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Rings and Ring Homomorphisms

Definition

A ring is a set with two binary operations (addition and multiplication)
such that

@ A is an abelian group with respect to addition (so that A has a zero
element, denoted by 0, and every 2 € A has an (additive) inverse,
—x).

@ Multiplication is associative and distributive over addition
((zy)z = x(yz)) and distributive over addition (z(y + 2z) = zy + zz,
(y + 2)z = yz + 2x).
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Rings and Ring Homomorphisms

Definition
A ring A is commutative if

xy = yz for all z,y € A.

Mark Faucette (UWG) Rings and Ideals 4/43



Rings and Ring Homomorphisms

Definition
A ring A has an identity element if there exists an element, 1 € A, so

that
l-z2=x-1=gz for all z € A.

The identity element is then unique.
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Rings and Ring Homomorphisms

We shall consider only rings which are commutative and have an identity
element (denoted by 1).
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Rings and Ring Homomorphisms

Definition
A ring homomorphism from a ring A to a ring B is a mapping
f:A— B so that

Q flz+y) = f(z)+ f(y) forall z,y € A

Q f(zy) = f(x)f(y) forall z,y € A

Q@ f(1)=1
In other words, f respects addition, multiplication, and the identity
element.
If fis a ring homomorphism, then f is a homomorphism of groups under
addition, so it follows that f(z —y) = f(z) — f(y), f(—x) = —f(x), and
f(0)=0.
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Rings and Ring Homomorphisms

Definition

A subset S of a ring A is a subring of A if S is closed under addition and
multiplication, is closed under taking additive inverses, and contains the
identity element of A. The inclusion map i : S < A is then a ring
homomorphism.

If f: A— Bandg: B — C are ring homomorphisms, then
go f:A— Cis aring homomorphism.
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Ideals and Quotient Rings

Definition
An ideal a of a ring A is a subset of A which is an additive subgroup and
is such that Aa C a (i.e, z € A and y € a imply zy € a).

Definition
Let a be an ideal in a ring A. The set of cosets, A/a has a natural ring
structure inherited from that of A.

The resulting ring is called the quotient ring of A by a.

In this case, the natural map ¢ : A — A/a defined by ¢(z) =z +ais a
surjective ring homomorphism.
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Ideals and Quotient Rings

We shall frequently use the following fact:
Proposition

There is a one-to-one order preserving correspondence between the ideals
b of A which contain a, and the ideals b of A/a, given by b = ¢~ 1(b).
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Ideals and Quotient Rings

Definition

If f: A— B is a ring homomorphism, the kernel of f, defined to be
f71(0), is an ideal a of A, and the image of f, defined to be f(A), is a
subring C of B. The homomorphism f induces an isomorphism A/a = C.

We shall sometimes use the notation = = y (mod a). This means that
r—yeEa
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Zero Divisors, Nilpotents, Units

Definition

A zero-divisor in a ring A is an element x for which there exists y £ 0 in
A such that zy = 0. A ring with no nonzero zero-divisors (and in which
0 # 1) is called an integral domain.

For example, Z and k[x1,...,x,] (k a field, z; indeterminates) are integral

domains.
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Zero Divisors, Nilpotents, Units

Definition
An element x € A is nilpotent if ' = 0 for some n > 0.

A nilpotent element is a zero-divisor (unless A = 0), but not conversely (in
general).
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Zero Divisors, Nilpotents, Units

Definition
A unit in A is an element z such that zy = 1 for some y € A.

The element y is then uniquely determined and is denoted z .

The set of units in A form a (multiplicative) abelian group.
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Zero Divisors, Nilpotents, Units

Definition
The multiples az of an element = € A form a principal ideal, denoted by
(x) or Ax.

The element x is a unit if and only if (z) = A.

The zero ideal (0) is usually denoted by 0.
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Zero Divisors, Nilpotents, Units

Definition
A field is a ring A in which 1 # 0 and every non-zero element is a unit.

Every field is an integral domain (but not conversely: Z is not a field).
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Zero Divisors, Nilpotents, Units

Proposition

Let A be a ring £ 0. Then the following are equivalent:
Q@ A is a field;
@ the only ideals in A are 0 and (1);

© every homomorphism of A into a non-zero ring B is injective.

Mark Faucette (UWG) Rings and Ideals 17 /43



Prime Ideals and Maximal Ideals

Definition
An ideal p in A is prime if p # (1) and if

TYEP = T EPoOryEDP.

Definition
An ideal m is maximal if m # (1) and if there is no ideal a so that
mCac (1)

Equivalently:
Q p is prime & A/p is an integral domain;
@ m is maximal & A/m is a a field.

