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Abstract. The author generalizes B. Harris’ definition of harmonic volume to the
algebraic cycle Wk − W−

k
for k > 1 in the Jacobian of a nonsingular algebraic curve

X. We define harmonic volume, determine its domain, and show that it is related
to the image ν of Wk − W−

k
in the Griffiths intermediate Jacobian. We define a

formula expressing harmonic volume as a sum of integrals over a nested sequence of
submanifolds of the k-fold symmetric product of X. We show that ν, when applied to
a certain class of forms, takes values in a discrete subgroup of

�
/� and hence, when

suitably extended to complex-valued forms, is identically zero modulo periods on
primitive forms if k ≥ 2. This implies that the image of Wk−W−

k
is identically zero in

the Griffiths intermediate Jacobian if k ≥ 2. We introduce a new type of intermediate
Jacobian which, like the Griffiths intermediate Jacobian, varies holomorphically with
moduli, and we consider a holomorphic torus bundle on Torelli space with this fiber.
We use the relationship mentioned above between ν and harmonic volume to compute
the variation of ν when considered as a section of this bundle. This variational
formula allows us to show that the image of Wk −W−

k
in this intermediate Jacobian

is nondegenerate.

1. Introduction.

Let X be a Riemann surface and let J = J(X) be its Jacobian variety. The

Abel-Jacobi map I1 : X → J extends naturally to the kth symmetric product Xk

giving a map Ik : Xk → J . In this way Xk defines an algebraic k-cycle on J , which is

universally denoted Wk in the literature. The algebraic k-cycle Wk may be viewed

as the image under the Abel-Jacobi map of effective divisors of degree k on X. Let

W−

k be the image of Wk under the group involution on J(X). We remark that the

algebraic cycle Wk − W−

k is homologous to zero.

In the simplest case, that of two points p and q on a Riemann surface X, being

homologous is equivalent to being algebraically equivalent as algebraic 0-cycles.
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In fact, Lefschetz showed that homological equivalence and algebraic equivalence

coincide for divisors, that is, algebraic cycles of codimension one, although it is now

known that this is the exception rather than the rule in higher codimensions. In

1969, with the foundational work of P. Griffiths, it was shown that homological

equivalence is, in general, strictly weaker than algebraic equivalence [G3, G4]. This

result spawned a good deal of work to determine the exact relationship between

algebraic equivalence and homological equivalence.

For instance, the algebraic k-cycle Wk determines an element wg−k in the alge-

braic equivalence ring of J(X). It is known that Poincaré’s formulas

i!wi = wi
1

hold in the cohomology ring H∗(J ; � ). A. Collino showed in 1975 that these formulas

also hold in the algebraic equivalence ring of a hyperelliptic Riemann surface X [Co].

In 1983 G. Ceresa [C] succeeded in showing that for a generic Riemann surface X,

Wk and W−

k are always algebraically inequivalent if 1 ≤ k ≤ g−2. Of course, Wg−1

and W−
g−1 are always algebraically equivalent since they are homologous divisors

in J . Ceresa succeeded in proving his result by assuming that W1 and W−
1 are

algebraically equivalent for curves X lying in a Zariski open set in moduli space and

then using differential calculus in moduli space to derive certain relations about the

vanishing of linear functionals on H3(J(X); � ) for all curves X. He then produces a

reducible curve for which these relations fail to hold, thus reaching a contradiction.

The general result is then obtained by induction.
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A similar type of result was obtained by Ceresa and Collino [CC] in 1983 when

they showed that, for a generic 3-fold F in � 4 with one ordinary double point, the

difference of the two generators in the smooth quadric H, which is the inverse image

in the proper transform of F of the singular point under the blowing up of � 4 at

the singular point, is not algebraically equivalent to zero, even though Griffiths has

shown that it is homologous to zero.

The difficulty with this approach is that although Ceresa’ theorem establishes

that W1 and W−
1 are algebraically inequivalent for a generic curve X, the theorem

provides no way of determining, for a given Riemann surface X, whether W1 and

W−
1 are algebraically equivalent.

In his 1983 paper in Acta Mathematica [BH1], B. Harris contributed to the ability

to determine when W1 and W−
1 are algebraically inequivalent by introducing the

technique of harmonic volume. Let X be a nonsingular algebraic curve of genus

g ≥ 3 and let θ1, θ2, θ3 be three real harmonic 1-forms on X with integer periods.

Choose a basepoint p ∈ X and define a map J1 : X → T 3 by

J1(x) =

(∫ x

p

θ1,

∫ x

p

θ2,

∫ x

p

θ3

)
modulo � 3.

By imposing the conditions that
∫

X
θi ∧ θj = 0 for 1 ≤ i < j ≤ 3, we are assured

that the image J1X in T 3, as a singular 2-cycle, is the boundary of some 3-chain

C3, which is unique modulo 3-cycles. We define the harmonic volume of θ1, θ2, θ3

to be the integral
∫

C3

dx1 ∧ dx2 ∧ dx3,
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where J∗
1 (dxi) = θi.

