
The Miracle Substitution:

How and Why It Works

William M. Faucette

September 2002

When I learned the techniques of integration in my college calculus class, my
classmates and I learned all the usual techniques—u-substitution, integration
by parts, trigonometric substitutions, partial fractions, and so forth. All these
techniques are, of course, still part of every second semester calculus course,
but there seems to be one technique of integration which has lost favor over the
years. Among recent texts, [2, pp. 542–543], [3, p. 570], and [9, pp. 498–499]
relegate this method of integration to problems at the end of a section. Of the
calculus texts I have examined, only [1, pp. 548–549] still treats this method
within the text itself.

The method to which I refer is the standard technique for integrating ratio-
nal functions of sin θ and cos θ using what I have always known as “the miracle
substitution”. The substitution t = tan(θ/2) will always reduce any rational
function of sin θ and cos θ to a rational function of t, which can then be solved
by the technique of partial fractions. According to [9, pp. 498–499], this substi-
tution was first noticed by Karl Weierstrass (1815–1897). Of course, in freshman
level calculus classes, the reason it is called “the miracle substitution” is that
the substitution is completely unmotivated . . . but it works.

In this paper, I will recall “the miracle substitution,” and how it works, but
I will then proceed to explain why the miracle substitution works using the
fundamentals of rational curves from algebraic geometry.

I would like to express my thanks to Ted Shifrin who so clearly explained
these notions in his March, 2001, talk at the Southeastern regional meeting of
the Mathematical Association of America held at Huntingdon College in Mont-
gomery, Alabama. He made me realize—for the first time—why “the miracle
substitution” works.

1 What Is The Miracle Substitution?

Let r(θ) be any rational function of sin(θ) and cos(θ). The miracle substitution
sets

t = tan

(

θ

2

)

.
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Figure 1.

From Figure 1, we see that

cos

(

θ

2

)

=
1√

1 + t2

sin

(

θ

2

)

=
t√

1 + t2
.

Now, using the standard double-angle formulas from plane trignometry, we have

cos θ = cos2(θ/2) − sin2(θ/2)

=

[

1√
1 + t2

]2

−
[

t√
1 + t2

]2

=
1

1 + t2
− t2

1 + t2

=
1 − t2

1 + t2
.

sin θ = 2 sin(θ/2) cos(θ/2)

= 2
1√

1 + t2
t√

1 + t2

=
2t

1 + t2
.
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Finally,

t = tan

(

θ

2

)

θ = 2 arctan(t)

dθ = 2
dt

1 + t2

=
2 dt

1 + t2
,

abusing the notation, as is customary in freshman calculus courses.
From these computations, it is clear that any integrand containing a rational

function of sin θ and cos θ can be converted to an integrand containing a rational
function of t.

2 Example

Since this technique of integration seems to be neglected recently, let’s see how
it works in an example. This example is taken from [9, p. 499, #59].

Example: Compute
∫

1

3 sin θ − 4 cos θ
dθ.

Solution: Using the miracle substitution,

cos θ =
1 − t2

1 + t2

sin θ =
2t

1 + t2

dθ =
2 dt

1 + t2
,
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we have
∫

1

3 sin θ − 4 cos θ
dθ =

∫

1

3
(

2t

1+t2

)

− 4
(

1−t2

1+t2

)

2 dt

1 + t2

=

∫

2

3 (2t) − 4 (1 − t2)
dt

=

∫

2

4t2 + 6t − 4
dt

=

∫

1

2t2 + 3t − 2
dt

=

∫

1

2t2 + 3t − 2
dt

=

∫

1

(2t − 1)(t + 2)
dt

=

∫

2/5

2t − 1
+

−1/5

t + 2
dt

=
1

5
ln |2t − 1| − 1

5
ln |t + 2| + C

=
1

5
ln

∣

∣

∣

∣

2t − 1

t + 2

∣

∣

∣

∣

+ C

=
1

5
ln

∣

∣

∣

∣

∣

2 tan
(

θ

2

)

− 1

tan
(

θ

2

)

+ 2

∣

∣

∣

∣

∣

+ C.

