
Introduction to Commutative Algebra
by Atiyah and Macdonald

slideshow by
William M. Faucette

University of West Georgia

Mark Faucette (UWG) Rings and Ideals 1 / 43



Outline

1 Rings and Ring Homomorphisms

2 Ideals and Quotient Rings

3 Zero Divisors, Nilpotents, Units

4 Prime Ideals and Maximal Ideals

5 Nilradical and Jacobson Radical

6 Operations on Ideals

7 Extension and Contraction

Mark Faucette (UWG) Rings and Ideals 2 / 43



Rings and Ring Homomorphisms

Definition

A ring is a set with two binary operations (addition and multiplication)
such that

1 A is an abelian group with respect to addition (so that A has a zero
element, denoted by 0, and every x ∈ A has an (additive) inverse,
−x).

2 Multiplication is associative and distributive over addition
((xy)z = x(yz)) and distributive over addition (x(y + z) = xy + xz,
(y + z)x = yx+ zx).
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Rings and Ring Homomorphisms

Definition

A ring A is commutative if

xy = yx for all x, y ∈ A.
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Rings and Ring Homomorphisms

Definition

A ring A has an identity element if there exists an element, 1 ∈ A, so
that

1 · x = x · 1 = x for all x ∈ A.

The identity element is then unique.
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Rings and Ring Homomorphisms

We shall consider only rings which are commutative and have an identity
element (denoted by 1).
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Rings and Ring Homomorphisms

Definition

A ring homomorphism from a ring A to a ring B is a mapping
f : A→ B so that

1 f(x+ y) = f(x) + f(y) for all x, y ∈ A
2 f(xy) = f(x)f(y) for all x, y ∈ A
3 f(1) = 1.

In other words, f respects addition, multiplication, and the identity
element.
If f is a ring homomorphism, then f is a homomorphism of groups under
addition, so it follows that f(x− y) = f(x)− f(y), f(−x) = −f(x), and
f(0) = 0.
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Rings and Ring Homomorphisms

Definition

A subset S of a ring A is a subring of A if S is closed under addition and
multiplication, is closed under taking additive inverses, and contains the
identity element of A. The inclusion map i : S ↪→ A is then a ring
homomorphism.

If f : A→ B and g : B → C are ring homomorphisms, then
g ◦ f : A→ C is a ring homomorphism.
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Ideals and Quotient Rings

Definition

An ideal a of a ring A is a subset of A which is an additive subgroup and
is such that Aa ⊆ a (i.e, x ∈ A and y ∈ a imply xy ∈ a).

Definition

Let a be an ideal in a ring A. The set of cosets, A/a has a natural ring
structure inherited from that of A.

The resulting ring is called the quotient ring of A by a.

In this case, the natural map φ : A→ A/a defined by φ(x) = x+ a is a
surjective ring homomorphism.
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Ideals and Quotient Rings

We shall frequently use the following fact:

Proposition

There is a one-to-one order preserving correspondence between the ideals
b of A which contain a, and the ideals b of A/a, given by b = φ−1(b).
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Ideals and Quotient Rings

Definition

If f : A→ B is a ring homomorphism, the kernel of f , defined to be
f−1(0), is an ideal a of A, and the image of f , defined to be f(A), is a
subring C of B. The homomorphism f induces an isomorphism A/a ∼= C.

We shall sometimes use the notation x ≡ y (mod a). This means that
x− y ∈ a.
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Zero Divisors, Nilpotents, Units

Definition

A zero-divisor in a ring A is an element x for which there exists y 6= 0 in
A such that xy = 0. A ring with no nonzero zero-divisors (and in which
0 6= 1) is called an integral domain.

For example, Z and k[x1, . . . , xn] (k a field, xi indeterminates) are integral
domains.
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Zero Divisors, Nilpotents, Units

Definition

An element x ∈ A is nilpotent if xn = 0 for some n > 0.

