The Nine-Point Circle

William M. Faucette

May 2007

Lemma 1. Let $\triangle ABC$ be a triangle and let D and E be the midpoints of sides \overline{AC} and \overline{BC} . Then segment \overline{DE} is parallel to segment \overline{AB} . Conversely, let D be the midpoint of segment \overline{AC} and E any point on segment \overline{BC} . If \overline{DE} is parallel to segment \overline{AB} , then E is the midpoint of segment \overline{BC} . (See Figure 1.)

Figure 1: Figure for Lemma 1

Proof. Let ΔABC be a triangle and let points D and E be the midpoints of segments \overline{AC} and \overline{BC} . Extend \overline{DE} past E to a point F so that \overline{DE} is congruent to \overline{EF} and construct segment \overline{BF} . See Figure 2. Since D and E are the midpoints of segments \overline{AC} and \overline{BC} , respectively, we have \overline{AD} is congruent to \overline{CD} and \overline{BE} is congruent to \overline{EC} . Since the vertical angles $\angle CED$ and $\angle BEF$ are congruent, we have that triangles ΔCED and ΔBEF are congruent by SAS. Hence, \overline{CD} and \overline{BF} are congruent. By the transitivity of congruence, \overline{AD} and \overline{BF} are congruent.

Secondly, since ΔCED and ΔBEF are congruent, $\angle CDE$ is congruent to $\angle BFE$. Since these two angles are alternate interior angles with respect to the transversal \overline{DF} , it follows that segments \overline{AD} and \overline{BF} are parallel.

Figure 2: Construction for Lemma 1

Construct segment \overline{BD} . Since \overline{BD} is a transversal to the parallel segments \overline{AD} and \overline{BF} , $\angle FBD$ and $\angle ADB$ are congruent.

Since \overline{AD} and \overline{BF} are congruent, \overline{BD} is congruent to itself, and $\angle FBD$ and $\angle ADB$ are congruent, triangles $\triangle ABD$ and $\triangle FDB$ are congruent by SAS. Hence, $\angle ABD$ and $\angle FDB$ are congruent. Since these are alternate interior angles with respect to the transversal \overline{BD} and the segments \overline{DE} and \overline{AB} , we see that these two segments must be parallel.

Conversely, suppose D is the midpoint of segment \overline{AC} , E is a point on \overline{BC} , and \overline{DE} is parallel to segment \overline{AB} .

Since $\angle CDE$ and $\angle CAB$ are corresponding angles with respect to the transversal AC, they are congruent. Angle $\angle C$ is congruent to itself, so triangles $\triangle ABC$ and $\triangle DEC$ are similar. It follows that

$$\frac{CE}{BC} = \frac{CD}{AC} = \frac{1}{2}.$$

It follows that E is the midpoint of segment \overline{BC} .

Lemma 2. Let ΔPQR be a right triangle with right angle at Q. Let W be the midpoint of the hypotenuse \overline{PR} . Then segments \overline{PW} , \overline{RW} , and \overline{QW} are all congruent.

Proof. Let ΔPQR be a right triangle with right angle at vertex Q. Let W be the midpoint of the hypotenuse \overline{PR} and construct the segment \overline{QW} . Since W is the midpoint of \overline{PR} , we have \overline{PW} and \overline{RW} are congruent.

Construct the altitude from W to segment \overline{QR} and let V be the foot of this altitude. Since W is the midpoint of segment \overline{PR} and the segment \overline{VW} is parallel to segment \overline{PQ} , V must be the midpoint of \overline{QR} , by Lemma 1. Thus, \overline{QV} is congruent to segment \overline{VR} .

Since \overline{QV} is congruent to segment \overline{VR} , \overline{VW} is congruent to itself, and angles $\angle QVW$ and $\angle RVW$ are right angles and therefore congruent, we have triangle ΔQVW is congruent to triangle ΔRVW , by SAS. Hence, \overline{QW} and \overline{RW} are congruent.

Hence, segments \overline{PW} , \overline{RW} , and \overline{QW} are all congruent.

Theorem 3. Let $\triangle ABC$ be a triangle. Let L, M, and N be the midpoints of the sides \overline{BC} , \overline{AC} , and \overline{AB} , respectively. Let D, E, and F be the feet of the altitudes from the vertices A, B, and C, respectively, to the opposite sides of $\triangle ABC$. It is known that altitudes of the triangle are concurrent, meeting in the orthocenter H of the triangle. Let X, Y, and Z be the midpoints of the segments \overline{AH} , \overline{BH} , and \overline{CH} , respectively.

Then the points L, M, N, D, E, F, X, Y, Z lie on a circle, the nine-point circle of the triangle $\triangle ABC$.

Proof. Let ΔABC be a triangle. Let L, M, and N be the midpoints of the side \overline{BC} , \overline{AC} , and \overline{AB} , respectively.

Next, contruct the segments \overline{LM} , \overline{LN} and \overline{MN} , and their perpendicular bisectors. We remark that these perpendicular bisectors are concurrent for the following reason. Any point on the perpendicular bisector of the segment \overline{LM} is equally distant from the points L and M. Simlarly, any point on the perpendicular bisector of the segment \overline{LN} is equally distant from the points L and N. The two bisectors certainly meet in a point U. Since U is on both these perpendicular bisectors, U is equally distant from all three points, L, M, and N. Since U is equally distant from points M and N, it lies on the perpendicular bisector of the segment \overline{MN} . Hence, the three perpendicular bisectors meet at the point U, which is equally distant from the vertices of ΔLMN . That is, U is the center of the

circumcircle of ΔLMN .

