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1 Let’s Begin With A Theorem

Let’s begin with an ordinary theorem in Euclidean geometry:

Theorem 1. If each of the lines which are tangent to a triangle’s circumscribed
circle at its vertices intersects the opposite sideline, the three points of intersec-
tion are collinear. (See Figure 1.)

The statement of this result is taken from [6, p. 212], where it is proven
using Menelaus’ Theorem. However, this result is a special case of one of several
degenerate cases of a classical result in the theory of algebraic curves: Pascal’s
Theorem.

In order to avoid such annoying difficulties as parallel lines, it is best to
consider this problem in the projective plane, therefore insuring that any two
lines in the plane intersect. We will therefore begin with a description of the
projective plane and of projective plane curves.

2 A Brief Introduction to Projective Plane Curves

Definition 1. The projective plane over the complex numbers,
� 2(� ), or just� 2 if there is no confusion as to the base field, is defined to be the set of one-

dimensional linear subspaces in � 3.

Equivalently, define an equivalence relation on points in � 3 \ {(0, 0, 0)} as

follows. We say two points (X, Y, Z) and (X ′, Y ′, Z ′) ∈ � 3 \ {(0, 0, 0)} are

equivalent if

X ′ = λX

Y ′ = λY

Z ′ = λZ

for some non-zero constant λ ∈ � \ {0}. The equivalence class containing the

point (X, Y, Z) is then the one dimensional linear subspace spanned by the point

(X, Y, Z), that is, a point in the projective plane. We will denote this point by

[X, Y, Z].
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Figure 1.

The ordinary affine plane � 2 sits naturally inside the projective plane
� 2 as

an open dense subset through the map

φ : � 2 →
� 2

φ(x, y) = [x, y, 1]

The locus of points given by Z = 0 is called the line at infinity. These are the
points added to the affine plane to produce the projective plane.

If f(x, y) is a nonconstant polynomial in two variables, the locus of points in
the affine plane given by the equation f(x, y) = 0 is an affine algebraic curve. If
f(x, y) defines an affine algebraic curve C, the degree of the curve is the degree
of the polynomial f . This definition is well-defined since the only polynomials
which are nowhere vanishing are the constant polynomials. Plane curves of
degree one, two, and three are lines, conics, and cubics, respectively.

Similarly, if F (X, Y, Z) is a nonconstant homogeneous polynomial in three
variables, the locus of points in the projective plane given by the equation
F (X, Y, Z) = 0 is a projective algebraic curve. If F (X, Y, Z) defines a projective
algebraic curve C, the degree of the curve is the degree of F . As in the affine
case, this definition is well-defined since the only polynomials which are nowhere
vanishing are the constant polynomials.

Since the affine plane sits naturally in the projective plane as an open dense
subset, it is possible to take an affine algebraic curve C given as the zero set
of a nonconstant polynomial f(x, y) and look at its projective closure in the
projective plane

� 2. The projective closure is the locus of points given by the
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homogenization of f(x, y), defined as

F (X, Y, Z) = Zdegff

(

X

Z
,
Y

Z

)

Notice that if Z 6= 0, so that [X, Y, Z] is not on the line at infinity, then we
may assume that Z = 1, whereby F (X, Y, 1) = f(X, Y ). That is, the projective
plane curve given by F intersected with the finite plane Z 6= 0 yields the affine
plane curve given by f .

One important classical result concerns the number of points of intersection
of two algebraic plane curves. If we look in the projective plane and count the
number of intersections properly, i.e. with multiplicity, the result is Bézout’s
Theorem:

Theorem 2 (Bézout’s Theorem). Let C1 be a projective plane curve of de-

gree n and let C2 be a projective plane curve of degree m so that C1 ∩ C2 is a

finite set. Then C1 ∩ C2 consists of nm points counted with multiplicity.

The interested reader can find proofs of this result in many texts, including
[1, p. 112], [7, p. 173] [3, p. 87], [2, p. 172], [4, pp. 227–229] and [5, p. 47 ff].

