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The Problem

Some odd prime numbers p can be written as the sum of two
squares of natural numbers.

Examples:
1 12 + 22 = 5
2 12 + 42 = 17
3 42 + 52 = 41
4 52 + 62 = 61
5 222 + 232 = 1013
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The Problem

Some odd prime numbers p cannot be written as the sum of
two squares of natural numbers.

Examples: The odd primes 3, 7, 11, 19, 23, 31, 43, 47, 59, 67,
71, 79, 83 cannot be written as the sum of two squares of
natural numbers. (Proof shortly.)
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The Problem

Some odd prime numbers are congruent to 1 modulo 4.

Examples:

5,13,17,29,37,41,53,61,73,89,97

The other odd prime numbers must be congruent to 3 mod 4.

Examples:

3,7,11,19,23,31,43,47,59,67,71,79,83
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The Problem

For some odd primes p, the equation x2 + 1 = 0 has a solution
modulo p. For other odd primes, the equation x2 + 1 = 0 has
no solution modulo p.

Examples:
1 p = 3: There is no solution, which can be checked by

plugging in 0, 1, 2 modulo 3.
2 p = 5: For x = 2, we have x2 + 1 = 5 ≡ 0 mod 5.
3 p = 7: There is no solution, which can be checked by

plugging in 0, . . . , 6 modulo 7.
4 p = 37: For x = 31, we have x2 + 1 = 962 ≡ 0 mod 37.
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The Conjecture

We have the following conjecture. . .

Theorem
Let p be an odd prime number. The following conditions are
equivalent:

1 There exist natural numbers a and b so that p = a2 + b2.
2 p is congruent to 1 modulo 4
3 The polynomial x2 + 1 has a root in the integers modulo p.
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The proofs of the first two steps here are very basic.

The proof that (3) implies (1) will use some basic results from
abstract algebra, including a truly interesting application of
quotient rings.
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(1) implies (2):

First, we will show that (1) implies (2):

Theorem

If p is an odd prime number that can be written as p = a2 + b2

for some natural numbers a and b, then p must be congruent to
1 modulo 4.
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Proof.
Let’s look at squares modulo 4:

02 = 0
12 = 1
22 = 4 ≡ 0 mod 4
32 = 9 ≡ 1 mod 4

So, the only squares modulo 4 are 0 and 1.
Further, any odd number squared is congruent to 1 modulo 4,
while any even number squared is congruent to 0 modulo 4.
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Proof.
Suppose p can be written as the sum of two squares:

p = a2 + b2.

Since p is odd, one of a or b is even and the other is odd. It
follows that one of a2 or b2 is congruent to 0 modulo 4 and the
other is congruent to 1 modulo 4. Hence

p = a2 + b2 ≡ 1 mod 4.

This shows (1) implies (2).
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(2) implies (3):

Next, we will show that (2) implies (3):

Theorem
If p is an odd prime number that is congruent to 1 modulo 4, the
equation

x2 + 1 = 0

has an integral solution modulo p.
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In order to prove this theorem, we need a result from number
theory:

Theorem (Wilson’s Theorem)
If p is a prime number, then

(p − 1)! ≡ −1 mod p

Remark: For p = 2, this theorem is trivial, so we only prove the
result for p odd.
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Proof: (of Wilson’s Theorem).
Let p be an odd integer. The integers modulo p form a field, so
every element of the set

{1, . . . ,p − 1}

has a multiplicative inverse modulo p.

In any field, there are only two elements that are their own
inverses: 1 and −1 ≡ p − 1 mod p .
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Proof.
The remaining p − 3 elements

{2, . . . ,p − 2}

then can be grouped into pairs of numbers which are
multiplicative inverses of each other. Hence, if we multiply all
these numbers together, we get 1 mod p.

It follows that

(p − 1)! = (p − 1)(p − 2)(p − 3) · · · 3 · 2 · 1
≡ −1 · 1 · 1
= −1 mod p.
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Proof: (of (2)⇒ (3)).
Suppose p is a prime number congruent to 1 modulo 4. We
want to find a solution of the equation

x2 + 1 ≡ 0 mod p.

Let

x = (p − 1)(p − 2)(p − 3) · · ·
(

p + 1
2

)
.

Notice that since p ≡ 1 mod 4, this product contains an even
number of factors.
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Proof:
Reducing modulo p, we get

x = (p − 1)(p − 2)(p − 3) · · ·
(

p + 1
2

)
≡ (−1)(−2)(−3) · · ·

[
p + 1

2
− p

]
≡ (−1)(−2)(−3) · · ·

(
−p − 1

2

)
≡ (1)(2)(3) · · ·

(
p − 1

2

)
,

the last step being true because the product has an even
number of factors.
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Proof.
Hence, we see that

x2 = x · x

= (p − 1)(p − 2)(p − 3) · · ·
(

p + 1
2

)
·
(

p − 1
2

)
· · · (3)(2)(1)

= (p − 1)!
≡ −1 mod p.

Thus, this value of x solves the equation x2 + 1 ≡ 0 modulo
p.
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Example:

Take p = 13, which is congruent to 1 modulo 4.
Let

x = (p − 1)(p − 2)(p − 3) · · ·
(

p + 1
2

)
= 12 · 11 · 10 · · · · · 7
= 665280
≡ 5 mod 13.

Then,

x2 + 1 = 52 + 1 = 26 ≡ 0 mod 13.
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(3)⇒(1)

To finish proving our conjecture, we must show that (3) implies
(1). This is the step where we make a creative use of abstract
algebra.
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Review of Rings

Recall from abstract algebra that a ring is a set with two
operations satisfying a certain set of algebraic properties.