The importance of the concept of harmonic volume lies in the following two facts.

First, the value of the linear functional ν which is the image of the algebraic cycle

W1 −W−
1 in the Griffiths intermediate Jacobian associated to the Jacobian of X is

twice the value of harmonic volume. Second, in a concrete computational sense, an

equivalent definition of harmonic volume is as the iterated integral

∫

γ

(h1θ2 − η12) modulo � ,

where γ is a path on X Poincaré dual to the cohomology class of θ3, h1 is a function

on γ obtained by integrating θ1, and η12 is a 1-form on X satisfying dη12 = θ1 ∧ θ2.

It is this interpretation of harmonic volume as an iterated integral which allows its

explicit computation.

If W1 is algebraically equivalent to W−
1 , then ν, suitably extended to a � -linear

functional ν̃ on complex-valued forms, must vanish on (3, 0)-forms, since W1 and

W−
1 are both contained in an algebraic surface. Thus, in order to W1 and W−

1 to

be algebraically equivalent, it is necessary that twice the harmonic volume vanish

on every 3-tuple of holomorphic differentials. This result was known to Hodge and

we recall it here in its higher dimensional analog:

Proposition 1.1. If Wk is algebraically equivalent to W−

k in J , then the � -linear

map ν̃, considered as a linear functional on H2k+1,0(J) ⊕ · · · ⊕ Hk+1,k(J), is zero

modulo periods except possibly on Hk+1,k(J).
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Using the technique of harmonic volume, Harris shows that the Fermat curve of

genus three is a specific example of a curve X whose image W1 in its Jacobian is

not algebraically equivalent to the image of W1 under the group involution [BH2].

We remark that Harris’ harmonic volume necessarily vanishes if X is a hyper-

elliptic Riemann surface since the image of a hyperelliptic Riemann surface in its

Jacobian is merely translated under the group involution. It is conjectured that the

converse also holds: If the harmonic volume map is identically zero on a Riemann

surface X, then X is hyperelliptic. A result by M. Pulte [P] in this direction shows

that if the harmonic volume vanishes there must exist on X a distinguished (g−1)th

root of the canonical divisor.

The goal of this paper is to generalize Harris’ definition of harmonic volume to

algebraic cycles Wk −W−

k for k > 1. This will be accomplished by generalizing the

idea of choosing p real harmonic 1-forms with integral periods and integrating from

a fixed basepoint to give a map J` : X` → T p, for 1 ≤ ` ≤
[

p
2

]
, of the `th symmetric

product of X into a p-dimensional torus. We first ask what condition must be

imposed on the choice of these 1-forms in order to insure that the image will be the

boundary of some chain. The answer to this question will be shown to depend only

on the cohomology class of the wedge product of these forms when considered as

representing elements of H1(J(X); � ). We will call a class in Hp(J(X); � ) `-good

if it is represented by a wedge product of p real harmonic 1-forms with integral

periods such that the image of X` under the associated map J` : X` → T p is the

5



boundary of some (2` + 1)-chain.

Our first result is best expressed in the language of filtrations. The Lefschetz

decomposition for any p-form on J(X)

[p/2]∑

r=0

Lr(θ(r)),

where L is the Lefschetz operator and θ(r) is a primitive (p − 2r)-form, provides a

filtration of the real cohomology of J(X):

L0(θ(0)) ⊂ L0(θ(0)) + L1(θ(1)) ⊂ · · · ⊂

[p/2]−1∑

r=0

Lr(θ(r)) ⊂

[p/2]∑

r=0

Lr(θ(r)) = Hp(J ; � ).

Let G` be the subgroup of Hp(J(X); � ) generated by `-good p-forms and define G�̀

to be the subspace G` ⊗ � of H2k+1(J ; � ) and G�̀ to be the subspace G` ⊗ � of

H2k+1(J ; � ). Then the groups G�̀ also provide such a filtration:

G1� ⊂ G2� ⊂ · · · ⊂ G
[p/2]−1� ⊂ G

[p/2]� ⊂ Hp(J ; � ).

Our first result is that these two filtrations agree. In particular, a decomposable

integral (2k + 1)-form is k-good if and only if the last term of its Lefschetz decom-

position vanishes.

B. Harris has shown that in the case k = 1, the class of good forms coincides with

the class of primitive forms. The result just cited shows that for k ≥ 2, the class of

good forms is strictly larger than the class of primitive forms.

In §3 we limit our attention to p = 2k + 1, ` = k. Here we will use the term

good rather than k-good. By choosing a chain in T 2k+1 with boundary equal to the
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image JkXk, we define harmonic volume to be the linear functional on (2k + 1)-

forms obtained by integrating modulo � over this chain. Just as in Harris’ paper,

the homomorphism ν on good forms is twice the value of harmonic volume. We

go on to show that values of harmonic volume on good forms lying in Gk−1 lie in

a discrete subgroup of � /� . This result will be used in §4 to show that the linear

functional ν vanishes identically on Gk−1. In particular, ν vanishes on all primitive

forms if k ≥ 2.

