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1. Introduction.

Classically Torelli’s theorem states that a smooth complete algebraic curve can be re-

constructed from its Jacobian and its theta divisor. More specifically, if C and C ′ are two

smooth complete algebraic curves with Jacobians J (C) and J (C ′) and theta divisors 2 and

2′, respectively, and if (J (C), 2) and (J (C ′), 2′) are isomorphic as principally polarized

abelian varieties, then C and C ′ are isomorphic as algebraic curves.

The generalized Torelli problem is that of reconstructing a smooth complete algebraic

curve and all its linear series from information encoded in the Jacobian of the curve and the

Abel-Jacobi map.

Let’s begin with a bit of terminology. If f : X → Y is a morphism, the multiple locus

R ⊂ X is the closure of the set {x ∈ X | for some z ∈ X, z 6= x, and f (z) = f (x)}.

If we limit ourselves to reconstructing complete pencils of linearly equivalent divisors,

the result is found in [2]. Specifically, Smith and Tapia-Recillas prove the following:

THEOREM 1. If C has a g1
d but no g1

d−1 and no g2
d+1, for some d with d ≤ g = genus(C),

if φ : Wd−1 →
�

(d − 2, g − 1) is the canonical map on Wd−1, if R is the multiple locus of

φ, and if B = φ(R), then the restriction φ : R → B is a “universal” φg1
d

for C .

If one wishes to reconstruct complete nets of linearly equivalent divisors, the result is

found in [3]:

THEOREM 2. Let C be a non-hyperelliptic curve of genus g ≥ 5 with a g2
d , 5 ≤ d ≤ g, such

that the plane model 0 ⊂ � 2 determined by the g2
d is birational to C and is either smooth or

it just has nodes as singularities. If φ : Wd−2 →
�

(d − 3, g − 1) is the Gauss map (i.e. the

canonical map) on Wd−2, R is the multiple locus of φ and B = φ(R), then the dual curve

0∗ and the linear series g2
d can be recovered from the branch locus of the restriction of the

map φ on R, i.e. from φ : R → B.

In this paper we will solve the general case of reconstructing a smooth complete curve

C and all its complete gr
d ’s from the Gauss maps on the various Wd ’s.
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2. Preliminaries.

We begin by recalling several classical results concerning the structure of the Abel map

and its derivative, and their relationship to the canonical map of an algebraic curve. We

then recall some results of R. Smith and Tapia-Recillas relating to the generalized Torelli

problem.

Assume C is a smooth connected curve of genus g over the complex numbers. Let C (d)

denote the d-fold symmetric product of the curve, which serves as a natural parameter space

for effective divisors of degree d on the curve C . Let J (C) be the Jacobian variety of C ,

and let α : C (d) → J (C) be the Abel map

α(p1, . . . , pd) =

〈

d
∑

i=1

∫ pi

p0

ω1, . . . ,

d
∑

i=1

∫ pi

p0

ωg

〉

,

defined by a basis {ω1, . . . , ωg} of the global holomorphic one-forms on C , and by a base

point p0 ∈ C . For 1 ≤ d ≤ g, the image Wd = α(C (d)) is an algebraic subvariety of

dimension d in J (C). As illustrated by the following diagram,

C �α∗� � � � �α

� g−1 ∼= � (T0(J (C)))

W1

� � �� �
γ

the Gauss map γ on W1, which assigns to x ∈ W1, the tangent space Tx (W1), is equivalent

to the projectivized derivative α∗ of the Abel map, which in turn is just the canonical map

φK of the curve.

That is, if α(p) =
〈

∫ p

p0
ω1, . . . ,

∫ p

p0
ωg

〉

then the derivative α∗,p is a linear map

α∗,p : Tp(C) → Tα(p)(J (C)) ∼= T0(J (C)) and the projectivized derivative α∗ is given

by taking its image,

α∗(p) = α∗,p(Tp(C)) ∈ G(1, T0(J (C)))

∼=
�

(0, � T0(J (C)))

∼= � (T0(J (C)))

∼= � g−1.