Hence a maximal ideal is prime (but not conversely, in general). The zero
ideal is prime < A is an integral domain.
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Prime Ideals and Maximal Ideals

If f: A— B isaring homomorphism and q is a prime ideal in B, then
f~(q) is a prime ideal in A, for A/f~1(q) is isomorphic to a subring of
B/q and hence has no zero-divisor # 0.

But if n is a maximal ideal of B it is not necessarily ture that f~1(n) is
maximal in A; all we can say for sure is that it is prime. (Example: A = Z,
B=Q,n=0.)
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Prime Ideals and Maximal Ideals

Prime ideals are fundamental to the whole of commutative algebra. The
following theorem and its corollaries ensure that there is always a sufficient
supply of them.

Theorem

Every ring A # 0 has at least one maximal ideal.

Proof.

Let ¥ be the set of all proper ideals in A. Order X by inclusion. X is not
empty, since 0 € X. Let (a,) be a chain of ideals in X, so that for each
pair of indices «, 5 we have either a, C ag or ag C a,. Let a =J, aa.
Then « is an ideal (verify this) and 1 & a since 1 ¢ a,, for all a. Hence

« € X, and a is an upper bound of the chain. Hence, by Zorn's lemma, X
has a maximal element. []
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Prime Ideals and Maximal Ideals

Theorem

Every ring A # 0 has at least one maximal ideal.

Corollary

If a # (1) is an ideal of A, there exists a maximal ideal of A containing a.

Corollary

Every non-unit of A is contained in a maximal ideal.
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Prime Ideals and Maximal Ideals

Definition
A ring A with exactly one maximal ideal m is called a local ring. In a
local ring, the maximal ideal consists of all nonunits in A.

The field k = A/m is called the residue field of A.
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Prime Ideals and Maximal Ideals

Proposition
© Let A be a ring and m # (1) an ideal of A such that every x € A—m
is a unit in A. Then A is a local ring and m its maximal ideal.
@ Let A be a ring and m a maximal ideal of A, such that every element
of 1 +m (i.e. every 1 4+ x, where x € m) is a unit in A. Then A is a
local ring.
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Prime Ideals and Maximal Ideals

Examples

O Let A =E[xy,...,z,], k a field. Let f € A be an irreducible
polynomial. By unique factorization, the ideal (f) is prime.

@ Let A =7Z. Every ideal in Z is of the form (m) for some m > 0. The
ideal (m) is prime <> m = 0 or a prime number. All the ideals (p),
where p is a prime number, are maximal: Z/(p) is the field of p
elements.

The same holds in Example (1) for n = 1, but not for n > 1.

© A principal ideal domain is an integral domain in which every ideal
is principal. In such a ring every non-zero prime ideal is maximal.
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Nilradical and Jacobson Radical

Proposition.

The set D of all nilpotent elements in a ring A is an ideal, and A/91 has
no nilpotent element ## 0.

Proof.

If z €M, clearly ax € N for all a € A. Let z, y € N: say 2™ =0, y" = 0.
By the binomial theorem (which is valid in any commutative ring),

(x 4+ y)™t"~ 1 is the sum of integer multiples of products z"y*, where
r+s=m-+mn—1; we cannot have both » < m and s < n, hence each of
these products vanishes and therefore (z + y)™*"~! = 0. Hence

x +y € N and therefore NN is an ideal.

Let T € A/ be represented by x € A. Then Z" is represented by z", so
that " = 0= 2" € N = (2")* =0 forsome k>0=2cN=>7T=0.

L]

Definition
The set N of all nilpotent elements in a ring A is called the nilradical of A.
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Nilradical and Jacobson Radical

The following proposition gives an alternative definition of 9:

Proposition

The nilradical of A is the intersection of all the prime ideals of A.

Proof

Let 9V denote the intersection of all the prime ideals of A. If f € Ais
nilpotent and if p is a prime ideal, then f® =0 € p for some n > 0, hence
f € p (because p is prime). Hence f € 9.
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Nilradical and Jacobson Radical

Proof.
Conversely, suppose that f is not nilpotent. Let 3 be the set of ideals a

with the property
n>0= f"¢a.

Then X is not empty because 0 € X.. Zorn's lemma can be applied to the
set 3, ordered by inclusion, and therefore > has a maximal element. Let p
be a maximal element of 3. We shall show that p is a prime ideal. Let x,
y & p. Then the ideals p + (z), p + (y) strictly contain p and therefore do
not belong to X; hence

ffep+(z), frep+()

for some m, n. It follows that f™*" € p + (zy), hence the ideal p + (zy)
is not in 3 and therefore zy ¢ p. Hence we have a prime ideal p such that

f ¢ p, sothat f & 9. 0
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Nilradical and Jacobson Radical

Definition
The Jacobson radical R of A is defined to be the intersection of all the
maximal ideals of A.

