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The Chinese Remainder Theorem on Z

The Chinese Remainder Theorem

We start with a standard result in number theory:

Theorem (Chinese Remainder Theorem)
Let n1, n2, . . . , nr be positive integers such that gcd(ni , nj) = 1 for i 6= j .
Then the system of linear congruences

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)
...

...
x ≡ ar (mod nr)

has a simultaneous solution, which is unique modulo N = n1n2 · · · nr .
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The Chinese Remainder Theorem on Z

The Chinese Remainder Theorem

The solution is found following this process.
Let N = n1 · · · nr and Ni = N/ni . Since the ni ’s are relatively prime, the
greatest common divisor of Ni and ni is 1. So, there exists a multiplicative
inverse xi so that xiNi ≡ 1 (mod ni). So, we have

xiNi ≡
{
1 (mod ni)
0 (mod nj) for j 6= i .

The solution to the system of congruences is then

x = a1x1N1 + · · ·+ ar xr Nr .
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Example 1

Example 1

Example
Find all solutions of the system of congruences

x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7) .
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Example 1

Example 1

Solution
Here, n1 = 3, n2 = 5, and n3 = 7.
Let N = 3 · 5 · 7 = 105.
Let

N1 = N
n1

= 5 · 7 = 35

N2 = N
n2

= 3 · 7 = 21

N3 = N
n3

= 3 · 5 = 15.

Note that Ni and ni are relatively prime for each i.
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Example 1

Example 1

Solution
We compute

N1 · x1 = 35 · 2 = 70 ≡ 1 (mod 3)
N2 · x2 = 21 · 1 = 21 ≡ 1 (mod 5)
N3 · x3 = 15 · 1 = 15 ≡ 1 (mod 7) .

So,

x1 = 2
x2 = 1
x3 = 1.
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Example 1

Example 1

Solution
Our solution is then

x ≡ a1N1x1 + a2N2x2 + a3N3x3 (mod N)
≡ 2 · 35 · 2 + 3 · 21 · 1 + 2 · 15 · 1 (mod 105)
≡ 140 + 63 + 30 (mod 105)
≡ 233 (mod 105)
≡ 23 (mod 105) .

Notice that 23 ≡ 2 (mod 3), 23 ≡ 3 (mod 5), 23 ≡ 2 (mod 7), so this is a
solution of the system of congruences.

All other solutions are 23 + 105k for k ∈ Z.
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A Closer Look

A Closer Look

Let’s look at this a bit more closely.

The number ni corresponds to a principal ideal (ni) in the ring Z.

Since ni and nj are relatively prime, there exists integers a, b ∈ Z so that
ani + bnj = 1.

Hence the sum of the ideals (ni) and (nj) is the entire ring Z.

(ni) + (nj) = Z.
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A Closer Look

A Closer Look

(ni) + (nj) = Z.

Further, the intersection of these ideals (ni) is the principal ideal (N)
generated by N = lcm(ni), which is the product

∏
i ni if these factors are

pairwise relatively prime.

(N) =
r⋂

i=1
(ni) =

r∏
i=1

(ni) =
( r∏

i=1
ni

)
.
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Coprime Ideals

Coprime Ideals

Generalizing this property, we define ideals a and b in a (commutative)
ring R to be coprime (or comaximal) if

a + b = R.
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The map from R to
∏

i
R/ai

The map from R to ∏
i R/ai

For ideals ai in a ring R we have natural quotient maps ϕi : R → R/ai ,
which we can put together to give a ring homomorphism

ϕ : R →
∏

i
R/ai

ϕ(x) = (ϕi(x))i

The kernel of this map is easily seen to be the intersection
⋂

i ai .
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The map from R to
∏

i
R/ai

The map from R to ∏
i R/ai

If the ideals ai in a ring R are pairwise coprime, then the homomorphism
ϕ : R →

∏
i R/ai is surjective.

Let’s see that.
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The map from R to
∏

i
R/ai

The map from R to ∏
i R/ai

Fix i . For each j 6= i , there exist xj ∈ ai and yj ∈ aj so that xj + yj = 1.
Then yj = 1− xj ≡ 1 (mod ai) and yj ≡ 0 (mod aj) for j 6= i . Letting
ei =

∏
j 6=i yj satisfies

ei ≡ 1 (mod ai) and ei ≡ 0 (mod aj) for j 6= i .

That is, ei maps to (0, . . . , 0, 1, 0, . . . , 0) ∈
∏

i R/ai , where 1 is in the i th

place.