A nilpotent element is a zero-divisor (unless A = 0), but not conversely (in
general).
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Zero Divisors, Nilpotents, Units

Definition

A unit in A is an element x such that xy = 1 for some y ∈ A.

The element y is then uniquely determined and is denoted x−1.

The set of units in A form a (multiplicative) abelian group.
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Zero Divisors, Nilpotents, Units

Definition

The multiples ax of an element x ∈ A form a principal ideal, denoted by
(x) or Ax.

The element x is a unit if and only if (x) = A.

The zero ideal (0) is usually denoted by 0.
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Zero Divisors, Nilpotents, Units

Definition

A field is a ring A in which 1 6= 0 and every non-zero element is a unit.

Every field is an integral domain (but not conversely: Z is not a field).
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Zero Divisors, Nilpotents, Units

Proposition

Let A be a ring 6= 0. Then the following are equivalent:

1 A is a field;

2 the only ideals in A are 0 and (1);

3 every homomorphism of A into a non-zero ring B is injective.
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Prime Ideals and Maximal Ideals

Definition

An ideal p in A is prime if p 6= (1) and if

xy ∈ p =⇒ x ∈ p or y ∈ p.

Definition

An ideal m is maximal if m 6= (1) and if there is no ideal a so that
m ( a ( (1).

Equivalently:

1 p is prime ⇔ A/p is an integral domain;

2 m is maximal ⇔ A/m is a a field.

Hence a maximal ideal is prime (but not conversely, in general). The zero
ideal is prime ⇔ A is an integral domain.
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Prime Ideals and Maximal Ideals

If f : A→ B is a ring homomorphism and q is a prime ideal in B, then
f−1(q) is a prime ideal in A, for A/f−1(q) is isomorphic to a subring of
B/q and hence has no zero-divisor 6= 0.

But if n is a maximal ideal of B it is not necessarily ture that f−1(n) is
maximal in A; all we can say for sure is that it is prime. (Example: A = Z,
B = Q, n = 0.)
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Prime Ideals and Maximal Ideals

Prime ideals are fundamental to the whole of commutative algebra. The
following theorem and its corollaries ensure that there is always a sufficient
supply of them.

Theorem

Every ring A 6= 0 has at least one maximal ideal.

Proof.

Let Σ be the set of all proper ideals in A. Order Σ by inclusion. Σ is not
empty, since 0 ∈ Σ. Let (aα) be a chain of ideals in Σ, so that for each
pair of indices α, β we have either aα ⊂ aβ or aβ ⊂ aα. Let a =

⋃
α aα.

Then α is an ideal (verify this) and 1 6∈ a since 1 6∈ aα for all α. Hence
α ∈ Σ, and a is an upper bound of the chain. Hence, by Zorn’s lemma, Σ
has a maximal element.

Mark Faucette (UWG) Rings and Ideals 20 / 43



Prime Ideals and Maximal Ideals

Theorem

Every ring A 6= 0 has at least one maximal ideal.

Corollary

If a 6= (1) is an ideal of A, there exists a maximal ideal of A containing a.

Corollary

Every non-unit of A is contained in a maximal ideal.
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Prime Ideals and Maximal Ideals

Definition

A ring A with exactly one maximal ideal m is called a local ring. In a
local ring, the maximal ideal consists of all nonunits in A.

The field k = A/m is called the residue field of A.
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Prime Ideals and Maximal Ideals

Proposition

1 Let A be a ring and m 6= (1) an ideal of A such that every x ∈ A−m
is a unit in A. Then A is a local ring and m its maximal ideal.

2 Let A be a ring and m a maximal ideal of A, such that every element
of 1 + m (i.e. every 1 + x, where x ∈ m) is a unit in A. Then A is a
local ring.
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Prime Ideals and Maximal Ideals

Examples

1 Let A = k[x1, . . . , xn], k a field. Let f ∈ A be an irreducible
polynomial. By unique factorization, the ideal (f) is prime.

2 Let A = Z. Every ideal in Z is of the form (m) for some m ≥ 0. The
ideal (m) is prime ⇔ m = 0 or a prime number. All the ideals (p),
where p is a prime number, are maximal: Z/(p) is the field of p
elements.