Then since the canonical map is given by

φK (p) =
〈

ω1(p), . . . , ωg(p)
〉

∈ � (H 0(C; K )∗)

∼= � (T0(J (C))),
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the fundamental theorem of calculus implies that φK (p) = α∗(p). More generally, for

1 ≤ d ≤ g − 1 the analogous diagram commutes,

C (d) �α∗� � � � �α

�
(d − 1, � (T0(J )))

Wd

� � �� �
γ

and α∗ is again equal to the canonical map φK on C (d). In this case α∗ and γ are only

rational maps, γ is defined on the locus of smooth points of Wd , Wd \ sing(Wd), and α∗ is

defined on the set α−1(Wd \ sing(Wd)).

More precisely, if D = {p1, . . . , pd} ∈ C (d) is such a point such that h0(C; D) = 1,

then φK is defined at D, α(D) is a non-singular point of Wd , the images of the points

{p1, . . . , pd} on the canonical curve

φK (C) = 0 ⊂ � (T0(J (C)))

are in general position according to the geometric Riemann-Roch Theorem, and thereby

φK (D) = the (d − 1)-dimensional subspace of � (T0(J (C))) represented by Tα(D)(Wd),

which is exactly the one spanned by the d points {φ(p1), . . . , φ(pd)}. We remark that the

“span” of these points is defined as the base locus of the set of hyperplanes H ⊆ � g−1

such that as divisors on C , φ−1
K (H) = H · C ≥

∑d
1 pi , and of course we say the points

{p1, . . . , pd} are in general position if this base locus has dimension d −1. Thus with these

conventions, we may write

Tα(D)(Wd) = φK (p1, . . . , pd) = {φK (p1), . . . , φK (pd)},

where a bar written over a set (or a divisor) denotes its span.

3. The Fundamental Example of Smith and Tapia-Recillas.

We will now describe the simplest example, taken from [2], of the Gauss map on W2

for a curve of genus 4, which we assume to be non-hyperelliptic. Then C is a complete

intersection of a quadric and a cubic surface in � 3 and has either one or two g1
3’s according

to whether the quadric has rank 3 or 4. We will recover C and the g1
3’s from the Gauss map

on W2.

Consider the diagram:

C (2) �α∗� � � � �α

�
(1, 3)

W2

� � �� �
γ

in which, if (p, q) ∈ C (2) then γ (α(p, q)) = α∗(p, q) = pq = the secant line spanned by

p and q on the canonical model of C in � 3.

The following proposition is taken from [2]:
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PROPOSITION 1. γ is a finite map, birational onto its image, having a multiple locus in W2

consisting of either one or two components, each birational to the curve C , and on which

γ restricts to the rational maps

φL : C → � 1

defined by the one or two linear series L = g1
3 on C .

We may state this result as follows:

COROLLARY 2. A non-hyperelliptic genus 4 curve C and its g1
3’s are completely determined

by restricting the canonical map φ of the variety C (2) ∼= W2 to its multiple locus; i.e. the

multiple locus itself is birationally equivalent to as many copies of C as there are g1
3’s, and

the restriction of φ to these copies of C gives the corresponding rational maps φg1
3
.

4. An Example with r = 3: A Canonical Space Curve.

Let C be the canonical image in � 3 of a smooth complete curve of genus four. The

hyperplanes in � 3 then cut out the canonical series on C , so that C contains a g3
6 . It is

well-known that C lies on a unique quadric surface Q ⊂ � 3, which has rank three or four

since C is nondegenerate. If the quadric Q has rank four, then C contains two g1
3’s, whereas

if the quadric Q has rank three, then C contains a unique g1
3 .

