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There are three classical problems in plane Euclidean geometry involving constructions

by compass and straightedge:

• Squaring the circle: Given a circle, construct a square having the same area

• Duplicating the cube: Given a cube, construct a cube with twice the volume of the

original cube

• Trisecting an angle: Given an angle, divide the angle into three congruent angles.

It is easily proven by the theory of field extensions that each of these problems is unsolvable

by compass and straightedge alone. However, by slightly modifying the meaning of the

word “construction” it is possible to trisect any angle.

In this paper, we will recall why trisecting an angle is not possible by compass and

straightedge alone using the standard argument involving algebraic field extensions. We

will then show that by modifying our straightedge slightly—by “marking” it—we may

trisect any given angle.

This paper was motivated by a problem in [G, p.33, #3]. The interested reader can find

more information on this topic there.

1



1. Some Classical Constructions Using Compass And Straightedge.

There are a great number of classical constructions that may be accomplished by compass

and straightedge alone. For example, it is possible to bisect an angle, construct a triangle

with three given sides, construct a tangent to a given circle through a given point on or outside

the circle, and to construct a number of regular polygons, including a regular 17-gon.

Here, we recall only two compass and straightedge constructions that will be needed

later.

Figure 1.

LEMMA 1. Given a line segment AB, it is possible to construct the perpendicular bisector

of AB.

PROOF: Referring to Figure 1, with A as center and a radius of more than half AB, construct
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an arc (1). With B as center and the same radius, construct arc (2) intersecting arc (1) at C

and D. Draw C D. Then C D is the required perpendicular bisector of AB.
�

LEMMA 2. Given a line
←→
AB and a point D not on the line

←→
AB , it is possible to construct a

line ` containing D and parallel to
←→
AB .

PROOF: Refer to Figure 2. Let
←→
AB be a line and let D be a point not on the line

←→
AB . Draw

segment AD.

Open the compass to a width smaller than the distance from A to B and smaller than the

distance from A to D. Draw an arc with center A and having this radius. Let P be the

intersection of this arc with the segment AB. Let Q be the intersection of this arc with the

segment AD. Draw an arc with center D also having this radius so that this arc intersects

the segment AD at a point R.

Open the compass to the distance between P and Q and draw an arc with center P

through Q. With the compass open to the same radius, draw an arc with center R. Let S

be the point where this last arc intersects the arc drawn with center D. Draw line
←→
SD .

Since the angles � Q AP and � RDS intercept arcs on circles having the same radius,

these two angles must have equal measure. Since these angles are alternate interior angles

formed by the transversal
←→
AD and the lines

←→
AB and

←→
SD , the congruence of these angles

forces the two lines
←→
AB and

←→
SD to be parallel.
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Figure 2.

Hence, line
←→
SD is the desired line through D and parallel to

←→
AB .

�

2. Constructible Numbers.

In this section, we recall the definition of constructible numbers, show that the con-

structible numbers forms an extension field of the field of rational numbers, and that the

field obtained by adjoining any constructible number to � must be a field extension of

degree 2m for some integer m ≥ 0.

DEFINITION 1. A real number α is said to be a constructible number if by use of a straight-

edge and compass alone we can construct a line segment of length α.
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THEOREM 3. If a and b are constructible, so are a + b, a − b, and ab. If a and b are

constructible and b 6= 0, then a/b is constructible. If a > 0, then
√

a is constructible.

PROOF:: Draw a line `. Since a is constructible, we can draw a segment P Q on line `

having length a. Since b is constructible, we can draw a segment Q R so that Q is between

P and R. Then the segment P R has length a + b, so a + b is constructible.

If b < a, the proof that a − b is constructible is analogous. If b > a, we must allow

directed line segments, but the proof is still analogous.

To show ab is constructible, draw a line ` and let A be any point on `. Construct a

segment of unit length on ` with one endpoint at A. Let the other endpoint be B. Since a is

constructible, we can construct a segment AC on ` of length a with B and C on the same

side of A.
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Figure 3.

Refer to Figure 3, which shows a > 1. The proof for 0 < a < 1 is the same.

Construct a line
←→
AD with D not on ` and so that segment AD has length b. Since b is

constructible, we can do this. Draw segment B D.

Using Lemma 2, construct a line m through C and parallel to line
←→
B D. Note that C is

not on line
←→
B D. Indeed, if C were on line

←→
B D, then A, B, and D would be collinear and

hence D would lie on `, contrary to construction.

