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Rings and Ideals

A ring is an abelian group R with multiplication operation (a, b) 7→ ab and
an identity element 1, satisfying for all a, b, c ∈ R:

a(bc) = (ab)c

a(b+ c) = ab+ ac

(b+ c)a = ba+ ca

1a = a1 = a

We will only consider rings where multiplication is commutative

ab = ba.
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Rings and Ideals

A unit or invertible element in a ring R is an element u which has a
multiplicative inverse. This inverse is unique and will be denoted u−1.

A field is a ring in which ever nonzero element is invertible.

We write Z, Q, R, C, respectively, for the ring of integers and the fields of
rational, real, and complex numbers.
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Rings and Ideals

A zerodivisor in R is a nonzero element r ∈ R such that there exists a
nonzero element s ∈ R with rs = 0.

An nonzero element that is not a zerodivisor is a nonzerodivisor.
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Rings and Ideals

An ideal in a commutative ring R is an additive subgroup I such that if
r ∈ R and s ∈ I, then rs ∈ I.

An ideal I is said to be generated by a subset S ⊂ R if every element
t ∈ I can be written in the form

t =

n∑
i=1

risi with ri ∈ R and si ∈ S.

An ideal is principal if it can be generated by one element.

By convention, the ideal generated by the empty set is 0.
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Rings and Ideals

An ideal I in a commutative ring R is prime if I 6= R (we usually say I is
a proper ideal in this case) and if f, g ∈ R and fg ∈ I, then either f ∈ I
or g ∈ I.

Equivalently, I is prime if for any ideals J,K with JK ⊂ I we have J ⊂ I
or K ⊂ I. By induction, this follows for any finite set of ideals.
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Rings and Ideals

A ring R is an (integral) domain if 0 is a prime ideal.

An ideal I in a commutative ring R is maximal if I is a proper ideal P
not continued in any other proper ideal.

The ideal I is prime if and only if R/I is a domain. The ideal P is
maximal if and only if R/P is a field.

Since every field is a domain, this implies that every maximal ideal is a
prime ideal.
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Rings and Ideals

A ring R is a local ring if P is the unique maximal ideal.

We sometimes indicate this by saying that (R,P ) is a local ring.
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Rings and Ideals

An element h ∈ R is prime if it generates a prime ideal.

Equivalently, h is prime if h is not a unit and whenever h divides a product
fg, then h divides f or h divides g.

William M. Faucette (UWG) Commutative Algebra in Algebraic Geometry 10 / 35



Rings and Ideals

A ring homomorphism or ring map from a ring R to a ring S is a
homomorphism of abelian groups that preserves multiplication and takes
the identity element of R to the identity element of S.

General we omit the adjective “ring” when it is clear from context.

A subring of S is a subset closed under, addition, subtraction, and
multiplication, and containing the identity element of S.
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Rings and Ideals

If R and S are rings, then the direct product R× S is the set of ordered
pairs (a, b) with a ∈ R and b ∈ S made into a ring by defining the
operations componentwise:

(a, b) + (a′, b′) = (a+ a′, b+ b′)

(a, b)(a′, b′) = aa′, bb′)

The map a 7→ (a, 0) makes R a subset of R× S and similarly for S.

As subsets of R× S, RS = 0.
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Rings and Ideals

In the ring R× S, consider the elements e1 = (1, 0) and e2 = (0, 1).

The are idempotent in the sense that e2i = ei.

Furthermore, they are orthogonal idempotents in the sense that
e1e2 = 0.

They are even a complete set of orthogonal idempotents in the sense
that e1 + e2 = 1.

Quite generally, if e1, . . . , en is a complete set of orthogonal idempotents
in a commutative ring R, then R = Re1 × · · · ×Ren.
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Rings and Ideals

If R is a commutative ring, then a commutative algebra over R (or
commutative R-algebra) is a commutative ring S together with a
homomorphirsm α : R→ S of rings. We usually suppress the
homomorphism α from the notation, and write rs in place of α(r)s when
r ∈ R and s ∈ S.

Any ring is a Z-algebra in a unique way.

A more interesting example of an R-algebra is the polynomial ring
S = R[x1, . . . , xn] in finitely many variables.