This last result generalizes a remark of G. Ceresa [C, Remark 3.15]. The content

of Ceresa’s remark is that the map ν, suitably extended to a complex-linear map ν̃,

when restricted to primitive (g, 0) forms, gives a (multivalued) section (depending

on the choice of chain with boundary Wk − W−

k ) of the dual of the Hodge bundle

on moduli space which vanishes modulo periods along the divisor of curves X con-

taining a pencil of divisors of degree k + 1. The result cited at the end of the last

paragraph shows that this section vanishes identically if k ≥ 2. The vanishing of

this section for k ≥ 2 may be given a proof independent of harmonic volume, and

we do so here.

Proposition 1.2. Let X be a nonsingular algebraic curve of genus g ≥ 2k +1. Let

θ = θ1 ∧ · · · ∧ θ2k+1 be a decomposable (r, 2k + 1 − r)-form on J .

If r <
[

k
2

]
or if r > 2k + 1−

[
k
2

]
, then ν̃(θ) = 0 modulo periods. In particular, if

k ≥ 2, ν̃ is identically zero modulo periods on (2k + 1, 0)-forms.
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Proof: We may suppose k ≥ 2. Let ` =
[

k
2

]
and define

D̃2k+1 = m](W` × D2(k−`)+1 + D2`+1 × W−

k−`),

where ∂D2j+1 = Wj −W−

j . A computation shows that D̃2k+1 is homologous to
(
k
`

)

times D2k+1, since W`×Wk−` is a
(
k
`

)
-sheeted cover of Wk. Computing the integral

of θ over D̃2k+1 by pulling back the integrand to W` × D2(k−`)+1 + D2`+1 × W−

k−`

yields an expression of the integral as a linear combination of products of integrals

over W` and D2(k−`)+1 and of integrals over Wk−` and D2`+1. The hypotheses force

all the integrals over Wk−` and W` to be zero, and it follows that ν̃(θ) is a
(
k
`

)
torsion

point. A continuity argument similar to the one in the proof of Proposition 4.1 as

X varies over Torelli space then shows that ν̃(θ) is zero. �

We note that in the example given in [BH2] using the Fermat curve of degree 4,

it is shown that ν̃ does not vanish identically of H3,0(X) if the genus of X is 3,

whereas by Ceresa’s remark, if X is hyperelliptic of genus 3, ν̃ is identically zero.

This is easily seen since the image of a hyperelliptic X in its Jacobian is translated

under the group involution.

In §4 we use a continuity argument as X varies in Torelli space together with

the result that values of harmonic volume on good forms in Gk−1 lie in a discrete

subgroup of � /� to show that ν is identically zero on Gk−1. In particular, this shows

that for k ≥ 2, the image of Wk − W−

k in the intermediate Jacobian J (J(X)) of

the Jacobian of X is identically zero, and hence the Griffiths primitive intermediate

Jacobian cannot be used to determine the algebraic equivalence of Wk and W−

k .
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The Hodge filtration of H2k+1(J) induces a filtration on the subspace Gk� of

H2k+1(J) generated by good forms. This filtration is given by F dGk� = G2k+1,0(J)+

· · · + Gd,2k+1−2(J). Since F k+1Gk� ∩ Gk� = 0, the natural � -linear map

Gk� → Gk� /F k+1Gk� ∼= F k+1Gk� ,

is an isomorphism. This gives Gk� a natural complex structure that, by the work of

Griffiths, varies holomorphically with the complex structure on J .

We consider the homomorphism ν as a section of a holomorphic torus bundle

defined as follows. The linear functional ν is an element of

Hom(Gk, � /� ) ∼= Hom� (Gk� , � )/ Hom� (Gk, � ).

Using the complex structure on Gk� constructed above, this quotient space is a com-

pact complex Lie group similar to Griffiths’ intermediate Jacobian [G2]. In fact,

it is merely (F k+1, Gk� )∗ modulo the lattice G∗. On Torelli space we construct a

bundle with fiber (F k+1, Gk� )∗/G∗. The homomorphism ν then provides a holomor-

phic section of this bundle, a result which is also essentially due to Griffiths. Using

harmonic volume as a computational tool, we then derive a formula computing the

“vertical codifferential” of ν, a concept made precise in §5.

In §5 we show that harmonic volume is nondegenerate by using the formula for the

codifferential mentioned above to compute the differential of the harmonic volume

map at a point of Torelli space representing a hyperelliptic Riemann surface. We

note that the differential at this point is injective on the normal space to the (2g−1)-

dimensional hyperelliptic locus. This result suggests that the use of an intermediate
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Jacobian based on periods of good forms rather than on periods of primitive forms

might be fruitful in achieving a version of Abel’s theorem in higher dimensions for

classifying algebraic cycles up to algebraic equivalence.