The line
←→
AD must meet m, since a line meeting one of a pair of parallel lines must also

intersect the other parallel line. Let E be the point of intersection of
←→
AD and m. Draw line

←→
C E .
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Since
←→
B D and

←→
C E are parallel, � DB A and � EC A are congruent. Since � A is congruent

to itself, we have 4D AB and 4E AC are similar triangles. It follows that

AE

AC
=

AD

AB

AE

a
=

b

1

AE = ab

Hence, ab is constructible.

Next, let’s show that a/b is constructible. Refer to Figure 4, which shows b > 1. The

proof for 0 < b < 1 is the same. Draw a line ` and let A be any point on `. Construct a

segment of unit length on ` with one endpoint at A. Let the other endpoint be B. Since b

Figure 4.
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is constructible, we can construct a segment AC on ` of length b with B and C on the same

side of A.

Construct a line
←→
AE with E not on ` and so that segment AE has length a. Since a is

constructible, we can do this. Draw line
←→
C E . Using Lemma 1, construct a line m through

B and parallel to line
←→
C E . Note that B is not on line

←→
C E . Indeed, if B were on line

←→
C E ,

then B, C , and E would be collinear and hence E would lie on `, contrary to construction.

The line
←→
AE must meet m, since a line meeting one of a pair of parallel lines must also

intersect the other parallel line. Let D be the point of intersection of
←→
AE and m.

Since
←→
B D and

←→
C E are parallel, � DB A and � EC A are congruent. Since � A is congruent

to itself, we have 4D AB and 4E AC are similar triangles. It follows that

AE

AC
=

AD

AB

a

b
=

AD

1

AD =
a

b

Hence, a/b is constructible.

Lastly, let’s show that
√

a is constructible for a > 0.

Suppose a > 0 is constructible. By the first part of this proof, a + 1 is also contructible.

Let ` be a line and let A be a point on `. Construct a segment AB of length a with B on

`. Construct a segment BC of length 1 with B between A and C . Then segment AC has

length a + 1. Refer to Figure 5.

Construct the perpendicular bisector of the segment AC and let the midpoint of AC be O .
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Construct a semicircle with center O and radius OA = OC having base on `. Construct a

line m through B perpendicular to `. Let D be the point of intersection of m with the

Figure 5.

constructed semicircle.

Now � ADC is an inscribed angle intercepting a semicircle, so � ADC is a right an-

gle. Hence, � DC A and � D AC are complementary. Since
←→
DB is perpendicular to

←→
AC ,

� D AB = � D AC and � B D A are complementary, and likewise, � BC D = � AC D

and � C DB are complementary. It follows that � DC A and � B D A are congruent and

� D AB = � D AC and � C DB are congruent. In particular, the triangles 4AB D and

4DBC are similar.
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Hence

AB

BD
=

BD

BC

a

BD
=

BD

1

BD2 = a

BD =
√

a.

This concludes the proof.
�

Since a segment of unit length is assumed constructible, it follows immediately from

Theorem 3 that every rational number is constructible. Further it follows from Theorem 3

that the set of constructible numbers forms an extension field of the rational numbers.

We now have the following result, which says, in essence, that the algebraic operations

performed in Theorem 3 are the only ones allowable in creating constructible numbers.

The following statement of this result is taken from [H, p. 239].

THEOREM 4. A number is constructible if and only if we can find a finite number of real

numbers λ1, . . . λn , such that

(1) [� (λ1) : � ] = 1 or 2;

(2) [� (λ1, . . . , λi ) : � (λ1, . . . , λi−1)] = 1 or 2

and such that our number lies in the field � (λ1, . . . , λn). In particular, for α to be a

constructible number, it is necessary that α is algebraic over � and [� (α) : � ] = 2m for

some integer m ≥ 0.
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PROOF: Let’s begin with the set of rational numbers, � , each of which is constructible by

Theorem 3.

In the initial step of the construction, the only geometric loci that one may construct

using only a compass and a straightedge are lines between two rational points and circles

whose centers are rational points. We will call these rational lines and rational circles.

Thus, the only new points which are constructible are those obtained by an intersection of

two rational lines, an intersection of a rational line and a rational circle, or the intersection

of two rational circles.

Given two rational lines, their equations must have rational coefficients, and so the

intersection of the two lines is then another rational point. In this case, no new points are

constructed.

Given a rational line and a rational circle, their equations must be ax + by + c = 0 and

x2 + y2 + dx + ey + f = 0 for some rational numbers a, b, c, d, e, and f . It is an easy

algebra problem to show that the points of intersection are either again rational or lie in a

quadratic extension of � . That is, there exists a positive rational number λ so that the points

of intersection lie in the plane with coefficients in the field � (λ).