3 Families of Cubic Curves

Let’s consider the family of all cubic curves in the projective plane. This
amounts to looking at the family of all homogeneous cubic polynomials in three
variables. The typical such polynomial has the form

aX3 + bY 3 + cZ3 + dX2Y + eX2Z + fY Z2 + gXY 2 + hXZ2 + iY 2Z + jXY Z,

so we may view the family of such polynomials as the set of all 10-tuples of
complex numbers, (a, b, c, d, e, f, g, h, i, j). However, polynomials which are con-
stant multiples of one another represent the same projective curve, so we must
identify all 10-tuples (a, b, c, d, e, f, g, h, i, j) which are nonzero multiples of one
another, i.e. we must form a projective space.

As before, we will define a 10-tuple (a, b, c, d, e, f, g, h, i, j) to be equivalent to
(a′, b′, c′, d′, e′, f ′, g′, h′, i′, j′) if a′ = λa, b′ = λb, . . . , j′ = λj for some non-
zero complex constant λ. The resulting space is the set of all linear subspaces
of dimension one in � 10, a space which we will denote

� 9, nine dimensional
projective space.

Suppose a cubic curve C with equation

F (X, Y, Z) = aX3+bY 3+cZ3+dX2Y +eX2Z+fY Z2+gXY 2+hXZ2+iY 2Z+jXY Z

passes through the point [X0, Y0, Z0] in the projective plane
� 2. Then

0 = aX3
0+bY 3

0 +cZ3
0+dX2

0Y0+eX2
0Z0+fY0Z

2
0+gX0Y

2
0 +hX0Z

2
0+iY 2

0 Z0+jX0Y0Z0.
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Viewing this as an equation in the variables a, b, c, d, e, f , g, h, i, and j

with complex coefficients, we see that the family of cubic curves in the projec-
tive plane passing through a point is the zero locus of a linear homogeneous
polynomial—it is a hyperplane in

� 9.
Now let’s choose nine points in the projective plane Pi = [Xi, Yi, Zi] and look

at the family of cubic curves passing through all nine points. This family is then
the intersection of nine hyperplanes in

� 9. As long as the conditions imposed on
the projective space

� 9 are independent, that is, as long as the linear equations

aX3
i +bY 3

i +cZ3
i +dX2

i Yi+eX2
i Zi+fYiZ

2
i +gXiY

2
i +hXiZ

2
i +iY 2

i Zi+jXiYiZi = 0,

are linearly independent, then the solution of this system of linear equations
is a one-dimensional linear subspace of � 10— a point in

� 9. This gives us the
following proposition:

Proposition 1. Given nine general points in the projective plane
� 2, there is

a unique cubic containing those points.

In this same vein, suppose we have two projective plane curves C1 and
C2, given by homogeneous polynomials F1 and F2, respectively, which pass
through the nine points P1, . . . , P9, which we assume are in general position.
Suppose C is another cubic curve in the projective plane given by a homogeneous
polynomial F and suppose C passes through P1, . . . , P8.

We have seen that the family of homogeneous cubic polynomials in three
variables is ten dimensional. Each point a cubic curve passes through defines
one linear condition on this ten dimensional family. If the points are in general
position, the family of cubic curves passing through eight points is then two
dimensional. Since C1, C2, and C are all curves which pass through the eight
points P1, . . . , P8, the three polynomials F1, F2, and F must be linearly depen-
dent. In particular, since F1 and F2 vanish at P9 and F is linearly dependent
on F1 and F2, we must likewise have that F vanishes at P9. This gives the
following proposition:

Proposition 2. Let C, C1, and C2 be three cubic curves. Suppose C goes

through eight of the nine intersection points of C1 and C2. Then C goes through

the ninth intersection point.

4 Pascal’s Theorem

Referring to Figure 2, let Q be a conic in the projective plane
� 2. Let P1, P2,

P3, P4, P5, P6 be any six points on the conic Q, so the hexagon P1P2P3P4P5P6

is inscribed in the conic Q.
Let `1 be the line

←−→
P1P2, let `2 be the line

←−→
P2P3, let `3 be the line

←−→
P3P4, let

m1 be the line
←−→
P4P5, let m2 be the line

←−→
P5P6, and let m3 be the line

←−→
P1P6.

Let Qi be the point of intersection of `i and mi, which must exist since any
two lines in the projective plane intersect. So, we have three more points Q1,
Q2, and Q3.
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Figure 2.