The research appearing here is taken from my Ph.D. dissertation, done at Brown

University under the direction of Bruno Harris.

I wish to thank Joe Harris, Bill Fulton, Jean-Luc Brylinski, Bob MacPherson,

John Hughes, David Zelinsky, Alan Landman, and Bob Accola for their professional

insights and assistance at various stages in my research. Special thanks go to Alan

Landman whose diligence in reading my dissertation helped prevent critical errors

from going into print. Further, I would like to thank the geometry/topology faculty

of The University of Georgia, particularly Ted Shifrin, Robert Varley, and Roy

Smith, for their help. My sincerest gratitude also goes to Roy Smith and Giuseppe

Ceresa for helpful correspondences.

My highest thanks and gratitude go to Bruno Harris, whose research inspired this

work.

2. Good Forms.

In the one-dimensional case, B. Harris defines a map J1 : X → T 3 by integrating

modulo � three real harmonic 1-forms with integral periods along a path. In order

to determine the domain of harmonic volume, he determines what constraints must

be imposed on the 1-forms in order to ensure that the image J1X in T 3 is the

boundary of some 3-chain. As remarked in the introduction, the condition that
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the image J1X in T 3 is a boundary depends only on the wedge product of the

three 1-forms, considered as forms on J(X). He discovers that the constraints can

be expressed in terms of the vanishing of the natural skew-symmetric pairing of

1-forms on X defined by θi · θj =
∫

X
θi ∧ θj . Harris then shows that the class of

decomposable integral 3-forms on J(X) which satisfy these constraints is precisely

the set of primitive decomposable integral 3-forms.

In this section we will determine the domain of our higher dimensional harmonic

volume by choosing real integral harmonic 1-forms θ1, . . . , θp on X and defining a

map J` : X` → T p for each `, 1 ≤ ` ≤
[

p−1
2

]
. We then ask what condition must be

imposed on the wedge product θ1 ∧ · · · ∧ θp, considered as representing an element

of Hp(J(X); � ), in order to ensure that the image J`X` is the boundary of some

chain in T p. We then proceed naively using the fact that J`X` is a boundary if and

only if it represents the zero element in Hp(T p; 	 )∗.

Let X be a Riemann surface of genus g ≥ p ≥ 3 for a fixed natural number p.

Let J = J(X) be its Jacobian variety. Let θ1, . . . , θp be real harmonic 1-forms on

J(X) with integer periods. For each `, 1 ≤ ` ≤
[

p−1
2

]
, define J` : X` → T p by

J`(x1, . . . , x`) =

(
∑̀

i=1

∫ xi

p

θ1, . . . ,
∑̀

i=1

∫ xi

p

θp

)
modulo � p.

We define θ1 ∧ · · · ∧ θp to be an `-good p-form if J`X` is the boundary of some

(2` + 1)-chain in T p. By viewing J`(x) as a linear functional on the subspace V

of H1(X; 	 ) generated by θ1, . . . , θp, it is immediate that the definition of good

depends only on V and not on the individual 1-forms. Hence, the definition of

11



`-good depends only on the wedge product of these 1-forms.

We now wish to determine which p-forms are `-good.

Lemma 2.1. J`X`, as a singular 2`-cycle, is the boundary of some (2` + 1)-chain

in T p if and only if

∑

τ∈S2`

(sgn τ)
∏̀

m=1

(θτσ(2m−1) · θτσ(2m)) = 0.

for all order preserving injections σ : {1, . . . , 2`} → {1, . . . , p}.

Proof: J`T` is a boundary in T p if and only if
∫

J`X`
ψ = 0 for all closed 2`-forms ψ

on T p. Since H2`(T p) equals ∧2`H1(T p), it is necessary and sufficient to show that

∫
J`X`

ψ = 0 for all ψ’s of the form dxσ(1) ∧ · · · ∧ dxσ(2`), where σ : {1, . . . , 2`} →

{1, . . . , p} is an order preserving injection. Pulling this integral back to X` and

using the fact that H1(X`; � ) is isomorphic to the subring of H1(X`; � ) of elements

invariant under the natural action of the symmetric group S` (see [M]), this integral

may be explicitly computed as a product of integrals over X. This computation

yields the result. �

Let B`,σ =
∑

τ∈S2`
(sgn τ)

∏`
m=1(θτσ(2m−1) · θτσ(2m)).

