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The goal of this paper is to examine the convergence of a type of infinite
series in which the summands are products of numbers in arithmetic progression,
a type of infinite series we will call a generalized geometric series. These series
are studied in order to state and to prove Raabe’s Test, an application of a little-
known test for infinite series known as the Ratio Comparison Test, which we
will also state and prove. Statements and proofs of these little-known results are
taken from [1]. This paper assumes the reader is familiar with the standard tests
for convergence of infinite series, specifically, the Ratio Test, the Comparison
Test, and the Integral Test.

Let’s begin by recalling a standard result from the topic of infinite series:

Theorem 1 (Geometric Series). Consider an infinite series of the form

a0 + a0r + a0r
2 + a0r

3 + · · · + a0r
n + . . .

This series converges if and only if |r| < 1. If this series converges, its sum is

a0

1 − r
.

We would like to consider what I will call generalized geometric series:

Definition 1. A generalized geometric series is an infinite series of the form

a

b
+

a · (a + d)

b · (b + e)
+

a · (a + d) · (a + 2d)

b · (b + e) · (b + 2e)
+ · · · +

a · (a + d) · · · · · (a + nd)

b · (b + e) · · · · · (b + ne)
+ . . . .

Notice that if d = e = 0, we get an ordinary geometric series with a0 = r =
a

b
. In particular, for d = e = 0, this series converges if and only if |a| < |b|.

At this point, let’s recall (one version of) the Ratio Test:

Theorem 2 (Ratio Test). Suppose an > 0 for all n and suppose L = limn→∞

an+1

an

exists. Then
∑

n an converges if L < 1 and diverges if L > 1. If L = 1, no

conclusion can be reached about the behavior of
∑

n an.
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If we apply the Ratio Test to a generalized geometric series, we have

lim
n→∞

|an+1|

|an|
= lim

n→∞

|a + (n + 1)d|

|b + (n + 1)e|
=

|d|

|e|
.

By the Ratio Test, if |d| < |e|, the generalized geometric series series converges
absolutely and if |d| > |e|, the generalized geometric series diverges. Now we
ask what happens if d = e > 0.

Let’s begin by investigating a particular example:
Problem: Consider the infinite series

1

4
+

1 · 3

4 · 6
+

1 · 3 · 5

4 · 6 · 8
+ · · · +

1 · 3 · 5 · · · · · (2n − 1)

4 · 6 · 8 · · · · · (2n + 2)
+ . . . .

Does this infinite series converge or diverge?

We notice that this is a generalized geometric series with a = 1, b = 4, and
d = e = 2. Since d = e, we already know the Ratio Test fails.

We might tackle this problem by writing the products in the numerator and
denominator in terms of factorials, according to the following lemma:

Lemma 1. Let n be a natural number. Then

• 2 · 4 · 6 · · · · · (2n) = 2nn!

• 1 · 3 · 5 · · · · · (2n − 1) = (2n)!
2nn! .

Proof. Let n be a natural number. We prove (i) by factoring 2 from each of the
n factors and regrouping:

2 · 4 · 6 · · · · · (2n) = (2 · 1) · (2 · 2) · (2 · 3) · · · · · (2 ·n) = 2n (1 · 2 · 3 · · · · · n) = 2nn!.

To prove (ii), set
P = 1 · 3 · 5 · · · · · (2n − 1).

Multiplying this equation by equation (i), we have

2nn!P = [1 · 3 · 5 · · · · · (2n − 1)] · [2 · 4 · 6 · · · · · (2n)]

= 1 · 2 · 3 · · · · · (2n − 1) · (2n)

= (2n)!

Solving for P yields the desired result.

Returning to the series in question, we can use the preceding lemma to write
the series in closed form:

∞
∑

n=1

(2n)!/(2nn!)

2n(n + 1)!
=

∞
∑

n=1

(2n)!

4n(n + 1)!n!
.

This form has the virtue of expressing the infinite series as a sum of terms where
the terms themselves are in closed form, i.e. not written as products. However,
I don’t think this closed form renders this series any more accessible!
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In order to tackle this problem, we need a modifcation of the Ratio Test
which is slightly more sensitve, a little-known test which I happened to run
across in my random readings: The Ratio Comparison Test.

Theorem 3 (Ratio Comparison Test). If an, bn > 0 for all n, and
∑

bn

converges, and if for all sufficiently large n,

an+1

an

≤
bn+1

bn

,

then
∑

an converges.

Proof. Let
∑

an and
∑

bn be series having positive terms and satisfying

an+1

an

≤
bn+1

bn

for all sufficiently large n.
If we rewrite this inequality as

an+1

bn+1
≤

an

bn

,

we see that the sequence {an/bn} is monotone decreasing. Since an, bn ≥ 0,
this sequence is bounded below, and it follows that {an/bn} converges by the
completeness of the real numbers. In particular, {an/bn} is bounded above by
some positive number M , so an ≤ Mbn for all n sufficiently large. Since

∑

bn

converges, so does
∑

Mbn, and by the Comparison Test,
∑

an converges.

