Introduction to Commutative Algebra by Atiyah and Macdonald

slideshow by William M. Faucette

University of West Georgia

Mark Faucette (UWG)

(B)

Outline

- Rings and Ring Homomorphisms
- 2 Ideals and Quotient Rings
- 3 Zero Divisors, Nilpotents, Units
- Prime Ideals and Maximal Ideals
- 5 Nilradical and Jacobson Radical
- 6 Operations on Ideals
 - Extension and Contraction

<日

<</p>

A **ring** is a set with two binary operations (addition and multiplication) such that

- A is an abelian group with respect to addition (so that A has a zero element, denoted by 0, and every x ∈ A has an (additive) inverse, -x).
- Multiplication is associative and distributive over addition ((xy)z = x(yz)) and distributive over addition (x(y + z) = xy + xz, (y + z)x = yx + zx).

く 何 ト く ヨ ト く ヨ ト

A ring A is **commutative** if

xy = yx for all $x, y \in A$.

э

A ring A has an $\operatorname{identity}$ element if there exists an element, $1 \in A,$ so that

$$1 \cdot x = x \cdot 1 = x$$
 for all $x \in A$.

The identity element is then unique.

A 回 > A 回 > A 回 >

We shall consider only rings which are **commutative** and have an **identity** element (denoted by 1).

э

イロト イボト イヨト イヨト

A ring homomorphism from a ring A to a ring B is a mapping $f:A \to B$ so that

•
$$f(x+y) = f(x) + f(y)$$
 for all $x, y \in A$

$$e f(xy) = f(x)f(y) \text{ for all } x, y \in A$$

3
$$f(1) = 1$$

In other words, f respects addition, multiplication, and the identity element.

If f is a ring homomorphism, then f is a homomorphism of groups under addition, so it follows that f(x - y) = f(x) - f(y), f(-x) = -f(x), and f(0) = 0.

<ロト <問ト < 注ト < 注ト = 注

A subset S of a ring A is a **subring** of A if S is closed under addition and multiplication, is closed under taking additive inverses, and contains the identity element of A. The inclusion map $i : S \hookrightarrow A$ is then a ring homomorphism.

If $f: A \to B$ and $g: B \to C$ are ring homomorphisms, then $g \circ f: A \to C$ is a ring homomorphism.

An **ideal** \mathfrak{a} of a ring A is a subset of A which is an additive subgroup and is such that $A\mathfrak{a} \subseteq \mathfrak{a}$ (i.e, $x \in A$ and $y \in \mathfrak{a}$ imply $xy \in \mathfrak{a}$).

Definition

Let \mathfrak{a} be an ideal in a ring A. The set of cosets, A/\mathfrak{a} has a natural ring structure inherited from that of A.

The resulting ring is called the **quotient ring** of A by \mathfrak{a} .

In this case, the natural map $\phi:A\to A/\mathfrak{a}$ defined by $\phi(x)=x+\mathfrak{a}$ is a surjective ring homomorphism.

A 回 > A 回 > A 回 >

We shall frequently use the following fact:

Proposition

There is a one-to-one order preserving correspondence between the ideals \mathfrak{b} of A which contain \mathfrak{a} , and the ideals $\overline{\mathfrak{b}}$ of A/\mathfrak{a} , given by $\mathfrak{b} = \phi^{-1}(\overline{\mathfrak{b}})$.

• • = • • = •

If $f: A \to B$ is a ring homomorphism, the **kernel** of f, defined to be $f^{-1}(0)$, is an ideal \mathfrak{a} of A, and the **image** of f, defined to be f(A), is a subring C of B. The homomorphism f induces an isomorphism $A/\mathfrak{a} \cong C$.

We shall sometimes use the notation $x \equiv y \pmod{\mathfrak{a}}$. This means that $x - y \in \mathfrak{a}$.

イロト イヨト イヨト ・

A zero-divisor in a ring A is an element x for which there exists $y \neq 0$ in A such that xy = 0. A ring with no nonzero zero-divisors (and in which $0 \neq 1$) is called an **integral domain**.

For example, \mathbb{Z} and $k[x_1, \ldots, x_n]$ (k a field, x_i indeterminates) are integral domains.