We notice that the condition in Lemma 2.1 contains products of terms of the form

θi ·θj . Such terms may be obtained by taking the interior product of θ1∧· · ·∧θ2k+1

with powers of the fundamental class η of the image of X in J , if we consider these

forms simply as elements of dual exterior algebras. We remark that if Ai, Bi for

1 ≤ i ≤ g is a canonical basis for H1(X; � ), then the fundamental 2-form Ω on
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J is equal to
∑g

i=1 Bi ∧ Ai. Further, if ai, bi for 1 ≤ i ≤ g is the dual basis for

H1(X; � ) ∼= H1(J ; � ), then η =
∑g

i=1 bi ∧ ai is the homology class of the image of

X in J . Hence, we see how taking the interior product with powers of η and the

exterior product with powers of Ω, that is, powers of the Lefschetz operator, might

be related. This motivates the following linear algebra construction.

Using the fact that the cohomology ring H∗(J ; 	 ) is the exterior algebra on

H1(J ; 	 ) and that H∗(J ; 	 ) is the dual exterior algebra, consider the following

linear algebra construction. For n ≤ m, we define the pseudocap product,

∩̃ : Hm(J ; 	 ) ⊗ Hn(J ; 	 ) → Hm−n(J ; 	 )

by setting θ1 ∧ · · · ∧ θm∩̃c1 ∧ · · · ∧ cn equal to

K(m, n)
∑

σ∈Sm

(sgn σ)θσ(1)(c1) · · · θσ(n)(cn)θσ(n+1) ∧ · · · ∧ θσ(m)

where

K(m, n) =
1

(m − n)!
(−1)n(m−n)+

n(n−1)
2

An analogous construction for n ≥ m defines the ordinary cap product.

Now define

P` : Hp(J ; 	 ) → Hp−2`(J ; 	 )

to be the map taking θ to θ∩̃η`. This is simply the interior product described above

between the dual exterior algebras.
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Lemma 2.2. Let θ = θ1 ∧ · · · ∧ θp be a decomposable rational p-form. Then

P`(θ) =
1

2`(p − 2`)!

∑

µ∈Sp

(sgnµ)θµ(2`+1) ∧ · · · ∧ θµ(p)

∏̀

m=1

(θµ(2m−1) · θµ(2m)).

Proof: This lemma follows by a straightforward computation by induction on `

and the fact that θ∩̃η` = (θ∩̃η`−1)∩̃η for all natural numbers ` ≥ 2. �

Hence, pseudocap product with η` has the effect of sequentially removing ` pairs

of 1-forms, taking their product under the skew-symmetric bilinear form, and then

taking the product of these ` numbers as the coefficient for the wedge product of

the remaining (p− 2`) 1-forms, at least up to a nonzero multiplicative constant. It

should be evident to the reader how this is related to the condition in Lemma 2.1.

Proposition 2.3. Let J` be defined by the linearly independent integral harmonic

forms θ1, . . . , θp. J`X` is the boundary of some (2` + 1)-chain in T p if and only if

P`(θ1 ∧ · · · ∧ θp) = 0.

Proof: Using the result of Lemma 2.2 and a combinatorial argument, it can be

shown that the coefficients of the linearly independent terms in P`(θ) are precisely

the numbers B`,σ from Lemma 2.1. Hence, P`(θ) = 0 if and only if all the B`,σ’s

are zero. Now Lemma 2.1 completes the proof. �
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Now we may begin studying the kernel of P`.

Proposition 2.4. Let θ = θ1 ∧ · · · ∧ θp be a decomposable p-form in Hp(J ; 	 ) ∼=

∧P H1(J ; 	 ). Then there exist nonnegative integers s and t with 2s + t = p and

real harmonic 1-forms Ai, Bj for 1 ≤ i ≤ s + t, 1 ≤ j ≤ s, with Ai · Bj = δij and

Ai · Aj = 0 = Bi · Bj for all i and j, and

θ = cA1 ∧ B1 ∧ · · · ∧ As ∧ Bs ∧ As+1 ∧ · · · ∧ As+t,

for some nonzero rational constant c. Further, the numbers s and t are unique.

Proof: By considering θ as representing a p-plane in H1(J ; 	 ) and the pairing

(α, β) 7→
∫

X
α∧β as a skew-symmetric bilinear form, this proposition reduces to an

elementary linear algebra fact about canonical representations of skew-symmetric

bilinear forms over a field. �

Define a decomposable rational p-form θ to be of wedge type (s, t) if s and t are

as in Proposition 2.4 and write θ = θs,t.

Let G` ⊂ Hp(J ; � ) be the subgroup generated by all `-good p-forms and let G
̀

be the vector space G` ⊗� 	 . Let O` ⊂ Hp(J ; � ) be the subgroup generated by

all decomposable integral p-forms where, possibly after some rearrangement of the

θi’s, one has θi · θj = 0 for 1 ≤ i, j ≤ p − ` + 1. The class O` will be called the set

of `-orthogonal p-forms. The Lefschetz operator is defined to be the map

L : Hp(J ; 	 ) → Hp+2(J ; 	 )

θ 7→ Ω ∧ θ.
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Proposition 2.5. Let θs,t be a decomposable rational p-form of wedge type (s, t)

representing an element in Hp(J ; 	 ).

