Commutative Algebra in Algebraic Geometry Elementary Definitions

William M. Faucette

University of West Georgia

Outline

æ

イロト イボト イヨト イヨト

A **ring** is an abelian group R with multiplication operation $(a, b) \mapsto ab$ and an identity element 1, satisfying for all $a, b, c \in R$:

a(bc) = (ab)ca(b+c) = ab + ac(b+c)a = ba + ca1a = a1 = a

We will only consider rings where multiplication is commutative

$$ab = ba$$
.

く 伺 ト く ヨ ト く ヨ ト

A unit or invertible element in a ring R is an element u which has a multiplicative inverse. This inverse is unique and will be denoted u^{-1} .

A field is a ring in which ever nonzero element is invertible.

We write \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , respectively, for the ring of integers and the fields of rational, real, and complex numbers.

A (1) < A (1) < A (1) </p>

A **zerodivisor** in R is a nonzero element $r \in R$ such that there exists a nonzero element $s \in R$ with rs = 0.

An nonzero element that is not a zerodivisor is a **nonzerodivisor**.

< □ > < 同 > < 回 > < 回 > < 回 >

An **ideal** in a commutative ring R is an additive subgroup I such that if $r \in R$ and $s \in I$, then $rs \in I$.

An ideal I is said to be generated by a subset $S \subset R$ if every element $t \in I$ can be written in the form

$$t = \sum_{i=1}^{n} r_i s_i$$
 with $r_i \in R$ and $s_i \in S$.

An ideal is **principal** if it can be generated by one element.

By convention, the ideal generated by the empty set is 0.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

An ideal I in a commutative ring R is **prime** if $I \neq R$ (we usually say I is a **proper ideal** in this case) and if $f, g \in R$ and $fg \in I$, then either $f \in I$ or $g \in I$.

Equivalently, I is prime if for any ideals J, K with $JK \subset I$ we have $J \subset I$ or $K \subset I$. By induction, this follows for any finite set of ideals.

・ 同 ト ・ ヨ ト ・ ヨ ト

A ring R is an (integral) domain if 0 is a prime ideal.

An ideal I in a commutative ring R is **maximal** if I is a proper ideal P not continued in any other proper ideal.

The ideal I is prime if and only if R/I is a domain. The ideal P is maximal if and only if R/P is a field.

Since every field is a domain, this implies that every maximal ideal is a prime ideal.

・ 同下 ・ ヨト ・ ヨト

A ring R is a **local ring** if P is the unique maximal ideal.

We sometimes indicate this by saying that (R, P) is a local ring.

・ 何 ト ・ ヨ ト ・ ヨ ト

An element $h \in R$ is **prime** if it generates a prime ideal.

Equivalently, h is prime if h is not a unit and whenever h divides a product fg, then h divides f or h divides g.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A **ring homomorphism** or **ring map** from a ring R to a ring S is a homomorphism of abelian groups that preserves multiplication and takes the identity element of R to the identity element of S.

General we omit the adjective "ring" when it is clear from context.

A subring of S is a subset closed under, addition, subtraction, and multiplication, and containing the identity element of S.

・ 同 ト ・ ヨ ト ・ ヨ ト

If R and S are rings, then the direct product $R \times S$ is the set of ordered pairs (a, b) with $a \in R$ and $b \in S$ made into a ring by defining the operations componentwise:

$$(a,b) + (a',b') = (a + a', b + b')$$

 $(a,b)(a',b') = aa',bb')$

The map $a \mapsto (a, 0)$ makes R a subset of $R \times S$ and similarly for S.

As subsets of $R \times S$, RS = 0.

イロト 不得 トイヨト イヨト

In the ring $R \times S$, consider the elements $e_1 = (1,0)$ and $e_2 = (0,1)$.

The are **idempotent** in the sense that $e_i^2 = e_i$.

Furthermore, they are **orthogonal idempotents** in the sense that $e_1e_2 = 0$.

They are even a **complete set of orthogonal idempotents** in the sense that $e_1 + e_2 = 1$.

Quite generally, if e_1, \ldots, e_n is a complete set of orthogonal idempotents in a commutative ring R, then $R = Re_1 \times \cdots \times Re_n$.

・ロット 4 回 ト 4 日 ト - 日 - うらつ

If R is a commutative ring, then a **commutative algebra** over R (or **commutative** R-**algebra**) is a commutative ring S together with a homomorphirsm $\alpha : R \to S$ of rings. We usually suppress the homomorphism α from the notation, and write rs in place of $\alpha(r)s$ when $r \in R$ and $s \in S$.

Any ring is a \mathbb{Z} -algebra in a unique way.