3 Why Does The Miracle Substitution Work?

Referring to Figure 2, we consider the unit circle, x2 + y2 = 1, and an angle
θ in standard position. Let the point of intersection of the terminal side of
angle θ and the unit circle have coordinates (x, y). Draw a segment from the
point (−1, 0) to the point of (x, y). The acute angle formed at (−1, 0) then has
measure θ/2. Let t be the distance from the origin to the point of intersection
of the y-axis with the terminal side of the ang1e θ/2. Notice that t is the slope
of the line from (−1, 0) to (x, y), so

t =
y

x + 1
.

Now, we wish to find the coordinates x and y in terms of t. To do this, we
simply solve the equations of the line t = y/(x + 1) and the circle x2 + y2 = 1
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Figure 2.
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simulataneously:

x2 + y2 = 1

x2 + (t(x + 1))
2

= 1

x2 + t2x2 + 2t2x + t2 = 1

x2 + t2x2 + 2t2x + t2 − 1 = 0

x2(1 + t2) + 2t2x + (t2 − 1) = 0 .

Using the quadratic formula, we have

x =
−b ±

√
b2 − 4ac

2a

=
−2t2 ±

√

(2t2)2 − 4(1 + t2)(t2 − 1)

2(1 + t2)

=
−2t2 ±

√

4t4 − 4(t4 − 1)

2(1 + t2)

=
−2t2 ± 2

2(1 + t2)

=
−t2 ± 1

1 + t2

= −1 or
1 − t2

1 + t2
.

Ignoring the root −1, which corresponds to the point (−1, 0), we see that

x =
1 − t2

1 + t2

and

y = t(x + 1) = t

(

1 − t2

1 + t2
+ 1

)

=
2t

1 + t2
.

Notice that we have defined functions

f : S1 \ {(−1, 0)} → �

(x, y) 7→ y

x + 1

and

g :
� → S1 \ {(−1, 0)}

t 7→
(

1 − t2

1 + t2
,

2t

1 + t2

)

which are inverse functions. Using the terminology of algebraic geometry, this
may be viewed as a birational map of a smooth conic with the affine line.
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Let’s expand this view a bit. Viewing the unit circle as the real part of the
affine conic, C, with equation z2 + w2 = 1 and the real line as the real part of
the complex line, we have

g : � \ {±i} → C

t 7→
(

1 − t2

1 + t2
,

2t

1 + t2

)

.

Expanding a bit further by viewing these two curves as living in projective
space, we have

g̃ : � 1 → C

[t, s] 7→
[

s2 − t2, 2st, s2 + t2
]

,

which is the standard biregular morphism of algebraic varieties between the
projective line and the smooth conic, there being only one up to projective
equivalence. This biregular morphism induces an isomorphism

g̃∗ : Ω(C) → Ω(� 1)

of the algebras of rational differential forms. For more information on affine
and projective plane curves, rational functions, and differential forms, see [5],
[6], [8], [4], and [7].

4 Let’s Get Back to the Problem

Let’s say you are given a rational function of sin θ and cos θ. Referring to Figure
2, we see that x = cos θ and y = sin θ, so we may view an integrand containing
a rational function of sin θ and cos θ as a rational differential form of x and y
defined on the unit circle. Now, as in the last section, the map g̃ induces an
isomorphism

g̃∗ : Ω(C) → Ω(� 1)

of the algebras of rational differential forms. Hence, we can take our rational
function of x and y defined on the unit circle and pull it back to a rational
differential form on � 1.

What do these rational differential forms look like? It is well known that
if t is an affine coordinate on � 1, then any rational differential form on � 1 is a
rational function of t times dt.

5 Ahha!

So, the miracle substitution is not nearly as miraculous as it appears to freshman
calculus classes. The substitution t = tan(θ/2) transforms a rational integral
of sin θ and cos θ into a rational integral of t because it is an implementation
of standard results in algebraic geometry: A nonsingular conic in the plane is
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isomorphic as a projective algebraic variety to the the projective line and all
rational differential forms on the projective line are rational functions of a local
coordinate.
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