(a) θs,t∩̃η` = 0 if and only if ` > s. Consequently, θs,t is a generator of G
̀ if

and only if ` > s.

(b) θs,t is a generator of O` ⊗� 	 if and only if ` > s.

(c) Lg−p+`(θs,t) = 0 if and only if ` > s.

Hence, for decomposable rational p-forms θ, one has

θ ∈ G
̀ if and only if θ ∈ O` ⊗� 	 if and only if θ ∈ ker Lg−p+`.

Proof: Using Proposition 2.4, write θ in the canonical form given there, and

complete the set of 1-forms to a canonical basis Ai, Bi, 1 ≤ i ≤ g, for H1(J ; 	 ).

Then the fundamental 2-form on J is given by Ω =
∑g

i=1 Bi ∧ Ai. From the

paragraph after the proof of Lemma 2.2 which describes the pseudocap product,

one concludes that θs,t∩̃ηs is a rational constant times As+1 ∧ · · · ∧ As+t, and

θs,t∩̃η` is zero if ` > s since all the Ai’s are orthogonal.

A generator of O` ⊗� 	 must represent a p-plane in H1(J ; 	 ) which contains a

(p−`+1)-dimensional totally isotropic subspace with respect to the skew-symmetric

pairing of 1-forms. This is possible if and only if s+t ≥ p−`+1, which is equivalent

to ` > s.
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Likewise, Lq(θ) = 0 if and only if q + s + t > g, so Lg−p+`(θ) = 0 if and only if

g − p + ` + s + t > g, which is equivalent to l > s. �

Proposition 2.6. Let θ be a p-form on J representing an element of Hp(J ; 	 ).

Then for 1 ≤ ` ≤
[

p−1
2

]
, θ is in ker Lg−p+` if and only if θ is in G
̀ .

Proof: By Proposition 2.5 and the linearity of the Lefschetz operator, it is clear

that G
̀ ⊂ ker Lg−p+`.

For the reverse inclusion, choose a canonical basis, Ai, Bi 1 ≤ i ≤ g, for H1(J ; � ).

Write

θ =
∑

J∈J

θJ ∧ Cj1 ∧ · · · ∧ Cjt
,

where Ci equals either Ai or Bi, θJ consists of a sum of forms containing only

wedge products of s pairs Ai ∧Bi, and the sum is over all distinct singleton endings

Cj1∧· · ·∧Cjt
. Since forms with different singleton endings are linearly independent,

Lq(θ) = 0 if and only if Lq(θJ)∧Cj1∧· · ·∧Cjt
= 0 for all singleton endings. However,

a simple computation shows that Lq(θJ) ∧ Cj1 ∧ · · · ∧ Cjt
= 0 for all J if and only

if g − s − t + ` > g − t, which is equivalent to ` > s. It follows that θ is in G
̀ , by

Proposition 2.5. �

Corollary 2.7. Let G` ⊂ Hp(J ; � ) be the subgroup generated by all `-good p-forms

and let G
̀ be the vector space G`⊗� 	 . Let O` ⊂ Hp(J ; � ) be the subgroup generated

by all `-orthogonal p-forms.

Then O` ⊗� 	 = G
̀ = kerLg−p+`.
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Corollary 2.8. Let θ1, . . . , θp be linearly independent integral harmonic 1-forms

on J and let θ = θ1 ∧ · · · ∧ θp be the corresponding nonzero p-form on J . Let

θ =
∑[p/2]

r=0 Lr(θ(r)) be the Lefschetz decomposition of θ, where θ(r) is a primitive

(p − 2r)-form on J and Lr is the rth power of the Lefschetz operator.

Then θ is `-good if and only if θ` = · · · = θ[p/2] = 0.

Proof: Writing θ in its Lefschetz decomposition and applying Lg−p+`, we see that

all the terms with 0 ≤ r ≤ ` − 1 are zero since θ(r) is a primitive (p − 2r)-form.

Since Lg−p+`(θ) is zero and the Lefschetz decomposition is unique, we must have

that θ(r) = 0 for all ` ≤ r ≤
[

p
2

]
. �

We remark that this corollary provides the equivalence of the two filtrations of

Hp(J ; � ) described in the introduction. Also, for ` = 1, g − p + ` = g − p + 1, and

it follows that G1
 consists precisely of all primitive p-forms. This result is given

in [BH1] for p = 3. However, for p ≥ 5, the space G
[(p−1)/2]
 strictly contains all

primitive p-forms.