Then the element x =
∑

i aiei maps to (a1, a2, . . . , an).
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Example 2

Example 2

As a second example, let Z be the ring of integers and let (r) and (s) be
ideals in Z with gcd(r , s) = 1.

We have the natural quotient homomorphisms

ϕr : Z→ Z/(r),
ϕs : Z→ Z/(s).

We can put together these homomorphisms to give us a homomorphism
into the product:

ϕ : Z→ Z/(r)× Z/(s).
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Example 2

Example 2

Since r and s are relatively prime, the ideals (r) and (s) are coprime, so
the Chinese Remainder Theorem gives us an epimorphism

Z→ Z/(r)× Z/(s)

with kernel (rs), so this gives us an isomorphism

Z/(rs)→ Z/(r)× Z/(s).

This is a special case of the theorem on the classification of finite abelian
groups.
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Example 2

Example 2

As concrete examples . . .

Example
1 Z/(15) = Z/(3 · 5) ∼= Z/(3)× Z/(5)
2 Z/(21) = Z/(3 · 7) ∼= Z/(3)× Z/(7)
3 Z/(187) = Z/(11 · 17) ∼= Z/(11)× Z/(17)
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Example 3

Example 3

As a third example, let Q[x ] be a polynomial ring over the rational
numbers. Let p(x) ∈ Q[x ] be a monic irreducible polynomial of degree at
least 2.

Then K = Q[x ]/(p(x)) is a finite extension field of Q.

A finite extension field of the field of rational numbers is called a number
field.
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Irreducible Polynomials Have Distinct Roots

Irreducible Polynomials Have Distinct Roots

We remark that all the roots of p(x) in any number field must be distinct.

Suppose p(x) has a root α of multiplicity at least 2. Then over some field
p(x) = q(x)(x − α)n, with n ≥ 2. Taking the derivative, we get

p′(x) = q′(x)(x − α)n + q(x) · n(x − α)n−1

= [q′(x)(x − α) + nq(x)](x − α)n−1.

Since n ≥ 2, p′(α) = 0.
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Irreducible Polynomials Have Distinct Roots

Irreducible Polynomials Have Distinct Roots

We have just shown that α is a root of both p(x) and p′(x).

Since p(x) and p′(x) are polynomials with rational coefficients which have
a common root, they must have a common factor.

Since p is irreducible and p′ has smaller degree than p, this is a
contradiction.
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Back to Example 3

Example 3

The natural inclusion of the field of rational numbers into the field of
complex numbers (or any other algebraically closed field containing Q),
induces a ring homomorphism

ϕ : Q[x ]/(p(x))→ C[x ]/(p(x)).

Since p(x) is irreducible over Q, Q[x ]/(p(x)) is our number field K .

However, p(x) is no longer irreducible in C[x ], so C[x ]/(p(x)) is not a
field.

We will use the Chinese Remainder Theorem to see what it is.
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Back to Example 3

Example 3

Since the field of complex numbers is algebraically closed, p(x) factors
into linear factors in C[x ]: p(x) =

∏
i(x − ri) with ri ∈ C being the

complex roots of p.

Since p is irreducible these roots are distinct. This means the ideals
(x − ri) are pairwise coprime. That means we can use the Chinese
Remainder Theorem.
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Back to Example 3

Example 3

The Chinese Remainder Theorem gives us an isomorphism

C[x ]/
n∏

i=1
(x − ri) ∼=

n∏
i=1

C[x ]/(x − ri) ∼= Cn,

where this last map is given by sending f (x) ∈ C[x ] to (f (ri))i .
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Back to Example 3

Example 3

Composing this isomorphism with our original map of K into C[x ]/(p(x)),
we get a homomorphism

K → C[x ]/
∏

i
(x − ri) ∼=

n∏
i=1

C[x ]/(x − ri) ∼= Cn,

where this last map is given by sending f (x) ∈ Q[x ] to (f (ri))i ∈ Cn.

Let σi : K → C be the projection of this last map onto the ith coordinate.
This gives n embeddings of the number field K into the field of complex
numbers.
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Back to Example 3

The Trace and Norm

Let σi : K → C be the n embeddings of the number field K into the field
of complex numbers constructed in the last frame.

Definition
The trace of an element α in the number field K is the sum

T (α) = σ1(α) + σ2(α) + · · ·+ σn(α).

The norm of an element α in the number field K is the product

N(α) = σ1(α)σ2(α) · · ·σn(α).
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Back to Example 3

The Trace and Norm

For any α ∈ K , T (α) and N(α) lie in Q.

If α ∈ K is an algebraic integer, that is, the root of a monic polynomial
with coefficients in K , then T (α) and N(α) lie in Z.