As I tell my own students, you only have two friends when it comes to infinite
series:

• geometric series

• p-series

We have already recalled our first friend, the geometric series. Our second
friend, the p-series, derives its usefullness as a corollary of the Integral Test:

Theorem 4 (Integral Test). If f is positive on the interval 1 ≤ x < ∞ and

monotonic decreasing with limx→∞ f(x) = 0, then the series
∑

∞

1 f(n) and the

improper integral
∫

∞

1
f(x) dx are either both convergent or both divergent.

Corollary 1 (p-series). The series
∑

∞

0 1/np converges when p > 1 and di-

verges when p ≤ 1.

We wish to use the Ratio Comparison Test using a p-series as the series
known to be convergence. If we implement this approach utilizing the following
lemma, we get Raabe’s Test.

Lemma 2. If p > 1 and 0 < x < 1, then

1 − px ≤ (1 − x)p.
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Proof. Set g(x) = px + (1 − x)p. Then

g′(x) = p − p(1 − x)p−1 = p
[

1 − (1 − x)p−1
]

≥ 0

for 0 < x < 1, so g is increasing on this interval. Since g is continuous on [0, 1]
and g(0) = 1, we have g(x) ≥ 1 for 0 < x < 1. Substituting g(x) into this
inequality, we have

1 − px ≤ (1 − x)p,

as desired.

Theorem 5 (Raabe’s Test). Let
∑

an be a series with positive terms and let

p > 1 and suppose
an+1

an

≤ 1 −
p

n
for all sufficiently large n. Then, the series

∑

an converges.

Proof. Let
∑

an be a series with positive terms and let p > 1 and suppose
an+1

an

≤ 1−
p

n
for all sufficiently large n. Setting x = 1/n in Lemma 2, we have

an+1

an

≤ 1 −
p

n
≤

(

1 −
1

n

)p

=

(

n − 1

n

)p

=
bn+1

bn

,

where bn+1 =
1

np
. Since the series

∑

bn is a p-series with p > 1, the series
∑

bn converges. Applying the Ratio Comparison Test,
∑

an also converges.

Solution to our Problem: Consider the series

1

4
+

1 · 3

4 · 6
+

1 · 3 · 5

4 · 6 · 8
+ · · · +

1 · 3 · · · · · (2n − 1)

4 · 6 · · · · · (2n + 2)
+ . . . .

If we apply Raabe’s Theorem, we have

an+1

an

=
2n − 1

2n + 2
=

(2n + 2) − 3

2n + 2
= 1 −

3/2

n + 1
,

so p = 3
2 and the series

1

4
+

1 · 3

4 · 6
+

1 · 3 · 5

4 · 6 · 8
+ · · · +

1 · 3 · · · · · (2n − 1)

4 · 6 · · · · · (2n + 2)
+ . . .

converges.

Returning to an arbitrary generalized geometric series (with d = e > 0), we
apply Raabe’s Test

an+1

an

=
a + (n + 1)d

b + (n + 1)d

=
b + (n + 1)d + (a − b)

b + (n + 1)d

= 1 −
b − a

b + (n + 1)d

= 1 −
(b − a)/d

(b/d) + (n + 1)
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Now,
b

d
+ n + 1 ≤ n + K for some constant K

so

b

d
+ n + 1 ≤ n + K

1
b
d

+ n + 1
≥

1

n + K

(b − a)/d
b
d

+ n + 1
≥

(b − a)/d

n + K

1 −
(b − a)/d
b
d

+ n + 1
≤ 1 −

(b − a)/d

n + K

Hence,

an+1

an

= 1 −
(b − a)/d

(b/d) + (n + 1)

≤ 1 −
(b − a)/d

n + K

This is sufficient to show that the generalized geometric series converges if
(b − a)/d > 1, that is, if b > a + d. Notice that if d = e = 0, so that the
generalized geometric series degenerates to an ordinary geometric series, we get
the result we already know: The geometric series converges if b > a, that is, if
the common ratio r is less than one.

We state our result as a

Theorem: Consider the generalized geometric series

a

b
+

a · (a + d)

b · (b + e)
+

a · (a + d) · (a + 2d)

b · (b + e) · (b + 2e)
+ · · · +

a · (a + d) · · · · · (a + nd)

b · (b + e) · · · · · (b + ne)
+ . . . .

converges absolutely if |d| < |e| and diverges if |d| > |e|. Further, if d = e > 0,
this series converges if b > a + d.
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