We also remark that it is not true that θ = θ1 ∧ · · · ∧ θp is `-good if and only if

for some (p − ` + 1) of the θi’s we have θi · θj = 0. As an example, take p = 5 and

` = 2, and let X be a Riemann surface of genus 5 with symplectic basis A1, . . . ,

A5, B1, . . . , B5 for H1(X; � ). Let

θ1 = A1, θ2 = B1 + A2, θ3 = 2B1 + B2 + A3,

θ4 = B1 + B2 + B3 + A4, θ5 = −B2 − 3B1 + B3 + 2B4.
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Then, we have θi · θj 6= 0 if i 6= j, but θ1 ∧ · · · ∧ θ5 is good, since

θ1 ∧ · · · ∧ θ5 = θ′1 ∧ · · · ∧ θ′5,

where

θ′1 = θ1, θ′2 = θ2, θ′3 = θ1 − 2θ2 + θ3,

θ′4 = θ1 − θ2 + θ4, θ′5 = −θ1 + 3θ2 + θ5,

as is easily checked, and this lies in O2 ⊂ G2 since θ′i · θ
′
j = 0 for 2 ≤ i < j ≤ 5. The

following proposition tells us that this is the only type of counterexample.

Proposition 2.9. A decomposable integral p-form θ = θ1∧· · ·∧θp on J is `-good if

and only if there exist integral harmonic 1-forms θ′1, . . . , θ′p such that θ = θ′1∧· · ·∧θ′p

and θ′i · θ
′
j = 0 for 1 ≤ i < j ≤ p − ` + 1. Hence, O` = G`.

Proof: If θ = θ′1∧· · ·∧θ′p is a decomposable integral (p−`+1)-form with θ′i ·θ
′
j = 0

for 1 ≤ i < j ≤ p−`+1, we consider θ∩̃η`. As remarked after Lemma 2.2, pseudocap

product with η` removes ` pairs of 1-forms, takes their pairwise product under the

skew-symmetric bilinear form, and takes the product of these ` numbers as the

coefficient for the wedge product of the remaining (p− 2`) 1-forms. Then it is clear

that θ∩̃η` = 0 since any choice of ` pairs of 1-forms must contain (` + 1) mutually

orthogonal 1-forms, so one pair must consist of orthogonal 1-forms. Hence, all the

coefficients are zero and θ is `-good, by Proposition 2.3. So O` ⊂ G`.

Suppose θ = θ1 ∧ · · · ∧ θp is `-good. Let Π be the oriented p-plane in H1(X; 	 )

spanned by θ1, . . . , θp. Using a basic linear algebra result, we may choose a basis
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τ1, . . . , τs, τ ′
1, . . . , τ ′

t for Π with t ≤ s, t + s = p, τi · τj = 0 for 1 ≤ i < j ≤ s,

and τi · τ
′
j = niδij for some natural numbers ni. We remark that we may choose

ni = 1 if i > t. With respect to this basis, the Kähler form Ω may be written

Ω =
∑g

i=1
1
ni

τ ′
i ∧ τi, so

Ωg−p+`

(g − p + `)!
=

∑

I

NIτ
′
i1 ∧ τi1 ∧ · · · ∧ τ ′

ig−p+`
∧ τig−p+`

,

where the sum is over all multi-indices I = (i1, . . . , ig−p+`) with 1 ≤ i1 < · · · <

ig−p+` ≤ g, and NI = 1/ni1 . . . nig−p+`
.

So, Lg−p+`(θ)/(g − p + `)! equals

±
∑

I

NIτi1 ∧ τ ′
i1 ∧ · · · ∧ τig−p+`

∧ τ ′
ig−p+`

∧ τ1 ∧ · · · ∧ τs ∧ τ ′
1 ∧ · · · ∧ τ ′

t .

We note that all nonzero terms in this expression are linearly independent and the

only nonzero terms occur when {i1, . . . , ig−p+`} ⊂ {s + 1, . . . g}.

But the cardinality of the set {s+1, . . . , g} is g−s > g−(p−`+1) = g−p+`−1,

so g− s ≥ g− p+ `. Hence, we may choose a subset {i1, . . . , ig−p+`} ⊂ {s+1, . . . g}

and guarantee that Lg−p+`(θ) 6= 0. This contradiction shows s ≥ p − ` + 1, so that

G` ⊂ O`, which proves the proposition. �

We conclude this section by summarizing our results in the following theorem:

Theorem 2.10. Let X be a Riemann surface of genus g ≥ p ≥ 3 and let ` be a

natural number with 1 ≤ ` ≤
[

p−1
2

]
. Let G` be the abelian subgroup of Hp(J ; � )

generated by `-good p-forms. Let O` be the abelian subgroup of Hp(J ; � ) generated
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by `-orthogonal p-forms. Let L be the Lefschetz operator on Hp(J ; 	 ) defined by

taking the wedge product with the fundamental 2-form on J .

Then O` = G`. Further, if we consider the vector spaces generated by these

abelian groups in Hp(J ; 	 ) then O` ⊗� 	 = G
̀ = kerLg−p+`.

Moreover, suppose θ is a decomposable integral p-form and

θ =

[p/2]∑

r=0

Lr(θ(r))

is the Lefschetz decomposition of θ, where θ(r) is a primitive (p − 2r)-form on J

and Lr is the rth power of the Lefschetz operator.