Consider the diagram:

C (3) �α∗� � � � �α

�
(2, 3)

W3

� � �� �
γ

in which, if (p, q, r) ∈ C (3) then γ (α(p, q, r)) = α∗(p, q, r) = pqr = the secant plane

spanned by p, q , and r on the canonical model of C in � 3. We remark that whereas α

is defined everywhere, the Gauss map γ is defined on the smooth locus of W3, W3 \ W 1
3 ,

and α∗ is defined on γ −1(W3 \ W 1
3 ). More specifically, by the geometric Riemann-Roch

theorem, α∗ is defined at any 3-tuple of points of C not belonging to a g1
3 .

To examine the multiple locus of α∗, we look at secant planes that meet C in at least four

points. Let 5 be such a plane and suppose #(C · 5) = k + 3. By the geometric Riemann-

Roch theorem, h0(D) = k + 1, so by Clifford’s Theorem, k = r(D) ≤ 1
2

deg(D) =
1
2
(k + 3). It follows that k ≤ 3, so the multiple locus of α∗ naturally decomposes into three

components:

(1) R1 = {3-tuples of points of C whose canonical images span a two plane and which

are contained in a divisor of degree 4}

(2) R2 = {3-tuples of points of C whose canonical images span a two plane and which

are contained in a divisor of degree 5}

(3) R3 = {3-tuples of points of C whose canonical images span a two plane and which

are contained in a divisor of degree 6}
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The structure of α∗ on R1 and R2 is examined in [2] and [3], respectively. Let B3 = α∗(R3).

Then B3 is the set of all 6-secant 2-planes to C , and since the canonical model of an

algebraic curve of genus four has degree six in � 3, every 2-plane is 6-secant. Consequently,

B3 =
�

(2, 3). Moreover, since every 2-plane is 6-secant, any 3-tuple of points of C whose

canonical images span a two plane must be contained in a divisor of degree 6, e.g. the

divisor of C cut out by the plane spanned by the 3-tuple. Hence, R1 and R2 are contained

in R3.

5. An Example with r = 3: An Extremal Curve of Degree 7.

Let C to be a smooth complete curve of genus six and degree seven in � 3. By Castel-

nuovo’s Bound, this is a degree seven curve of maximal genus in � 3, i.e. an extremal curve.

Since C is an extremal curve, it is projectively normal, and it follows that C lies on a

unique quadric Q ⊂ � 3, which has rank three or four since C is nondegenerate. Moreover,

the intersection of a quartic surface and this quadric is a reducible curve containing two

components: a line and our curve C . Whether the rank of the quadric is three or four, the

ruling(s) on Q cut out a g1
3 and a g1

4 on C .

Consider the diagram:

C (4) �α∗� � � � �α

�
(3, 5)

W4

� � �� �
γ

in which, if (p, q, r, s) ∈ C (4) then γ (α(p, q, r, s)) = α∗(p, q, r, s) = pqrs = the secant

3-plane spanned by p, q, r , and s on C ⊂ � 3. We remark that whereas α is defined

everywhere, the Gauss map γ is defined on the smooth locus of W4, W4 \ W 1
4 , and α∗ is

defined on γ −1(W4 \ W 1
4 ). More specifically, by the geometric Riemann-Roch theorem, α∗

is defined at any 4-tuple of points of C not belonging to the g1
4 .

To examine the multiple locus of α∗, we look at secant 3-planes that meet 0, the canonical

image of C , in at least five points. Let 5 be such a 3-plane and suppose #(0 · 5) = k + 4.

By the geometric Riemann-Roch theorem, h0(D) = k + 1, so by Clifford’s Theorem,

k = r(D) ≤ 1
2

deg(D) = 1
2
(k + 4). It follows that k ≤ 4 and if C is non-hyperelliptic,

k < 4. So, for a non-hyperelliptic C , the multiple locus of φ naturally decomposes into

three components:

(1) R5 = {4-tuples of points of C whose canonical images span a 3-plane and which

are contained in a divisor of degree 5}

(2) R6 = {4-tuples of points of C whose canonical images span a 3-plane and which

are contained in a divisor of degree 6}

(3) R7 = {4-tuples of points of C whose canonical images span a 3-plane and which

are contained in a divisor of degree 7}

The structure of α∗ on R5 and R6 is examined in [2] and [3], respectively. Let B7 = α∗(R7).

