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Anyone who regularly teaches trigonometry at any level knows how to present
the double angle formula for sine: Derive the formulas for sin(α + β) and set
α = β. But how can you explain the formula for sin(2θ) to someone who is only
marginally acquainted with my Indian buddy, SOHCAHTOA? (If you’re not
acquainted with him, he’s a very, very distant relative of Pocahontas.) Let’s
say you have a student who has completed a standard course in high school
geometry. How do you explain this formula to that student?

1 The Double Angle Formula for Sine

In the unit circle, draw the angle 2θ in standard position. Let’s denote the point
(1,0) by A and let B be the point of intersection of the terminal side of this
angle with the unit circle. Let O be the origin.

Let C be the point (−1, 0) and draw the line segments AB and BC. A
theorem from high school geometry tells us that the measure of the angle
6 BCA = 6 BCO is θ.

Next, drop a perpendicular segment from O to the segment AB. Let D
be the point of intersection of the perpendicular segment with AB. Note that
the measure of angle 6 DOA and the measure of angle 6 DOB is θ since the
segment OD is the perpendicular bisector of the segment AB. Also note that
∆ODA ∼= ∆ODB.

Drop another perpendicular segment from O to the segment BC. Let E
be the point of intersection of the perpendicular segment with BC. As above,
this segment is the perpendicular bisector of the segment BC. Hence, we have
∆OEC ∼= ∆OEB.

Notice that since 6 CBA is a right angle and the constructions of OE and
OD are the perpendiculars to the opposite sides, angle 6 EOD must also be a
right angle. This forces OEBD to be a rectangle, the measure of angle 6 EBO
to be θ, and ∆OEB ∼= ∆ODB.

So, we see that the triangle ∆ABC is divided into four congruent triangles:
∆OEC, ∆OEB, ∆ODB, and ∆ODA. So, the area of ∆ABC is four times the
area of triangle ∆OEC.
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Figure 1: Sine Double Angle Formula
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Now we’re ready for the punchline. If we drop a perpendicular segment from
B to the x-axis, we see that the area of ∆ABC is 1

2 (2)(sin 2θ) = sin(2θ).
Looking at the triangle ∆OEC, since OC = 1 and 6 OEC is a right angle,

we see that OE = sin θ and EC = cos θ, and it follows that the area of ∆OEC
is 1

2 sin θ cos θ.
Finally, we have

sin 2θ = area ∆ABC

= 4 area ∆OEC

= 4(
1
2
) sin θ cos θ

= 2 sin θ cos θ.

3