The same holds in Example (1) for n = 1, but not for n > 1.

3 A principal ideal domain is an integral domain in which every ideal
is principal. In such a ring every non-zero prime ideal is maximal.
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Nilradical and Jacobson Radical

Proposition.

The set N of all nilpotent elements in a ring A is an ideal, and A/N has
no nilpotent element 6= 0.

Proof.

If x ∈ N, clearly ax ∈ N for all a ∈ A. Let x, y ∈ N: say xm = 0, yn = 0.
By the binomial theorem (which is valid in any commutative ring),
(x+ y)m+n−1 is the sum of integer multiples of products xrys, where
r + s = m+ n− 1; we cannot have both r < m and s < n, hence each of
these products vanishes and therefore (x+ y)m+n−1 = 0. Hence
x+ y ∈ N and therefore N is an ideal.
Let x ∈ A/N be represented by x ∈ A. Then xn is represented by xn, so
that xn = 0⇒ xn ∈ N⇒ (xn)k = 0 for some k > 0⇒ x ∈ N⇒ x = 0.

Definition

The set N of all nilpotent elements in a ring A is called the nilradical of A.
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Nilradical and Jacobson Radical

The following proposition gives an alternative definition of N:

Proposition

The nilradical of A is the intersection of all the prime ideals of A.

Proof

Let N′ denote the intersection of all the prime ideals of A. If f ∈ A is
nilpotent and if p is a prime ideal, then fn = 0 ∈ p for some n > 0, hence
f ∈ p (because p is prime). Hence f ∈ N′.
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Nilradical and Jacobson Radical

Proof.

Conversely, suppose that f is not nilpotent. Let Σ be the set of ideals a
with the property

n > 0⇒ fn /∈ a.

Then Σ is not empty because 0 ∈ Σ. Zorn’s lemma can be applied to the
set Σ, ordered by inclusion, and therefore Σ has a maximal element. Let p
be a maximal element of Σ. We shall show that p is a prime ideal. Let x,
y /∈ p. Then the ideals p + (x), p + (y) strictly contain p and therefore do
not belong to Σ; hence

fm ∈ p + (x), fn ∈ p + (y)

for some m, n. It follows that fm+n ∈ p + (xy), hence the ideal p + (xy)
is not in Σ and therefore xy /∈ p. Hence we have a prime ideal p such that
f /∈ p, so that f /∈ N′.
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Nilradical and Jacobson Radical

Definition

The Jacobson radical R of A is defined to be the intersection of all the
maximal ideals of A.

It can be characterized as follows:

Proposition

Let A be a ring and R its Jacobson radical. An element x ∈ A is in R if
and only if 1− xy is a unit in A for all y ∈ A.
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Operations on Ideals

If a, b are ideals in a ring A. Their sum a + b is the set of all x+ y where
x ∈ a and y ∈ b. It is the smallest ideal containing a and b.

More generally, we may define the sum
∑

i∈I ai of any family (possibly
infinite) of ideals ai of A; its elements are all sums

∑
xi where xi ∈ ai for

all i ∈ I and almost all of the xi (i.e., all but a finite set) are zero. It is
the smallest ideal of A which contains all the ideals ai.

The intersection of any family (ai) of ideals is an ideal.

The union a ∪ b of ideals is not in general an ideal.
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Operations on Ideals

Definition

Let a and b be ideals in a ring A. The product of a and b is the ideal ab
generated by all products xy, where x ∈ a and y ∈ b. It is the set of all
finite sums

∑
xiyi where each xi ∈ a and each yi ∈ b.

Similarly we define the product of any finite family of ideals. In particular
the powers an (n > 0) of an ideal a are defined; conventionally a0 = (1).
Thus an (n > 0) is the ideal generated by all products x1x2 · · ·xn in which
each factor xi belongs to a.
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Operations on Ideals

Examples

1) In the ring Z, a = (m), b = (n), then a + b is the ideal generated by
the greatest common factor of m and n. The ideal a ∩ b is the ideal
generated by their least common multiple. The ideal ab = (mn). So (in
this case) ab = a ∩ b⇔ m, n are coprime.