イロト イヨト イヨト ・

An element $x \in A$ is **nilpotent** if $x^n = 0$ for some n > 0.

A nilpotent element is a zero-divisor (unless A = 0), but not conversely (in general).

A B < A B </p>

A unit in A is an element x such that xy = 1 for some $y \in A$.

The element y is then uniquely determined and is denoted x^{-1} .

The set of units in A form a (multiplicative) abelian group.

<日

<</p>

The multiples ax of an element $x \in A$ form a **principal** ideal, denoted by (x) or Ax.

The element x is a unit if and only if (x) = A.

The zero ideal (0) is usually denoted by 0.

• • = • • = •

A field is a ring A in which $1 \neq 0$ and every non-zero element is a unit.

Every field is an integral domain (but not conversely: \mathbb{Z} is not a field).

A 回 > A 回 > A 回 >

Proposition

Let A be a ring $\neq 0$. Then the following are equivalent:

- 2 the only ideals in A are 0 and (1);
- \bigcirc every homomorphism of A into a non-zero ring B is injective.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

An ideal \mathfrak{p} in A is **prime** if $\mathfrak{p} \neq (1)$ and if

$$xy \in \mathfrak{p} \implies x \in \mathfrak{p} \text{ or } y \in \mathfrak{p}.$$

Definition

An ideal \mathfrak{m} is **maximal** if $\mathfrak{m} \neq (1)$ and if there is no ideal \mathfrak{a} so that $\mathfrak{m} \subsetneq \mathfrak{a} \subsetneq (1)$.

Equivalently:

- **1** \mathfrak{p} is prime $\Leftrightarrow A/\mathfrak{p}$ is an integral domain;
- **2** \mathfrak{m} is maximal $\Leftrightarrow A/\mathfrak{m}$ is a a field.

Hence a maximal ideal is prime (but not conversely, in general). The zero ideal is prime $\Leftrightarrow A$ is an integral domain.

イロト イヨト イヨト ・

If $f: A \to B$ is a ring homomorphism and \mathfrak{q} is a prime ideal in B, then $f^{-1}(\mathfrak{q})$ is a prime ideal in A, for $A/f^{-1}(\mathfrak{q})$ is isomorphic to a subring of B/\mathfrak{q} and hence has no zero-divisor $\neq 0$.

But if n is a maximal ideal of B it is not necessarily ture that $f^{-1}(n)$ is maximal in A; all we can say for sure is that it is prime. (Example: $A = \mathbb{Z}$, $B = \mathbb{Q}$, n = 0.)

Prime ideals are fundamental to the whole of commutative algebra. The following theorem and its corollaries ensure that there is always a sufficient supply of them.

Theorem

Every ring $A \neq 0$ has at least one maximal ideal.

Proof.

Let Σ be the set of all proper ideals in A. Order Σ by inclusion. Σ is not empty, since $0 \in \Sigma$. Let (\mathfrak{a}_{α}) be a chain of ideals in Σ , so that for each pair of indices α , β we have either $\mathfrak{a}_{\alpha} \subset \mathfrak{a}_{\beta}$ or $\mathfrak{a}_{\beta} \subset \mathfrak{a}_{\alpha}$. Let $\mathfrak{a} = \bigcup_{\alpha} \mathfrak{a}_{\alpha}$. Then α is an ideal (verify this) and $1 \notin \mathfrak{a}$ since $1 \notin \mathfrak{a}_{\alpha}$ for all α . Hence $\alpha \in \Sigma$, and \mathfrak{a} is an upper bound of the chain. Hence, by Zorn's lemma, Σ has a maximal element.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem

Every ring $A \neq 0$ has at least one maximal ideal.

Corollary

If $\mathfrak{a} \neq (1)$ is an ideal of A, there exists a maximal ideal of A containing \mathfrak{a} .

Corollary

Every non-unit of A is contained in a maximal ideal.

< 回 > < 回 > < 回 >

A ring A with exactly one maximal ideal \mathfrak{m} is called a **local ring**. In a local ring, the maximal ideal consists of all nonunits in A.

The field $k = A/\mathfrak{m}$ is called the **residue field** of A.