Let C1 be the (degenerate) cubic curve `1 ∪ m2 ∪ `3 and let C2 be the
(degenerate) cubic curve m1 ∪ `2 ∪m3. Then C1 and C2 intersect in the points
P1, P2, P3, P4, P5, P6, Q1, Q2, and Q3.

Let C be the degenerate cubic consisting of the conic Q and the line
←−−→
Q1Q2.

Then C passes through eight of the points of intersection of C1 and C2. By
Proposition 2, C must pass through the ninth point of intersection, which implies
that Q3 lies on the line

←−−→
Q1Q2.

So, we see that if P1, P2, P3, P4, P5, P6 lie on a conic, then the points Q1,
Q2, and Q3 are collinear.

The converse of this is also true, but we will omit the proof. Complete proofs
may be found in [2, p. 673], [5, p. 407], and [7, p. 20].

With that, we have the following result, known as Pascal’s Theorem:

Theorem 3 (Pascal’s Theorem). Let P1, P2, P3, P4, P5, P6 be points in
� 2

in general position. Let Q1, Q2, and Q3 be defined as above. Then P1, P2, P3,

P4, P5, P6 lie on a conic if and only if Q1, Q2, and Q3 are collinear.

5 Pascal’s Theorem with Degenerate Conics

A degenerate conic in the plane is the union of two lines. Since Pascal’s Theorem
is valid for any conic, including degenerate conics, we first examine what Pascal’s
Theorem says for degenerate conics.
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Figure 3.

Theorem 4. Let ` and m be two intersecting lines in the plane. Let A, B,

and C be points on ` and let A′, B′, and C ′ be points on m. Let `1 be the line

through A and B′, let `2 be the line through A and C ′, let `3 be the line through

B and C ′, let m1 be the line through A′ and B, let m2 be the line through A′ and

C, and let m3 be the line through B′ and C. Let P be the point of intersection

of `1 and m1, let Q be the point of intersection of `2 and m2, and let R be the

point of intersection of `3 and m3.

Then P , Q, and R are collinear.

Proof. Referring to Figure 3, let ` and m be two intersecting lines in the plane.
Let A, B, and C be points on ` and let A′, B′, and C ′ be points on m. Let
`1 be the line through A and B′, let `2 be the line through A and C ′, let `3 be
the line through B and C ′, let m1 be the line through A′ and B, let m2 be the
line through A′ and C, and let m3 be the line through B′ and C. Let P be the
point of intersection of `1 and m1, let Q be the point of intersection of `2 and
m2, and let R be the point of intersection of `3 and m3.

Let C1 be the degenerate cubic consisting of the union of the three lines `1,
m2, and `3. Let C2 be the degenerate cubic consisting of the union of the three
lines m1, `2, and m3. The cubics C1 and C2 meet in the nine points A, B, C,
A′, B′, C ′, P , Q, and R.

Let C be the (degenerate) cubic consisting of the lines ` and m and the

line
←→
PQ. Then C contains the points A, B, C, A′, B′, C ′, P and Q. By

Proposition 2, the curve C must also contain the point R. This implies that P ,
Q, and R are collinear.
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Figure 4.

6 Pascal’s Theorem with Coincident Points

What happens if the points P1, P2, P3, P4, P5, P6 are not distinct? That
is to say, what happens if, say, P5 and P6 coalesce into a single point? In
the remainder of this paper we will prove several theorems which represent
degenerations of Pascal’s Theorem as points on the conic coalesce.

The first theorem may be viewed as a theorem in ordinary Euclidean geom-
etry, provided that the lines involved meet in the finite plane. This case is the
problem posed at the beginning of the paper:

Suppose 4ABC is circumscribed by circle O. Suppose the line
←→
AB meets

the tangent line to O at C at a point R. This point is the intersection of one
side of the triangle and the tangent line to the circumscribing circle at the point
opposite that side. Likewise, suppose the line

←→
AC meets the tangent line to O

at B at a point S and suppose the line
←→
BC meets the tangent line to O at A at

a point T . Then R, S, and T are collinear.
In projective space, we have the following theorem:

Theorem 5. Let P1, P2, and P3 be three noncollinear points. Let Q be any

smooth conic which contains the points P1, P2, and P3. Let `i be the line

tangent to Q at Pi. Let m1 be the line
←−→
P2P3, let m2 be the line

←−→
P1P3, and let

m3 be the line
←−→
P1P2. Let Qi be the point of intersection of `i and mi. Then the

points Q1, Q2, and Q3 are collinear.