2) A = k[x1, . . . , xn], a = (x1, . . . , xn) = ideal generated by x1, . . . , xn.
Then am is the set of all polynomials with no terms of degree < m.

The three operations so far defined (sum, intersection, product) are all
commutative and associative. Also there is the distributive law

a(b + c) = ab + ac.
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Operations on Ideals

In Z, we have (a + b)(a ∩ b) = ab; but in general we have only
(a + b)(a ∩ b) ⊆ ab since

(a + b)(a ∩ b) = a(a ∩ b) + b(a ∩ b) ⊆ ab.

Clearly, ab ⊆ a ∩ b, hence

a ∩ b = ab if a + b = (1).
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Operations on Ideals

Definition

Two ideals a and b are coprime (or comaximal) if a + b = (1).

By what we said above, for coprime ideals we have a ∩ b = ab.

Clearly two ideals a, b are coprime if and only if there exist x ∈ a and
y ∈ b such that x+ y = 1.
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Operations on Ideals

Definition

Let A1, . . .An be rings. Their direct product

A =

n∏
i=1

Ai

is the set of all sequences x = (x1, . . . , xn) with xi ∈ Ai (1 ≤ i ≤ n) with
componentwise addition and multiplication.

A is a commutative ring with identity (1, . . . , 1).

We have projections pi : A→ Ai defined by pi(x) = xi; they are ring
homomorphisms.
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Operations on Ideals

Proposition

Let A be a ring and let a1, . . . , an ideals of A. Define a homomorphism

φ : A→
n∏
i=1

(A/ai)

by the rule φ(x) = (x+ a1, . . . , x+ an).

1 If ai, aj are coprime whenever i 6= j, then
∏

ai =
⋂
ai.

2 φ is surjective ⇔ ai, aj are coprime whenever i 6= j.

3 φ is injective ⇔
⋂
ai = (0).

Proof.

Put proof of 1 and 3 here.
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Operations on Ideals

Proposition

1 Let p1, . . . , pn be prime ideals and let a be an ideal contained in⋃n
i=1 pi. Then a ⊆ pi for some i.

2 Let a1, . . . , an be ideals and let p be a prime ideal containing⋂n
i=1 ai. Then p ⊇ ai for some i. If p =

⋂
ai, then p = ai for some i.
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Operations on Ideals

Proof.

Put proof here.
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Operations on Ideals

Definition

If a and b are ideals in a ring A, their ideal quotient is

(a : b) = {x ∈ A : xb ⊆ a},

which is an ideal.

In particular, (0 : b) is called the annihilator of b and is also denoted
Ann (b). It is the set of all x ∈ A such that xb = 0.
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Operations on Ideals

If a is any ideal of A, the radical of a is

rad (a) = {x ∈ A : xn ∈ a for some n > 0}.

This is the same thing as the radical of the quotient ring A/a, so it is an
ideal.
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Extension and Contraction

Let f : A→ B be a ring homomorphism. The image of an ideal in A may
not be an ideal in B. (e.g., let f be the embedding of Z in Q, the field of
rationals, and take a be to be any non-zero ideal in Z.).

However, we can define the extension of the image of a in B.

Definition

Let f : A→ B be a ring homomorphism. Let a be an ideal in A. The
extension ae of a is the ideal Bf(a) generated by the image f(a) in B.

Explicitly, ae is the set of all sums
∑
yif(xi) where xi ∈ a and yi ∈ b.
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Extension and Contraction

If b is an ideal of B, then f−1(b) is always an ideal of A, called the
contraction of b.

Definition

Let b is an ideal of B. The contraction bc of b in A is the ideal f−1(b).
If b is prime, then bc is prime.
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Extension and Contraction
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Extension and Contraction
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