Construct the altitudes of ΔABC from the vertices A, B, and C, to the respective sides of ΔABC , meeting the sides at points D, E, and F, respectively. It is known that these altitudes are concurrent, the intersection being the orthocenter H of triangle ΔABC . Let X, Y, and Z, be the midpoints of the segments $\overline{AH}, \overline{BH}$, and \overline{CH} , respectively. See Figure 4.

The claim is that L, M, N, D, E, F, X, Y, and Z lie on a circle, which is the circumcircle of triangle ΔLMN with center U.

Note that since M is the midpoint of segment \overline{AC} and X is the midpoint of segment \overline{AH} , the segment \overline{MX} connects the midpoints of two sides of the triangle ΔACH , and is therefore parallel to the remaining side, segment \overline{CH} , by Lemma 1. Likewise, since L is the midpoint of segment \overline{BC} and Y is the midpoint of segment \overline{BH} , the segment \overline{LY} connects the midpoints of two sides of the triangle ΔBCH , and is therefore parallel to the remaining side, segment \overline{CH} , likewise by Lemma 1. By transitivity, segments \overline{MX} and \overline{LY} are parallel. See Figure 5.

Note that since M is the midpoint of segment \overline{AC} and L is the midpoint of segment \overline{BC} , the segment \overline{ML} connects the midpoints of two sides of the triangle ΔABC , and is therefore parallel to the remaining side, segment \overline{AB} by Lemma 1. Likewise, since X is the midpoint of segment \overline{AH} and Y is the midpoint of segment \overline{BH} , the segment \overline{XY} connects the midpoints of two sides of the triangle ΔABH , and is therefore parallel to the remaining side, segment \overline{AB} , likewise by Lemma 1. By transitivity, segments \overline{ML} and \overline{XY} are parallel. See Figure 5.

Since \overline{MX} and \overline{LY} are parallel to \overline{CH} , these two segments are parallel to \overline{CF} , which

contains \overline{CH} . But segments \overline{ML} and \overline{XY} are parallel to \overline{AB} . Since \overline{CF} is the altitude from C to side \overline{AB} , \overline{CF} is perpendicular to segment \overline{AB} . It follows that the pair of segments \overline{MX} and \overline{LY} are perpendicular to segments \overline{ML} and \overline{XY} . That is, quadrilateral MLYX is a rectangle. See Figure 5.

Since quadrilateral MLYX is a rectangle, the segments \overline{MY} and \overline{LX} bisect each other at a point U into four congruent segments. That is, \overline{UM} , \overline{UL} , \overline{UY} , and \overline{UX} are congruent. Note that U is therefore the midpoint of segment \overline{MY} .

Note that since M is the midpoint of segment \overline{AC} and Z is the midpoint of segment \overline{CH} , the segment \overline{MZ} connects the midpoints of two sides of the triangle ΔACH , and is therefore parallel to the remaining side, segment \overline{AH} . Likewise, since N is the midpoint of segment \overline{AB} and Y is the midpoint of segment \overline{BH} , the segment \overline{NY} connects the midpoints of two sides of the triangle ΔABH , and is therefore parallel to the remaining side, segment \overline{AH} . Segment \overline{AH} . By transitivity, segments \overline{MZ} and \overline{NY} are parallel. See Figure 6.

Note that since M is the midpoint of segment \overline{AC} and N is the midpoint of segment \overline{AB} , the segment \overline{MN} connects the midpoints of two sides of the triangle ΔABC , and is therefore parallel to the remaining side, segment \overline{BC} . Likewise, since Z is the midpoint of segment \overline{CH} and Y is the midpoint of segment \overline{BH} , the segment \overline{YZ} connects the midpoints of two sides of the triangle ΔBCH , and is therefore parallel to the remaining side, segment \overline{BR} , the segment \overline{YZ} connects the midpoints of two sides of the triangle ΔBCH , and is therefore parallel to the remaining side, segment \overline{BC} . By transitivity, segments \overline{MN} and \overline{YZ} are parallel. See Figure 6.

Since \overline{MZ} and \overline{NY} are parallel to \overline{AH} , these two segments are parallel to \overline{AD} , which contains \overline{AH} . But segments \overline{MN} and \overline{YZ} are parallel to \overline{BC} . Since \overline{AD} is the altitude from A to side \overline{BC} , \overline{AD} is perpendicular to segment \overline{BC} . It follows that the pair of segments \overline{MZ} and \overline{NY} are perpendicular to segments \overline{MN} and \overline{YZ} . That is, quadrilateral MNYZ is a rectangle. See Figure 6.

Since quadrilateral MNYZ is a rectangle, the segments \overline{MY} and \overline{NZ} bisect each other at the same point U (since U is the unique midpoint of \overline{MY}) into four congruent segments. That is, \overline{UM} , \overline{UN} , \overline{UY} , and \overline{UZ} are congruent.

Hence, L, M, N, X, Y, and Z lie on the circle with center U.

Consider the right triangle ΔXDL . The point U is the midpoint of the hypotenuse \overline{XL} , so U is equally distant from the three vertices, by Lemma 2. Hence, \overline{UL} is congruent to \overline{UD} . See Figure 7.

Consider the right triangle $\Delta Y E M$. The point U is the midpoint of the hypotenuse \overline{YM} , so U is equally distant from the three vertices, by Lemma 2. Hence, \overline{UM} is congruent to \overline{UE} . See Figure 8.

Consider the right triangle ΔZFN . The point U is the midpoint of the hypotenuse \overline{ZN} , so U is equally distant from the three vertices, by Lemma 2. Hence, \overline{UN} is congruent to \overline{UF} . See Figure 9.

It now follows that D, E, F, L, M, N, X, Y, and Z lie on the circle with center U, as desired. See Figure 10.