A subalgebra of S is a subring S′ that contains the image of R.
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Rings and Ideals

A homomorphism of R-algebras ϕ : S → T is a homomorphism of rings
such that ϕ(rs) = rϕ(x) for r ∈ R, s ∈ S.

Given an ideal I ⊂ S we shall often be interested in its preimage in R. We
shall sometimes denote this preimage of R∩ I, even though R need not be
a subset of S.

William M. Faucette (UWG) Commutative Algebra in Algebraic Geometry 15 / 35



Rings and Ideals

If k is a commutative ring, the a polynomial ring over k in r variables
x1, . . . , xr is denoted by k[x1, . . . , xr].

The elements of k are generally referred to as scalars.

A monomial is a product of variables; its degree is the number of these
factors (counting repeats) so that, for example, x21x

3
2 = x1x1x2x2x2 has

degree 5.

By convention the element 1 is regarded as the empty product. It is the
unique monomial of degree 0.
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Rings and Ideals

A term is a scalar times a monomial. Every polynomial can be written
uniquely as a finite sum of nonzero terms.

If the monomials in the terms of a polynomial f all have the same degree
(or if f = 0), then f is said to be homogeneous. We also use the word
form to mean homogeneous polynomial.
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Rings and Ideals

If k is a field, and I ⊂ k[X] is an ideal, and f ∈ I is an element of lowest
degree, then Euclid’s algorithm for dividing polynomials shows that f
divides every element of I.

Thus k[x] is a principal ideal domain, a domain in which every ideal can
be generated by one element.
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Unique Factorization

In a ring R, an element r ∈ R is irreducible if it is not a unit and if
whenever r = st with s, t ∈ R, then one of s and t is a unit.

A ring R is factorial (or a unique factorization domain, sometimes
abbreviated UFD) if R is an integral domain and element of R can be
factored uniquely into irreducible elements, the uniqueness being up to
factors which are units.
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Unique Factorization

Factoriality played an enormous role in the history of commutative algebra,
and it will come up many times. Here is an elementary analysis of the
condition:

If R is factorial, and if a1, a2, . . . is a sequence of elements such that ai is
divisible by ai+1, then the prime factors of ai+1 (counted with multiplicity)
are among the prime factors of ai, so for large i the prime factorization is
the same, and ai, ai+1 different only by a unit. In the language of ideals,
any increasing sequence of principal ideals

(a1) ⊂ · · · ⊂ (ai) ⊂ · · ·

must terminate in the sense that for all large i we have (ai) = (ai+1). This
condition is called the ascending chain condition on principal ideals.
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Unique Factorization

Conversely, if R has the ascending chain condition on principal ideals, then
any element of R can be factored in a product of irreducible elements.

If in addition, every irreducible element is prime, then the factorization
into product of irreducible elements is unique, so R is factorial.
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Unique Factorization

Using these ideas, it is easy to show that any principal ideal domain R is
factorial. Put proof of this here.
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Unique Factorization

The polynomial ring in any number of variables over a field, or, indeed,
over any factorial ring, is again factorial.

This is proved in most elementary texts using a result called Gauss’ lemma.
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Modules

If R is a ring, then an R-module M is an abelian group with a product
R×M →M written (r,m) 7→ rm, satisfying for all r, s ∈ R and
m,n ∈M :

r(sm) = (rs)m

r(m+ n) = rm+ rn

(r + s)m = rm+ sm

1m = m

The R-modules we will be most interested in are the ideals I and the
corresponding factor rings R/I.
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Modules

If M is an R-module, the annihilator of M is denoted and defined by

annM = {r ∈ R | rM = 0}.

For example, annR/I = I.
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Modules

It is convenient to generalize this relation. if I and J are ideals of R, we
write

(I : J) = {f ∈ R | rJ ⊂ I}

for the ideal quotient.

It is useful to extend this notation to submodules M,N of an R-module
P , and write

(M : N) = {f ∈ R | fN ⊂M}.

If I ⊂ R is an ideal and M ⊂ P is a submodule, then we occasionally
write (M : I) or (M :P I) for the submodule {p ∈ P | Ip ⊂M}.
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Modules

A homomorphism (or map) or R-modules is a homomorphism of abelian
groups that preserves the action of R. We say that a homomorphism is a
monomorphism (or an epimorphism or an isomorphism) if it is an
injection (or surjection or bijection) of the underlying sets.