It can be characterized as follows:

Proposition
Let A be a ring and R its Jacobson radical. An element z € A is in R if
and only if 1 — zy is a unit in A for all y € A.
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Operations on Ideals

If a, b are ideals in a ring A. Their sum a + b is the set of all z + y where
x € aand y € b. It is the smallest ideal containing a and b.

More generally, we may define the sum »,_; a; of any family (possibly
infinite) of ideals a; of A; its elements are all sums > x; where z; € a; for
all i € I and almost all of the z; (i.e., all but a finite set) are zero. It is
the smallest ideal of A which contains all the ideals a;.

The intersection of any family (a;) of ideals is an ideal. J

The union a U b of ideals is not in general an ideal. )
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Operations on Ideals

Definition

Let a and b be ideals in a ring A. The product of a and b is the ideal ab
generated by all products xy, where z € a and y € b. It is the set of all
finite sums > z;y; where each z; € a and each y; € b.

Similarly we define the product of any finite family of ideals. In particular
the powers a™ (n > 0) of an ideal a are defined; conventionally a® = (1).
Thus a™ (n > 0) is the ideal generated by all products z1xz2 - - - 2, in which
each factor x; belongs to a.
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Operations on Ideals

Examples

1) In the ring Z, a = (m), b = (n), then a + b is the ideal generated by
the greatest common factor of m and n. The ideal aN b is the ideal
generated by their least common multiple. The ideal ab = (mn). So (in
this case) ab = a N b < m, n are coprime.

2) A=k[x1,...,2,], a = (z1,...,2,) = ideal generated by x1,...,z,.
Then a™ is the set of all polynomials with no terms of degree < m.

The three operations so far defined (sum, intersection, product) are all
commutative and associative. Also there is the distributive law

a(b+c¢) = ab + ac.
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Operations on Ideals

In Z, we have (a4 b)(a N b) = ab; but in general we have only
(a+b)(anb) C ab since

(a+b)(anb) =a(anb)+blanb) C ab.

Clearly, ab C aN b, hence

anb=abifa+b=(1).

Mark Faucette (UWG) Rings and Ideals 32/43



Operations on Ideals

Definition
Two ideals a and b are coprime (or comaximal) if a + b = (1). J

By what we said above, for coprime ideals we have a b = ab.

Clearly two ideals a, b are coprime if and only if there exist € a and
y € b such that z +y = 1.
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Operations on Ideals

Definition
Let Ay, ... A, be rings. Their direct product

n
A=]J4
i=1
is the set of all sequences © = (z1,...,2,) with 2; € A; (1 <1i <n) with

componentwise addition and multiplication.
A is a commutative ring with identity (1,...,1).

We have projections p; : A — A; defined by p;(x) = z;; they are ring
homomorphisms.
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Operations on Ideals

Proposition
Let A be a ring and let aq, ..., a, ideals of A. Define a homomorphism

¢: A= [[A4/w)
i=1

by the rule ¢(z) = (z + a1,...,z + a,).
Q If a;, a; are coprime whenever i # j, then [[a; = a;.
@ ¢ is surjective < a;, a; are coprime whenever 7 # j.
© ¢ is injective & N a; = (0).

Proof.
Put proof of 1 and 3 here. [
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Operations on Ideals

Proposition

Q Let py, ..., pp be prime ideals and let a be an ideal contained in
Ui, pi. Then a C p; for some i.

@ Let aj, ..., a, be ideals and let p be a prime ideal containing
=y a;. Then p D a; for some i. If p =) a;, then p = a; for some 7.

v
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Operations on Ideals

Proof.
Put proof here. DJ
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Operations on Ideals

Definition
If a and b are ideals in a ring A, their ideal quotient is

(a:b)={x € A:2bCa},

which is an ideal.

In particular, (0 : b) is called the annihilator of b and is also denoted
Ann (b). It is the set of all x € A such that zb = 0.
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Operations on Ideals

If a is any ideal of A, the radical of a is

rad (a) = {z € A: z" € a for some n > 0}.

This is the same thing as the radical of the quotient ring A/a, so it is an
ideal.
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Extension and Contraction

Let f: A — B be a ring homomorphism. The image of an ideal in A may
not be an ideal in B. (e.g., let f be the embedding of Z in Q, the field of
rationals, and take a be to be any non-zero ideal in Z.).

However, we can define the extension of the image of a in B.
Definition

Let f: A — B be a ring homomorphism. Let a be an ideal in A. The
extension a° of a is the ideal Bf(a) generated by the image f(a) in B.

Explicitly, a® is the set of all sums > v; f(x;) where x; € a and y; € b.
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Extension and Contraction

If b is an ideal of B, then f~1(b) is always an ideal of A, called the
contraction of b.

Definition

Let b is an ideal of B. The contraction b€ of b in A is the ideal f~1(b).
If b is prime, then b¢ is prime.
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Extension and Contraction
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Extension and Contraction
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