A more interesting example of an R-algebra is the polynomial ring $S = R[x_1, \ldots, x_n]$ in finitely many variables.

A subalgebra of S is a subring S' that contains the image of R.

白 医水静 医水黄 医水黄 医二黄

A homomorphism of *R*-algebras $\varphi : S \to T$ is a homomorphism of rings such that $\varphi(rs) = r\varphi(x)$ for $r \in R$, $s \in S$.

Given an ideal $I \subset S$ we shall often be interested in its preimage in R. We shall sometimes denote this preimage of $R \cap I$, even though R need not be a subset of S.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

If k is a commutative ring, the a **polynomial ring** over k in r variables x_1, \ldots, x_r is denoted by $k[x_1, \ldots, x_r]$.

The elements of k are generally referred to as **scalars**.

A monomial is a product of variables; its degree is the number of these factors (counting repeats) so that, for example, $x_1^2x_2^3 = x_1x_1x_2x_2x_2$ has degree 5.

By convention the element 1 is regarded as the empty product. It is the unique monomial of degree 0.

A **term** is a scalar times a monomial. Every polynomial can be written uniquely as a finite sum of nonzero terms.

If the monomials in the terms of a polynomial f all have the same degree (or if f = 0), then f is said to be **homogeneous**. We also use the word **form** to mean homogeneous polynomial.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

If k is a field, and $I \subset k[X]$ is an ideal, and $f \in I$ is an element of lowest degree, then Euclid's algorithm for dividing polynomials shows that f divides every element of I.

Thus k[x] is a **principal ideal domain**, a domain in which every ideal can be generated by one element.

・ 同下 ・ ヨト ・ ヨト

In a ring R, an element $r \in R$ is **irreducible** if it is not a unit and if whenever r = st with $s, t \in R$, then one of s and t is a unit.

A ring R is **factorial** (or a **unique factorization domain**, sometimes abbreviated **UFD**) if R is an integral domain and element of R can be factored uniquely into irreducible elements, the uniqueness being up to factors which are units.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Factoriality played an enormous role in the history of commutative algebra, and it will come up many times. Here is an elementary analysis of the condition:

If R is factorial, and if a_1, a_2, \ldots is a sequence of elements such that a_i is divisible by a_{i+1} , then the prime factors of a_{i+1} (counted with multiplicity) are among the prime factors of a_i , so for large i the prime factorization is the same, and a_i, a_{i+1} different only by a unit. In the language of ideals, any increasing sequence of principal ideals

$$(a_1) \subset \cdots \subset (a_i) \subset \cdots$$

must terminate in the sense that for all large i we have $(a_i) = (a_{i+1})$. This condition is called the **ascending chain condition on principal ideals**.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Conversely, if R has the ascending chain condition on principal ideals, then any element of R can be factored in a product of irreducible elements.

If in addition, every irreducible element is prime, then the factorization into product of irreducible elements is unique, so R is factorial.

< 同 ト < 三 ト < 三 ト

Using these ideas, it is easy to show that any principal ideal domain R is factorial. Put proof of this here.

(日)

The polynomial ring in any number of variables over a field, or, indeed, over any factorial ring, is again factorial.

This is proved in most elementary texts using a result called Gauss' lemma.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

If R is a ring, then an R-module M is an abelian group with a product $R \times M \to M$ written $(r,m) \mapsto rm$, satisfying for all $r, s \in R$ and $m, n \in M$:

$$r(sm) = (rs)m$$

$$r(m+n) = rm + rn$$

$$(r+s)m = rm + sm$$

$$1m = m$$

The R-modules we will be most interested in are the ideals I and the corresponding factor rings R/I.

If M is an R-module, the **annihilator** of M is denoted and defined by

$$\operatorname{ann} M = \{ r \in R \mid rM = 0 \}.$$

For example, $\operatorname{ann} R/I = I$.

э

イロト イポト イヨト イヨト

It is convenient to generalize this relation. if ${\cal I}$ and ${\cal J}$ are ideals of ${\cal R},$ we write

$$(I:J) = \{ f \in R \mid rJ \subset I \}$$

for the **ideal quotient**.

It is useful to extend this notation to submodules M,N of an $R\mbox{-module}$ P, and write

$$(M:N) = \{ f \in R \mid fN \subset M \}.$$

If $I \subset R$ is an ideal and $M \subset P$ is a submodule, then we occasionally write (M : I) or $(M :_P I)$ for the submodule $\{p \in P \mid Ip \subset M\}$.

A homomorphism (or map) or R-modules is a homomorphism of abelian groups that preserves the action of R. We say that a homomorphism is a **monomorphism** (or an **epimorphism** or an **isomorphism**) if it is an injection (or surjection or bijection) of the underlying sets.