• • = • • = •

Proposition

- Let A be a ring and m ≠ (1) an ideal of A such that every x ∈ A − m is a unit in A. Then A is a local ring and m its maximal ideal.
- ② Let A be a ring and m a maximal ideal of A, such that every element of 1 + m (i.e. every 1 + x, where x ∈ m) is a unit in A. Then A is a local ring.

Examples

- Let $A = k[x_1, ..., x_n]$, k a field. Let $f \in A$ be an irreducible polynomial. By unique factorization, the ideal (f) is prime.
- ② Let A = Z. Every ideal in Z is of the form (m) for some m ≥ 0. The ideal (m) is prime ⇔ m = 0 or a prime number. All the ideals (p), where p is a prime number, are maximal: Z/(p) is the field of p elements.

The same holds in Example (1) for n = 1, but not for n > 1.

A principal ideal domain is an integral domain in which every ideal is principal. In such a ring every non-zero prime ideal is maximal.

イロト 不得 トイヨト イヨト

Proposition.

The set \mathfrak{N} of all nilpotent elements in a ring A is an ideal, and A/\mathfrak{N} has no nilpotent element $\neq 0$.

Proof.

If $x \in \mathfrak{N}$, clearly $ax \in \mathfrak{N}$ for all $a \in A$. Let $x, y \in \mathfrak{N}$: say $x^m = 0, y^n = 0$. By the binomial theorem (which is valid in any commutative ring), $(x+y)^{m+n-1}$ is the sum of integer multiples of products $x^r y^s$, where r+s=m+n-1; we cannot have both r < m and s < n, hence each of these products vanishes and therefore $(x+y)^{m+n-1} = 0$. Hence $x+y \in \mathfrak{N}$ and therefore \mathfrak{N} is an ideal. Let $\overline{x} \in A/\mathfrak{N}$ be represented by $x \in A$. Then \overline{x}^n is represented by x^n , so

that $\overline{x}^n = 0 \Rightarrow x^n \in \mathfrak{N} \Rightarrow (x^n)^k = 0$ for some $k > 0 \Rightarrow x \in \mathfrak{N} \Rightarrow \overline{x} = 0$.

Definition

The set \mathfrak{N} of all nilpotent elements in a ring A is called the **nilradical** of A.

Mark Faucette (UWG)

The following proposition gives an alternative definition of \mathfrak{N} :

Proposition

The nilradical of A is the intersection of all the prime ideals of A.

Proof

Let \mathfrak{N}' denote the intersection of all the prime ideals of A. If $f \in A$ is nilpotent and if \mathfrak{p} is a prime ideal, then $f^n = 0 \in \mathfrak{p}$ for some n > 0, hence $f \in \mathfrak{p}$ (because \mathfrak{p} is prime). Hence $f \in \mathfrak{N}'$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proof.

Conversely, suppose that f is not nilpotent. Let Σ be the set of ideals $\mathfrak a$ with the property

$$n > 0 \Rightarrow f^n \notin \mathfrak{a}.$$

Then Σ is not empty because $0 \in \Sigma$. Zorn's lemma can be applied to the set Σ , ordered by inclusion, and therefore Σ has a maximal element. Let \mathfrak{p} be a maximal element of Σ . We shall show that \mathfrak{p} is a prime ideal. Let x, $y \notin \mathfrak{p}$. Then the ideals $\mathfrak{p} + (x)$, $\mathfrak{p} + (y)$ strictly contain \mathfrak{p} and therefore do not belong to Σ ; hence

$$f^m \in \mathfrak{p} + (x), \quad f^n \in \mathfrak{p} + (y)$$

for some m, n. It follows that $f^{m+n} \in \mathfrak{p} + (xy)$, hence the ideal $\mathfrak{p} + (xy)$ is not in Σ and therefore $xy \notin \mathfrak{p}$. Hence we have a prime ideal \mathfrak{p} such that $f \notin \mathfrak{p}$, so that $f \notin \mathfrak{N}'$.

イロン 不聞 とくほとう ほとう

The **Jacobson radical** \Re of A is defined to be the intersection of all the maximal ideals of A.

It can be characterized as follows:

Proposition

Let A be a ring and \mathfrak{R} its Jacobson radical. An element $x \in A$ is in \mathfrak{R} if and only if 1 - xy is a unit in A for all $y \in A$.