Then B7 is the set of all 7-secant 3-planes to 0.
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6. General Linear Series: gr
d ’s in Arbitrary Genus.

Let C be a smooth complete algebraic curve. We assume initially that C is non-

hyperelliptic, and so by Clifford’s Theorem we must have r < 1
2
d.

Consider the commutative diagram

C (d−r) �φ� � � � �α

�
(d − r − 1, � (T0(J )))

Wd−r

� � �� �
γ

where φ is the canonical map, α is the Abel-Jacobi map, and γ is the Gauss map. We note

that the maps φ and γ are only rational maps in general and will be regular exactly if C does

not contain a g1
d−r . In this case, Wd−r is smooth and Wd−r and C (d−r) are biregular, and

we first assume this is the case. Thus, we assume Wd−r is smooth and the Abel-Jacobi map

α : C (d−r) → Wd−r is an isomorphism. In this way we may identify C (d−r) with Wd−r .

Let R be the closure of the set

(1) {D ∈ C (d−r) | φ(D) = φ(D′) for some D′ ∈ C (d−r), D 6= D′},

and define B = α(R). As motivation, D ∈ C (d−r), then by the geometric Riemann-Roch

theorem, φ(D) is a (d − r − 1)-plane which is at least d − r secant to the canonical curve.

If D is in the set (1), there must be two distinct divisors D and D′ in C (d−r) whose images

on the canonical curve span the same (d − r − 1)-plane. In particular, this plane must be

at least d − r + 1 secant to the canonical curve. So we will consider (d − r − 1)-planes in

� H 0(C, K )∗ ∼= � g−1 which are at least d − r + 1 secant to the canonical curve.

Let k ≥ 1 and suppose some d −r −1-plane 5 is d −r +k secant to the canonical curve.

Let E be the divisor consisting of these d − r + k points. By the geometric Riemann-Roch

theorem, E is an element of a gk
d−r+k , and by Clifford’s theorem, we must have k ≤ d−r −1.

LEMMA 3. With the hypothesis of this section,

R = {D ∈ Wd−r : #(D · 0) ≥ d − r + 1}

= {D ∈ Wd−r : for some p1, . . . , pk ∈ C, |D + p1 + · · · + pk | = a gk
d−r+k}

for some 1 ≤ k ≤ d − r − 1.

PROOF:

Suppose that #(D · 0) ≥ d − r + 1. Then E = (D · 0) is a divisor containing D and at

least d − r + k points for some k ≥ 1. Hence, by the geometric Riemann-Roch theorem,

E is an element of a gk
d−r+k . The reverse inclusion involves a similar argument.

The condition

#(D · 0) ≥ d − r + 1
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defines a closed subset S ⊂ Wd−r . Now we must show that S = R.

Since S is closed, to show that R ⊂ S it suffices to show that if D and E are two divisors

with D 6= E and D = E , then #(D ·0) ≥ d−r +1. This is easy. We have D + E = D = E

and it follows from the geometric Riemann-Roch theorem that (D + E) ∈ gk
d−r+k for some

k ≥ 1.

To show S ⊂ R, assume D ∈ Wd−r and #(D · 0) ≥ d − r + 1. By assumption, C does

not contain a g1
d−r , so by the geometric Riemann-Roch theorem, a general divisor E of

containing d − r points and contained in an element of the linear system |(D · 0)| gives a

point of R. Since D is in the closure of these points, D ∈ R. The lemma is proved.

For each k, 1 ≤ k ≤ d − r − 1, let

Rk = {D ∈ Wd−r : #(D · 0) = d − r + k}

and let Bk = α∗(Rk).