The intersection of two rational circles is either empty or consists of two rational points.

Choosing the line through the two rational points of intersection, we see that this case

reduces to that in the previous paragraph. Hence, the points of intersection lie in the plane

with coefficients in the field � (λ), for some λ ∈ � .

Repeating this process gives the principal result.
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The last statement follows from the facts that the degree of each extension is a power of

2 and that [L : F] = [L : K ][K : F] whenever we have a tower of fields F ⊂ K ⊂ L .
�

We have the following result, taken from [H, pp. 230–231]

THEOREM 5. It is impossible, by straightedge and compass alone, to trisect an angle having

measure 60o.

PROOF: If we could trisect 60o by straightedge and compass, then the length α = cos 20o

would be constructible.

Here, let us recall a trigonometric identity:

cos 3θ = 4 cos3 θ − 3 cos θ

Setting θ = 20o, we have

1

2
= 4α3 − 3α

8α3 − 6α − 1 = 0.

Thus α is a root of the polynomial 8x3 − 6x − 1 over � . However, this polynomial is

irreducible over � , and since its degree is 3, we have [� (α) : � ] = 3. Hence, α is not

constructible.

It follows that an angle of measure 60o cannot be trisected by compass and straight-

edge.
�

This standard result on the impossibility of the trisection of an arbitrary angle is included

in many abstract algebra texts. The interested reader should see [Hu, p. 238 ff.] or [He,

p. 228 ff.].
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3. Trisecting An Angle Using a Compass and Marked Straightedge.

In this section, we prove that if we modify our definition of construction to allow using

a “marked” straightedge, then it is possible to trisect any angle.

We begin by recalling a theorem from plane Euclidean geometry relating the measure of

an angle formed by two secants to a circle and the measures of the arcs intercepted by the

two secants:

LEMMA 6. An angle formed by two secants intersecting outside a circle is measured by

one-half the difference of the intercepted arcs.

Figure 6.

PROOF: Suppose the vertex of the angle is P and the two secant lines are
←−→
AB P and

←−→
C D P ,

where B is between A and P and D is between C and P . Refer to Figure 6.
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Draw AD. Now angle � ADC is an exterior angle for triangle 4P AD, we have

m� P + m� P AD = m� ADC

m� P = m� ADC − m� P AD

Now, angle � ADC is an inscribed arc in the circle, so its measure is one-half the intercepted

arc,
_

AC . Likewise, angle � P AD = � B AD is an inscribed arc in the circle, so its measure

is one-half the intercepted arc,
_

B D.

Substituting, we have

m� P = m� ADC − m� P AD

=
1

2
m

_

AC −
1

2
m

_

B D

=
1

2

[

m
_

AC − m
_

B D

]

THEOREM 7. An arbitrary angle may be trisected using a compass and a marked straight-

edge.

PROOF: We will perform the construction in the case the angle is acute. The case of an

obtuse angle is similar and the trisection of an arbitrary angle can be reduced to one of these

two cases.

Let an acute angle with measure 3α be given. Label the vertex of the angle O and draw

a circle of with center O . Let the radius of this circle be r and let A and B be the points of

intersection of the sides of the angle meet the circle. Refer to Figure 7.
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Figure 7.

Extend the segment AO through the point diametrically opposite A to form a line. Let

S be the point on the diameter opposite A.

Mark the straightedge with two marks having the distance r between them. Position

the straightedge so that the line formed by the straightedge contains B, one mark is on the

circle, and the other mark is on the line
←−→
AO S. Let the point on the circle determined this

way be D and let the point on the line
←−→
AO S be C . So, the length of segment C D is r , by

construction. Let β be the measure of angle � SC D. Draw O D.

Consider triangle 4DC O . Since D is on the circle by construction and O is the center of

the circle, O D = r . Also, DC = r by construction, so 4DC O is an isosceles triangle, so
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the measure of angle � DO S is also β. Since � DO S is a central angle, the arc it intercepts

on the circle must also have measure β, so arc
_

DS has measure β. Likewise, since angle

� AO B is a central angle, the measure of arc
_

AB is 3α.

Now we invoke Lemma 6.

m� C DS =
1

2

[

m
_

AB − m
_

C S

]

β =
1

2
[3α − β]

Solving this equation yields α = β, so the measure of angle � C DS is one-third the measure

of the given angle � BO A. Hence, we have trisected angle � BO A.
�

This result shows that by slightly modifying our definition of construction, it is possible to

solve one of the three great classical construction problems from plane Euclidean geometry.
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