Proof. Referring to Figure 4, let Q be any smooth conic which contains the
points P1, P2, and P3. Let `i be the line tangent to Q at Pi. Let m1 be the
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line
←−→
P2P3, let m2 be the line

←−→
P1P3, and let m3 be the line

←−→
P1P2. Let Qi be the

point of intersection of `i and mi.
Let C1 be the degenerate cubic consisting of the three lines `1, `2, and `3.

Let C2 be the degenerate cubic consisting of the three lines m1, m2, and m3.
Then C1 and C2 meet at Q1, Q2, Q3 and twice at each of P1, P2, and P3.

Let C be the degenerate cubic consisting of the conic Q and the line
←−−→
Q1Q2.

Then C passes through Q1, Q2, P1, P2, and P3, so C passes through eight of
the nine points of intersection of C1 and C2. By Proposition 2, C must pass
through the ninth point of intersection, so C contains Q3. This forces Q1, Q2

and Q3 to be collinear.

A second degenerate case of Pascal’s Theorem is the following. Suppose a
quadrilateral ABCD is inscribed in a circle O. Take the opposite sides

←→
AB and

←→
CD and suppose these meet in a point R. Take the opposite sides

←→
BC and

←→
AD

and suppose these meet in a point S. Take the tangent line to O at A and the
tangent line to O at C and suppose these two lines meet in a point T . Take the
tangent line to O at B and the tangent line to O at D and suppose these two
lines meet in a point U . Then the points Q, R, S, and T are all collinear.

In projective space, we have the following theorem:

Theorem 6. Let P1, P2, P3 and P4 be four points with no three points collinear.

Let Q be any smooth conic which contains the points P1, P2, P3, and P4. Let

`i be the line tangent to Q at Pi. Let m1 be the line
←−→
P1P2, let m2 be the line

←−→
P2P3, let m3 be the line

←−→
P3P4, and let m4 be the line

←−→
P1P4. Let Q1 be the point

of intersection of m1 and m3, let Q2 be the point of intersection of m2 and

m4, let Q3 be the point of intersection of `1 and `3, and let Q4 be the point of

intersection of `2 and `4. Then the points Q1, Q2, Q3, and Q4 are collinear.
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Figure 5.

Proof. Referring to Figure 5, let P1, P2, P3 and P4 be four points with no three
points collinear. Let Q be any smooth conic which contains the points P1, P2,
P3, and P4. Let `i be the line tangent to Q at Pi. Let m1 be the line

←−→
P1P2, let

m2 be the line
←−→
P2P3, let m3 be the line

←−→
P3P4, and let m4 be the line

←−→
P1P4. Let

Q1 be the point of intersection of m1 and m3, let Q2 be the point of intersection
of m2 and m4, let Q3 be the point of intersection of `1 and `3, and let Q4 be
the point of intersection of `2 and `4.

Let C1 be the degenerate cubic curve m1∪m4∪`3. Let C2 be the degenerate
cubic curve m3 ∪ m2 ∪ `1. The two cubic curves C1 and C2 meet in the points
Q1, Q2, Q3, P2, and P4, twice at P1 and twice at P3.

Let C be the degenerate cubic curve given by the union of the conic Q and
the line

←−−→
Q1Q2. Then C contains the points P1, P2, P3, P4, Q1, and Q2. So,

C passes through eight of the nine points of intersection of C1 and C2. By
Proposition 2, C must contain the ninth point, Q3. This implies that Q1, Q2,
and Q3 are collinear.

Repeating this argument with C1 = m1∪m2∪`4 and C2 = m3∪m4∪`2 gives
that Q1, Q2, and Q4 are collinear. Hence, Q1, Q2, Q3, and Q4 are collinear, as
desired.
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A third degenerate case of Pascal’s Theorem is the following. Suppose a
quadrilateral ABCD is inscribed in a circle O. Take the opposite sides

←→
AB and

←→
CD and suppose these meet in a point R. Suppose the side

←→
CD and the tangent

line to O at B meet in a point S. Suppose the side
←→
AB and the tangent line to

O at C meet in a point T . Then the points R, S, and T are all collinear.
In projective space, we have the following theorem:

Theorem 7. Let P1, P2, P3 and P4 be four points with no three points collinear.