The inverse map of an isomorphism is automatically a homomorphism.
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Modules

If M and N are R-modules, then the direct sum of M and N is the
module M ⊕N = {(m,n) | m ∈M,n ∈ N} with the module structure
r(m,n) = (rm, rn). There are natural inclusion and projection maps
M ⊂M ⊕N and M ⊕N →M given by m 7→ (m, 0) and (m,n) 7→ m
(and similarly for N).

These maps are enough to identify a direct sum: That is, M is a direct
summand or a module P if and only if there are homomorphisms
α :M → P and σ : P →M whose composition σα is the identify map of
M ; then P ∼=M ⊕ (kerσ).

If {Mi}i∈I is any set of modules, the direct product
∏
iMi has elements

of tuples (mi)i∈I and the direct sum
∑

iMi ⊂
∏
iMi consisting of those

tuples (mi)i∈I such that all but finitely many mi are 0.
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Modules

A free R-module is a module isomorphic to a direct sum of copies of R.
We usually write Rn for the direct sum of n copies of R.

If M is a finitely generated free module, that is M ∼= Rn for some n, then
the number n is invariant of M . It is the rank of M .
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Modules

If A, B, and C are R-modules and α : A→ B, β : B → C are
homomorphisms, the a pair of homomorphisms

A
α−→ B

β−→ C

is exact if the image of α is equal to kerβ, the kernel of β.

A short exact sequence is a sequence of maps

0→ A
α−→ B

β−→ C → 0

such that each pair of consecutive maps is exact. That is, α is injective, β
is surjective, and the image of α is the kernel of β.
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Modules

The short exact sequqence

0→ A
α−→ B

β−→ C → 0

is split if there is a homomorphism τ : C → B such that βτ is the identity
map of C.

Equivalently, the sequence is split if there exists a homomorphism
σ : B → A such that σα is the identity map on A.

If the short exact sequence is split, then B = A⊕ C.
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Modules

As a first example, suppose M1 and M2 are submodules of M , and
M1 +M2 ⊂M is the submodule they generate, then the two inclusion
maps combine to give a map M1 ∩M2 →M1 ⊕M2, and with the
“difference” map M1 ⊕M2 →M1 +M2 given by (m1,m2) 7→ m1 −m2,
this gives a short exact sequence

0→M1 ∩M2 →M1 ⊕M2 →M1 +M2 → 0.

The case of vector spaces if probably already familiar, and this case is no
different.
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Modules

As a second example, if R is a ring, I ⊂ R an ideal, and a ∈ R an
element, then R/I maps onto R/(I + (a)). The kernel is generated by the
class of a module I. Since the kernel is generated by just one element, it
has the form R/J for some ideal J ; in fact, J is the annihilator of a
modulo I, that is J = (I : a). Putting this together, we see that there is
an exact sequence

0→ R/(I : a)
a−→ R/I → R/(I + (a))→ 0,

where the element a over the left-hand map indicates that it is
multiplication by a.
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Modules

As a third example, let M be a R-module. An element m ∈M
corresponds to a homomorphism from R to M sending 1 to m. Thus,
given a set of elements {mα}α∈A ∈M corresponds to giving a
homomorphism ϕ from the direct sum G := RA of copies of R, indexed by
A, to M , sending the αth basis element to mα. If the mα generate M ,
then ϕ is a surjection.

The relations on the mα are the same as elements of the kernel of the
map G→M . A set of relations {nβ}β∈B ∈ G corresponds to a
homomorphism ψ from the free module F := RB to the kernel of ϕ. The
mα generate M and the nβ generate the kernel.
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Modules

That is, M may be described as the module with generators {mα}α∈A and
relations {nβ}β∈B if and only if the sequence

F → G→M → 0.

is exact. This sequence is usually called a free presentation of M . In case
A and B are finite sets, so that each of F and G is a finitely generated
free module over R, it is called a finite free presentation. A module M
is finitely generated if there exists a finite set of elements that generate
M , and finitely presented if it has a finite free presentation.
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