, \ldots, f_m) , and has degree strictly less than the degree of f_{m+1} . This contradicts the choice of f_{m+1} as having minimal degree. The contradiction establishes our claim. \Box

ヘロト 不得 トイヨト イヨト 二日

Corollary

Any homomorphic image of a Noetherian ring is Noetherian. Furthermore, if R_0 is a Noetherian ring, and R is a finitely generated algebra over R_0 , then R is Noetherian.

4 AR N 4 E N 4 E N

Proof.

Given an ideal I in R/J, with R Noetherian, the preimage of I in R is finitely generated, and the images of its generators generate I.

Since R is finitely generated algebra over R_0 , R is a homomorphic image of $S := R_0[x_1, \ldots, x_r]$ for some r. Using the Hilbert Basis Theorem and induction on r, we see that S is Noetherian. Since a homomorphic image of a Noetherian ring is Noetherian, we are done.

(本語) とうき とうどう

We will need a more general definition later, and we make it now:

An R-module M is **Noetherian** if every submodule of M is finitely generated.

This is equivalent to the condition that M has the ascending chain condition on submodules, or again that every collection of submodules of M has a maximal element.

・ 何 ト ・ ヨ ト ・ ヨ ト

Proposition

If R is a Noetherian ring and M is a finitely generated $R\mbox{-module},$ then M is Noetherian.

Proof.

Suppose that M is generated by f_1, \ldots, f_t , and let N be a submodule. We shall show that N is finitely generated by induction on t.

If t = 1, then the map $R \to M$ sending 1 to f_1 is surjective. The preimage of N is an ideal, which is finitely generated since R is Noetherian. The images of its generators generate N.

< 回 > < 三 > < 三 >

Proof (continued)

Now suppose t > 1. The image \overline{N} of N in M/Rf_1 is finitely generated by induction. Let g_1, \ldots, g_s be elements of N whose images generate \overline{N} . Since $Rf_1 \subset M$ is generated by one element, its submodule $N \cap Rf_1$ is finitely generated, say by h_1, \ldots, h_r .

We shall show that the elements h_1, \ldots, h_r and g_1, \ldots, g_s together generate N: Given $n \in N$, the image of n in \overline{N} is a linear combination of the images of the g_i ; so subtracting the corresponding linear combination of the g_i from n itself, we get an element of $N \cap Rf_1$, that is a linear combination of the h_i by hypothesis. This shows that n is a linear combination of the g_i and h_i . \Box