Let Q be any smooth conic which contains the points P1, P2, P3, and P4. Let

`i be the line tangent to Q at Pi. Let m1 be the line
←−→
P1P2, let m2 be the line

←−→
P2P3, let m3 be the line

←−→
P3P4, and let m4 be the line

←−→
P1P4. Let Q1 be the point

of intersection of m2 and m4, let Q2 be the point of intersection of `2 and m3,

and let Q3 be the point of intersection of `3 and m1. Then the points Q1, Q2,

and Q3 are collinear.
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Figure 6.

Proof. Referring to Figure 6, let P1, P2, P3 and P4 be four points with no three
points collinear. Let Q be any smooth conic which contains the points P1, P2,
P3, and P4. Let `i be the line tangent to Q at Pi. Let m1 be the line

←−→
P1P2, let

m2 be the line
←−→
P2P3, let m3 be the line

←−→
P3P4, and let m4 be the line

←−→
P1P4. Let

Q1 be the point of intersection of m2 and m4, let Q2 be the point of intersection
of `2 and m3, and let Q3 be the point of intersection of `3 and m1.

Let C1 be the degenerate cubic curve m1∪m2∪m3. Let C2 be the degenerate
cubic curve `2 ∪ `3 ∪ m4. The two cubic curves C1 and C2 meet in the points
Q1, Q2, Q3, P1, and P4, twice at P2 and twice at P3.

Let C be the degenerate cubic curve given by the union of the conic Q and
the line

←−−→
Q1Q2. Then C contains the points P1, P2, P3, P4, Q1, and Q2. So,

C passes through eight of the nine points of intersection of C1 and C2. By
Proposition 2, C must pass through the ninth point of intersection, so C must
contain the ninth point, Q3. This implies that Q1, Q2, and Q3 are collinear.
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A fourth case of Pascal’s Theorem in a degenerate case is when exactly two
of the points on the conic coincide. This theorem may also be viewed as a
theorem in ordinary Euclidean geometry, provided that the lines involved meet
in the finite plane: Suppose a pentagon ABCDE is circumscribed by circle O.
Suppose the line

←→
AB meets the line

←→
DE in a point P . Suppose the line

←→
AE

meets the line
←→
CD in a point R. Suppose the line

←→
BC meets the tangent line to

the circle O at the point E in a point Q. Then P , Q, and R are collinear.
In projective space, we have the following theorem:

Theorem 8. Let P1, P2, P3, P4, and P5 be five points with no three collinear

lying on a smooth conic Q. Let `1 be the line
←−→
P1P2, let `2 be the line

←−→
P1P5, let

`3 be the line
←−→
P2P3, let m1 be the line

←−→
P4P5, let m2 be the line

←−→
P3P4, let m3 be

the line tangent to the conic Q at the point P5. Let `i and mi meet at the point

Qi.

Then Q1, Q2, and Q3 are collinear.
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Figure 7.

Proof. Let P1, P2, P3, P4, and P5 be five points with no three collinear lying
on a smooth conic Q. Let `1 be the line

←−→
P1P2, let `2 be the line

←−→
P1P5, let `3 be

the line
←−→
P2P3, let m1 be the line

←−→
P4P5, let m2 be the line

←−→
P3P4, let m3 be the

line tangent to the conic Q at the point P5.
Let `1 and m1 meet at the point Q1, let `2 and m2 meet at the point Q2,

and let `3 and m3 meet at the point Q3.
Let C1 the degenerate cubic curve consisting of the three lines `1, m2, and

m3. Let C2 the degenerate cubic curve consisting of the three lines m1, `2, and
`3. Then C1 and C2 meet in the points P1, P2, P3, P4, Q1, Q2, Q3, and twice
at P5.

Let C be the degenerate cubic curve consisting of Q and the line
←−−→
Q1Q2.

Then C contains the points P1, P2, P3, P4, P5, Q1, and Q2. Since C passes
through eight of the points of intersection of C1 and C2, C must contain the
point Q3. This implies that Q1, Q2, Q3 are collinear.
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