Further, the trace function is additive and the norm function is
multiplicative:

T (α+ β) = T (α) + T (β)
N(αβ) = N(α)N(β).

William M. Faucette (UWG) The Chinese Remainder Theorem Summer 2021 26 / 38



Example 4

Example 4

Let p(x) = x2 − q where q be a square-free a rational number. Then p(x)
is irreducible in Q. The field

K = Q[x ]/(x2 − q) ∼= Q[√q] = {a + b√q | a, b ∈ Q}.

There are two embeddings of K in C:

σ1 : Q[√q]→ C
σ1(a + b√q) = a + b√q

σ2 : Q[√q]→ C
σ2(a + b√q) = a − b√q
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Example 4

Example 4

σ1 : Q[√q]→ C
σ1(a + b√q) = a + b√q

σ2 : Q[√q]→ C
σ2(a + b√q) = a − b√q

Then

T (a + b√q) = (a + b√q) + (a − b√q) = 2a
N(a + b√q) = (a + b√q)(a − b√q) = a2 − qb2

Notice both these numbers are rational numbers.
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Example 5

Example 5

Let p(x) = x3 − 2. Then p(x) is irreducible in Q. The field

K = Q[x ]/(x3 − 2) ∼= Q[ 3√2] = {a + b 3√2 | a, b ∈ Q}.

There are three embeddings of K in C:

σ1 : Q[ 3√2]→ C

σ1(a + b 3√2) = a + b 3√2
σ2 : Q[ 3√2]→ C

σ2(a + b 3√2) = a + bω 3√2
σ3 : Q[ 3√2]→ C

σ3(a + b 3√2) = a + bω2 3√2

where ω is a primitive cube root of 1. We note that ω2 + ω + 1 = 0.
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Example 5

Example 5

Then

T (a + b 3√2) = (a + b 3√2) + (a + bω 3√2) + (a + bω2 3√2)

= 3a + b 3√2
(
1 + ω + ω2

)
= 3a

N(a + b 3√2) = (a + b 3√2)(a + bω 3√2)(a + bω2 3√2)
= (a3 + 2b3) + a2b 3√2(ω2 + ω + 1) + ab2 3√4(ω2 + ω + 1)
= a3 + 2b3

Notice both these numbers are rational numbers.
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Using the Norm

Using the Norm

If α is an algebraic integer in some number field, then the norm of α,
N(α), is an integer.

This is because the norm of α is always a rational number. And if the
rational number is an algebraic integer, it must be a rational integer. That
is, it must lie in Z.

The same is true for the trace of α, T (α).
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Using the Norm

Using the Norm

Since the norm function is multiplicative, for any unit α in the ring of
algebraic integers, there exists an algebraic integer β so that αβ = 1. Then

N(α)N(β) = N(αβ) = N(1) = 1.

So, if α is a unit and an algebraic integer, its norm must be ±1. The
converse of this is also true.
This implies that the norms of associates in the ring of algebraic integers
must be the same up to sign.
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Using the Norm

Using the Norm

Example
The norm and trace on the number field Q[

√
−5] is given by

N(a + b
√
−5) = a2 + 5b2

T (a + b
√
−5) = 2a.

The ring of algebraic integers is the set of all elements of Q[
√
−5] where

both these numbers are integers. This forces a and b to be integers. So,
the ring of algebraic integers in Q[

√
−5] is Z[

√
−5].
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Using the Norm

Using the Norm

Example
First, we compute

N(2) = 22 + 5 · 02 = 4
N(3) = 32 + 5 · 02 = 9

N(1±
√
−5) = 12 + 5 · 12 = 6.

Since associates must have the same norm, we see that neither 2 nor 3 is
an associate of 1±

√
−5.
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Using the Norm

Using the Norm

Example
Suppose N(a + b

√
−5) = 2. Then the integers a and b must satisfy

a2 + 5b2 = 2.

This is not possible, so there is no element of norm 2 in Z[
√
−5].

Similarly, there is no element of norm 3 in Z[
√
−5].
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Using the Norm

Using the Norm

Example
It follows that 2, 3, and 1±

√
−5 are irreducible, since the only proper

divisors of their norms are 2, 3, or both.

Since
6 = 2 · 3 = (1 +

√
−5)(1−

√
−5),

we see that Z[
√
−5] is not a unique factorization domain.
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Using the Norm

Using the Norm

So, the norm and trace can be used to determine if a ring of algebraic
integers is a unique factorization domain.

This is a central problem in number theory that sparked a great deal of
development in commutative algebra in the late nineteenth century.
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Using the Norm

A Note of Thanks

Thank you for attending.
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