A B K A B K

If \mathfrak{a} , \mathfrak{b} are ideals in a ring A. Their sum $\mathfrak{a} + \mathfrak{b}$ is the set of all x + y where $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$. It is the smallest ideal containing \mathfrak{a} and \mathfrak{b} .

More generally, we may define the sum $\sum_{i \in I} \mathfrak{a}_i$ of any family (possibly infinite) of ideals \mathfrak{a}_i of A; its elements are all sums $\sum x_i$ where $x_i \in \mathfrak{a}_i$ for all $i \in I$ and almost all of the x_i (i.e., all but a finite set) are zero. It is the smallest ideal of A which contains all the ideals \mathfrak{a}_i .

The **intersection** of any family (a_i) of ideals is an ideal.

The **union** $\mathfrak{a} \cup \mathfrak{b}$ of ideals is not in general an ideal.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Let \mathfrak{a} and \mathfrak{b} be ideals in a ring A. The **product** of \mathfrak{a} and \mathfrak{b} is the ideal $\mathfrak{a}\mathfrak{b}$ **generated** by all products xy, where $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$. It is the set of all finite sums $\sum x_i y_i$ where each $x_i \in \mathfrak{a}$ and each $y_i \in \mathfrak{b}$.

Similarly we define the product of any **finite** family of ideals. In particular the powers \mathfrak{a}^n (n > 0) of an ideal \mathfrak{a} are defined; conventionally $\mathfrak{a}^0 = (1)$. Thus \mathfrak{a}^n (n > 0) is the ideal generated by all products $x_1 x_2 \cdots x_n$ in which each factor x_i belongs to \mathfrak{a} .

- 4 同 ト 4 三 ト - 4 三 ト - -

Examples

1) In the ring \mathbb{Z} , $\mathfrak{a} = (m)$, $\mathfrak{b} = (n)$, then $\mathfrak{a} + \mathfrak{b}$ is the ideal generated by the greatest common factor of m and n. The ideal $\mathfrak{a} \cap \mathfrak{b}$ is the ideal generated by their least common multiple. The ideal $\mathfrak{ab} = (mn)$. So (in this case) $\mathfrak{ab} = \mathfrak{a} \cap \mathfrak{b} \Leftrightarrow m, n$ are coprime.

2)
$$A = k[x_1, ..., x_n]$$
, $\mathfrak{a} = (x_1, ..., x_n) = \text{ideal generated by } x_1, ..., x_n$.
Then \mathfrak{a}^m is the set of all polynomials with no terms of degree $< m$.

The three operations so far defined (sum, intersection, product) are all commutative and associative. Also there is the **distributive law**

$$\mathfrak{a}(\mathfrak{b}+\mathfrak{c})=\mathfrak{a}\mathfrak{b}+\mathfrak{a}\mathfrak{c}.$$

<日

<</p>

In \mathbb{Z} , we have $(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} \cap \mathfrak{b}) = \mathfrak{ab}$; but in general we have only $(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} \cap \mathfrak{b}) \subseteq \mathfrak{ab}$ since

$$(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} \cap \mathfrak{b}) = \mathfrak{a}(\mathfrak{a} \cap \mathfrak{b}) + \mathfrak{b}(\mathfrak{a} \cap \mathfrak{b}) \subseteq \mathfrak{a}\mathfrak{b}.$$

Clearly, $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$, hence

$$\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}$$
 if $\mathfrak{a} + \mathfrak{b} = (1)$.

Mark Faucette (UWG)

э

Two ideals \mathfrak{a} and \mathfrak{b} are **coprime** (or **comaximal**) if $\mathfrak{a} + \mathfrak{b} = (1)$.

By what we said above, for coprime ideals we have $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}$.

Clearly two ideals \mathfrak{a} , \mathfrak{b} are coprime if and only if there exist $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$ such that x + y = 1.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let A_1, \ldots, A_n be rings. Their **direct product**

$$A = \prod_{i=1}^{n} A_i$$

is the set of all sequences $x = (x_1, \ldots, x_n)$ with $x_i \in A_i$ $(1 \le i \le n)$ with componentwise addition and multiplication.