The inverse map of an isomorphism is automatically a homomorphism.

Modules

If M and N are R-modules, then the **direct sum** of M and N is the module $M \oplus N = \{(m,n) \mid m \in M, n \in N\}$ with the module structure r(m,n) = (rm,rn). There are natural inclusion and projection maps $M \subset M \oplus N$ and $M \oplus N \to M$ given by $m \mapsto (m,0)$ and $(m,n) \mapsto m$ (and similarly for N).

These maps are enough to identify a direct sum: That is, M is a **direct** summand or a module P if and only if there are homomorphisms $\alpha: M \to P$ and $\sigma: P \to M$ whose composition $\sigma \alpha$ is the identify map of M; then $P \cong M \oplus (\ker \sigma)$.

If $\{M_i\}_{i \in I}$ is any set of modules, the **direct product** $\prod_i M_i$ has elements of tuples $(m_i)_{i \in I}$ and the **direct sum** $\sum_i M_i \subset \prod_i M_i$ consisting of those tuples $(m_i)_{i \in I}$ such that all but finitely many m_i are 0.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

A **free** R-module is a module isomorphic to a direct sum of copies of R. We usually write R^n for the direct sum of n copies of R.

If M is a finitely generated free module, that is $M \cong \mathbb{R}^n$ for some n, then the number n is invariant of M. It is the **rank** of M.

< 同 ト < 三 ト < 三 ト

Modules

If A, B, and C are R-modules and $\alpha: A \to B, \ \beta: B \to C$ are homomorphisms, the a pair of homomorphisms

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C$$

is **exact** if the image of α is equal to ker β , the kernel of β .

A short exact sequence is a sequence of maps

$$0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$$

such that each pair of consecutive maps is exact. That is, α is injective, β is surjective, and the image of α is the kernel of β .

<日

<</p>

The short exact sequeence

$$0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$$

is **split** if there is a homomorphism $\tau : C \to B$ such that $\beta \tau$ is the identity map of C.

Equivalently, the sequence is split if there exists a homomorphism $\sigma: B \to A$ such that $\sigma \alpha$ is the identity map on A.

If the short exact sequence is split, then $B = A \oplus C$.

・ 同 ト ・ ヨ ト ・ ヨ ト

As a first example, suppose M_1 and M_2 are submodules of M, and $M_1 + M_2 \subset M$ is the submodule they generate, then the two inclusion maps combine to give a map $M_1 \cap M_2 \to M_1 \oplus M_2$, and with the "difference" map $M_1 \oplus M_2 \to M_1 + M_2$ given by $(m_1, m_2) \mapsto m_1 - m_2$, this gives a short exact sequence

$$0 \to M_1 \cap M_2 \to M_1 \oplus M_2 \to M_1 + M_2 \to 0.$$

The case of vector spaces if probably already familiar, and this case is no different.

く 伺 ト く ヨ ト く ヨ ト

As a second example, if R is a ring, $I \subset R$ an ideal, and $a \in R$ an element, then R/I maps onto R/(I + (a)). The kernel is generated by the class of a module I. Since the kernel is generated by just one element, it has the form R/J for some ideal J; in fact, J is the annihilator of a modulo I, that is J = (I : a). Putting this together, we see that there is an exact sequence

$$0 \to R/(I:a) \xrightarrow{a} R/I \to R/(I+(a)) \to 0,$$

where the element a over the left-hand map indicates that it is multiplication by a.

As a third example, let M be a R-module. An element $m \in M$ corresponds to a homomorphism from R to M sending 1 to m. Thus, given a set of elements $\{m_{\alpha}\}_{\alpha \in A} \in M$ corresponds to giving a homomorphism φ from the direct sum $G := R^A$ of copies of R, indexed by A, to M, sending the α^{th} basis element to m_{α} . If the m_{α} generate M, then φ is a surjection.

The relations on the m_{α} are the same as elements of the kernel of the map $G \to M$. A set of relations $\{n_{\beta}\}_{\beta \in B} \in G$ corresponds to a homomorphism ψ from the free module $F := R^B$ to the kernel of φ . The m_{α} generate M and the n_{β} generate the kernel.

That is, M may be described as the module with generators $\{m_{\alpha}\}_{\alpha \in A}$ and relations $\{n_{\beta}\}_{\beta \in B}$ if and only if the sequence

$$F \to G \to M \to 0.$$

is exact. This sequence is usually called a **free presentation** of M. In case A and B are finite sets, so that each of F and G is a finitely generated free module over R, it is called a **finite free presentation**. A module M is **finitely generated** if there exists a finite set of elements that generate M, and **finitely presented** if it has a finite free presentation.