COROLLARY 3.

(1) For each k, 1 ≤ k ≤ d − r − 1,

Bk = α∗(Rk) = {the set of (d − r + k)-secant (d − r − 1)-planes in � g−1}

= {linear spaces of the form D for some D in some gk
d−r+k}.

for some 1 ≤ k ≤ d − r − 1.

(2) For each k, 1 ≤ k ≤ d−r−1, let Bk = {the set of (d−r+k)-secant (d−r−1)-planes

in � g−1}, so that B = ∪k Bk . If α now denotes the Abel map on C (d), α : C (d) → Wd ,

and if Wd ⊃ W r
d = { the set of gr

d ’s on C}, then the projectivized derivative of α

gives a holomorphic bijection (thus a homeomorphism in the complex topology)

α∗ : α−1(W r
d ) → Br

where α∗(D) = D.

LEMMA 4. Using the same notation as in the last corollary, Br is fibered in precisely one

way by a family of disjoint analytic r -folds homeomorphic to � r ; precisely, the only such

r -folds on Br are those of the form:

{D : for all D in some fixed gr
d on C}.

PROOF: It is sufficient of part (2) of the previous corollary to prove the same statement for

the set

α−1(W r
d ) = {all divisors D on C such that |D| is a gr

d}.

7



Let X ⊆ C (d) be any analytic set homeomorphic to � r . Then Abel’s map, restricted to X ,

factors through the universal covering space of J (C):
� g

	 π

X �α


 
 
 
 
 
 
 �
α̃

Wd ⊂ J (C)

Since X is compact and α̃ is analytic, the maximum modulus principle implies that α̃(X)

is a single point, so that α(X) is also a single point. By the converse of Abel’s theorem,

X = |D| = the set of divisors belonging to some gr
d on C .

Now we state a theorem describing the Gauss map on Wd−r for a generic d-gonal curve.

THEOREM 5. If C has a gr
d but no g1

d−r and no gr+1
d+1, for some d with d ≤ g = genus(C), if

φ : Wd−r →
�

(d − r − 1, g − 1) is the canonical map on Wd−r , if R is the multiple locus

of φ, B = φ(R), then R naturally decomposes into subsets R1, . . . , Rd−r−1, where Rj is

the closure of the set of divisors D in C contained in a divisor E belonging to a g
j

d−r+ j , and

B naturally decomposes into subsets B1, . . . , Bd−r−1, where Bj is the set of (d − r + j)-

secant (d − r − 1)-planes. Further, the restriction, φ : Rr → Br is a “universal” φgr
d

for C .

Precisely, Br is uniquely a union of a family of disjoint algebraic curves homeomorphic to

� r ; these are precisely the curves of the form α∗(|g
r
d |) where |gr

d | ⊂ C (d) is a linear system

of linear divisors of degree d and dimension r ; for any one of these curves X L ⊂ Br ,

L = gr
d , the inverse image φ−1(X L) ⊂ Rr is an algebraic curve bijectively birational to C ;

after normalizing, the Gauss map of Wd−r , restricted to φ−1(X L), induces the rational map

φL determined by the linear series L = gr
d , i.e. the following diagram commutes:

C �φL

	ν

� r

	ν

φ−1(X L) �φ
X L

in which ν denotes normalization.

PROOF: We have proved all the but the last two statements. Since φ : Rr → Br is a proper

map with finite fibers it is a finite map, φ−1(X L) is an r -fold, and the map

f : C → φ( X L)

p 7→ (D(p) · C) \ {p}

is a holomorphic bijection, hence it is the normalization map, where D(p) ∈ g1
d = L is the

unique divisor of L containing p. The normalization diagram

C �φL

	
f = ν

|L| ⊂ C (d)

	
α∗ = ν

φ−1(X L) �φ
X L ⊂ Br
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is now seen to commute.
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