A is a commutative ring with identity $(1, \ldots, 1)$.

We have projections $p_i : A \to A_i$ defined by $p_i(x) = x_i$; they are ring homomorphisms.

Proposition

Let A be a ring and let a_1, \ldots, a_n ideals of A. Define a homomorphism

$$\phi: A \to \prod_{i=1}^n (A/\mathfrak{a}_i)$$

by the rule $\phi(x) = (x + \mathfrak{a}_1, \dots, x + \mathfrak{a}_n).$

- If \mathfrak{a}_i , \mathfrak{a}_j are coprime whenever $i \neq j$, then $\prod \mathfrak{a}_i = \bigcap \mathfrak{a}_i$.
- **2** ϕ is surjective $\Leftrightarrow \mathfrak{a}_i, \mathfrak{a}_j$ are coprime whenever $i \neq j$.
- ϕ is injective $\Leftrightarrow \bigcap \mathfrak{a}_i = (0)$.

Proof.

Put proof of 1 and 3 here.

イロト イヨト イヨト ・

Proposition

- Let p₁, ..., p_n be prime ideals and let a be an ideal contained in Uⁿ_{i=1} p_i. Then a ⊆ p_i for some i.
- 2 Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ be ideals and let \mathfrak{p} be a prime ideal containing $\bigcap_{i=1}^n \mathfrak{a}_i$. Then $\mathfrak{p} \supseteq \mathfrak{a}_i$ for some *i*. If $\mathfrak{p} = \bigcap \mathfrak{a}_i$, then $\mathfrak{p} = \mathfrak{a}_i$ for some *i*.

▲御 と ▲ 臣 と ▲ 臣 とし

Proof.

Put proof here.

3

・ロト ・ 四ト ・ ヨト ・ ヨト

If \mathfrak{a} and \mathfrak{b} are ideals in a ring A, their **ideal quotient** is

$$(\mathfrak{a}:\mathfrak{b}) = \{x \in A : x\mathfrak{b} \subseteq \mathfrak{a}\},\$$

which is an ideal.

In particular, $(0: \mathfrak{b})$ is called the **annihilator** of \mathfrak{b} and is also denoted Ann (\mathfrak{b}). It is the set of all $x \in A$ such that $x\mathfrak{b} = 0$.

<日

<</p>

If \mathfrak{a} is any ideal of A, the **radical** of \mathfrak{a} is

rad
$$(\mathfrak{a}) = \{x \in A : x^n \in \mathfrak{a} \text{ for some } n > 0\}.$$

This is the same thing as the radical of the quotient ring A/\mathfrak{a} , so it is an ideal.

(B)

Let $f : A \to B$ be a ring homomorphism. The image of an ideal in A may not be an ideal in B. (e.g., let f be the embedding of \mathbb{Z} in \mathbb{Q} , the field of rationals, and take \mathfrak{a} be to be any non-zero ideal in \mathbb{Z} .).

However, we can define the **extension** of the image of \mathfrak{a} in B.

Definition

Let $f : A \to B$ be a ring homomorphism. Let \mathfrak{a} be an ideal in A. The **extension** \mathfrak{a}^e of \mathfrak{a} is the ideal $Bf(\mathfrak{a})$ generated by the image $f(\mathfrak{a})$ in B. Explicitly, \mathfrak{a}^e is the set of all sums $\sum y_i f(x_i)$ where $x_i \in \mathfrak{a}$ and $y_i \in \mathfrak{b}$.

イロト 不得 トイヨト イヨト

If \mathfrak{b} is an ideal of B, then $f^{-1}(\mathfrak{b})$ is always an ideal of A, called the **contraction** of \mathfrak{b} .

Definition

Let \mathfrak{b} is an ideal of B. The **contraction** \mathfrak{b}^c of \mathfrak{b} in A is the ideal $f^{-1}(\mathfrak{b})$. If \mathfrak{b} is prime, then \mathfrak{b}^c is prime.

- 4 回 ト 4 三 ト 4 三 ト

Mark Faucette	(UWG)
---------------	-------

・ロト・西ト・モン・ビー シック

Mark Faucette	(UWG)
---------------	-------

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - の々で