There are two rings I especially want you to recall:
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First Example of a Ring

First, Zp[x ] is the ring of polynomials with coefficients in the
integers modulo p:

Zp[x ] := {anxn + an−1xn−1 + · · ·+ a1x + a0 |ai ∈ Zp for all i}
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Second Example of a Ring

Second, Z[i], the ring of Gaussian integers, is defined as the
subring of the complex numbers of the form

Z[i] := {a + bi |a,b ∈ Z}.
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We also recall that both Zp[x ] and Z[i] are principal ideal
domains. That is, they are integral domains (i.e., if xy = 0,
then either x = 0 or y = 0) in which every ideal is principal (i.e.
the set of all multiples of a fixed element of the ring).

In all principal ideal domains, every element can be uniquely
factored into a product of units (elements in the ring with
multiplicative inverses) and irreducible elements (elements
which only factor trivially, such as prime numbers in the
integers).

William M. Faucette An Application of Quotient Rings to Number Theory



We also recall that both Zp[x ] and Z[i] are principal ideal
domains. That is, they are integral domains (i.e., if xy = 0,
then either x = 0 or y = 0) in which every ideal is principal (i.e.
the set of all multiples of a fixed element of the ring).

In all principal ideal domains, every element can be uniquely
factored into a product of units (elements in the ring with
multiplicative inverses) and irreducible elements (elements
which only factor trivially, such as prime numbers in the
integers).

William M. Faucette An Application of Quotient Rings to Number Theory



First Isomorphism Theorem

Recall this fundamental theorem from ring theory:

Theorem
If φ : R → S is a surjective homomorphism of rings with kernel
I, then the map φ induces a quotient map

φ : R/I → S,

which is an isomorphism. So, R/I ∼= S.
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First Example:

The natural quotient map

φ : Z→ Zp

extends to a surjective homomorphism on polynomial rings

φ : Z[x ]→ Zp[x ].

The kernel of this map is the ideal (p) generated by the prime
p, so

Z[x ]/(p) ∼= Zp[x ].
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Second Example:

The evaluation homomorphism

φ : Z[x ]→ Z[i]

is defined by sending a polynomial p ∈ Z[x ] to its value p(i) at i .

This is a surjective ring homomorphism with kernel (x2 + 1),
the ideal of all multiples of the polynomial x2 + 1, so

Z[x ]/(x2 + 1) ∼= Z[i].
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A Truly Abstract Application

Let f and g be two elements in a commutative ring R. Let (f ),
(g), (f ,g) be the ideals generated by those elements.

The homomorphism φ : R/(f )→ R/(f ,g) is surjective with
kernel (g), so

(R/(f ))/(g) ∼= R/(f ,g).
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A Truly Abstract Application

Similarly, we have

The homomorphism τ : R/(g)→ R/(f ,g) is surjective with
kernel (f ), so

(R/(g))/(f ) ∼= R/(f ,g).
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A Truly Abstract Application

Thus we have the following result:

Theorem
Let f and g be elements in a commutative ring R. Then

R/(f ,g) ∼= [R/(f )]/(g) ∼= [R/(g)]/(f ),
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More Specific Interesting Application

Applying this cute result to the ring Z[x ] and the two principal
ideals generated by x2 + 1 and p, we have a truly marvelous
result.

On the one hand, we have

Z[x ]/(p, x2 + 1) ∼= (Z[x ]/(p))/(x2 + 1) ∼= Zp[x ]/(x2 + 1).

Then again, on the other hand, we have

Z[x ]/(p, x2 + 1) ∼= (Z[x ])/(x2 + 1)/(p) ∼= Z[i]/(p).
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More Specific Interesting Application

So, we have that

Zp[x ]/(x2 + 1) ∼= Z[i]/(p).
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More Algebra

If R is a commutative ring and f is an element of R, then R/(f )
is an integral domain if and only if f is irreducible.
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More Specific Interesting Application

Since
Zp[x ]/(x2 + 1) ∼= Z[i]/(p),

we see that x2 + 1 is irreducible in Zp[x ] if and only if p is
irreducible in Z[i].
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More Specific Interesting Application

In Zp[x ], x2 + 1 is reducible if and only if x2 + 1 has a root in Zp.

In Z[i], p is reducible if and only if there are integers a and b so
that p = (a− bi)(a + bi). That is, if and only if p = a2 + b2.

William M. Faucette An Application of Quotient Rings to Number Theory



More Specific Interesting Application

In Zp[x ], x2 + 1 is reducible if and only if x2 + 1 has a root in Zp.

In Z[i], p is reducible if and only if there are integers a and b so
that p = (a− bi)(a + bi). That is, if and only if p = a2 + b2.

William M. Faucette An Application of Quotient Rings to Number Theory



More Specific Interesting Application

Putting this all together, we have that x2 + 1 has a root in Zp,
that is x2 + 1 = 0 has an integral root mod p, if and only if
there exist integers a and b so that
p = (a− bi)(a + bi) = a2 + b2.

This shows that (1)⇔ (3).
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Thus, we’ve proved our conjecture:

Theorem
Let p be an odd prime number. The following conditions are
equivalent:

1 There exist natural numbers a and b so that p = a2 + b2.
2 p is congruent to 1 modulo 4
3 The polynomial x2 + 1 has a root in the integers modulo p.

We’ve proved it by applying the interesting isomorphism

R/(f ,g) ∼= [R/(f )]/(g) ∼= [R/(g)]/(f ),
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Thank you for attending!
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