Then θ is `-good if and only if θ(`) = · · · = θ[p/2] = 0.

3. Harmonic Volume.

In this section we will define harmonic volume and show that twice the value of

harmonic volume on primitive (2k + 1)-forms equals the linear functional ν. This

relationship will enable us to utilize harmonic volume as a tool for calculating the

image of the algebraic k-cycle Wk −W−

k in the intermediate Jacobian J (J(X)). In

particular, we show that the values of harmonic volume on good forms in Gk−1 lie

in a discrete subgroup of � /� and this will enable us in the next section to show

that harmonic volume is identically zero on this class of good forms.

Let θ = θ1 ∧ · · · ∧ θ2k+1 be a good (2k + 1)-form. Define Jk : Xk → T 2k+1 by

Jk(x1, . . . , xk) =

(
k∑

i=1

∫ xi

p

θ1, . . . ,

k∑

i=1

∫ xi

p

θ2k+1

)
modulo � 2k+1,
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where p is a fixed basepoint in X. We know from §2 that JkXk, as a singular

2k-cycle, is the boundary of some (2k + 1)-chain, C2k+1, in T 2k+1. We define the

harmonic volume of θ, I(θ), to be

I(θ) =

∫

C2k+1

dx1 ∧ · · · ∧ dx2k+1 modulo � ,

where θi is the pullback of dxi by the Abel-Jacobi map.

We remark that if we change the basepoint in X used to define the map Jk, the

map is changed by translation. Since integration is invariant under rigid translation,

the mapping I is independent of the basepoint in X. We also remark that for a

hyperelliptic Riemann surface X, the harmonic volume vanishes identically, just as

in the case k = 1.

Our first result is to demonstrate harmonic volume as a sum of integrals over

a nested sequence of submanifolds of the symmetric product Xk. This result is

analogous to Harris’ result representing harmonic volume as an iterated integral.

Proposition 3.1. Let θ = θ1 ∧ · · · ∧ θ2k+1 be a nonzero good (2k + 1)-form. Let

N be the largest integer so that θN ∧ · · · ∧ θ2k+1 is exact on Xk. We remark that

2 ≤ N ≤ 2k. Let γ2k = Xk, and for each j, N − 1 ≤ j ≤ 2k − 1, let γj be a

j-manifold in γj+1 dual to θj+2. Let fj(x) =
∫ x

p
θj. Then there exist forms η1,...,N ;

. . . ; η1,...,2k with each η1,...,j being a (j − 1)-form on γj and satisfying

dη1,...,j = J∗
k (dx1 ∧ · · · ∧ dxj) and

∫

γj

η1,...,j ∧ θj+1 = 0.
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Further,

I(θ) =(−1)N−1

∫

γN−1

fNθ1 ∧ · · · ∧ θN−1 + (−1)Nη1,...,N

−

∫

γN

η1,...,N+1 − · · · −

∫

γ2k−1

η1,...,2k modulo � ,

and the value of the integral is independent of the choice of the η1,...,j’s. Moreover,

if γ̃j denotes γj cut along the submanifold γj−1, then

I(θ) =

∫

X̃k

f2k+1θ1 ∧ · · · ∧ θ2k −

∫

γ̃2k−1

f2kθ1 ∧ · · · ∧ θ2k−1

+ · · · + (−1)N−1

∫

γ̃N−1

fNθ1 ∧ · · · ∧ θN−1 modulo � .

Proof: Let γn be an oriented n-manifold, n ≥ 2, and let θ1, . . . , θn+1 be n + 1

closed 1-forms on γn with integer periods so that θn+1 is not exact on γn. Let p ∈ γn

be a fixed basepoint and suppose also that the image of the map Θn : γn → Tn+1

given by

x 7→

(∫ x

p

θ1, . . . ,

∫ x

p

θn+1

)
modulo � n+1

is the boundary of some (n + 1)-chain in Tn+1.

Let γn−1 be an (n− 1)-manifold in γn dual to θn+1. Let γ̃n be γn cut along γn−1

so that ∂γ̃n = γ+
n−1 ∪ γ−

n−1. Then fn+1(x) =
∫ x

p
θn+1 is well defined on γ̃n with

fn+1(p
−) = fn+1(p

+)+1, where p+ ∈ γ+
n−1 and p− ∈ γ−

n−1 correspond to p ∈ γn−1.

We have

(†)

γ̃n �Θ̃n



q

Tn × �



q

γn �Θn Tn+1
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where q are the natural quotient maps. Note that the oriented boundary of Θ̃n(γ̃n)

is (−1)nΘ̃n(γ+
n−1) ∪ (−1)n−1Θ̃n(γ−

n−1).

Let 1 ≤ i1 < · · · < in−1 ≤ n. Then, we have

∫

Θ̃n(γn−1)

dxi1 ∧ · · · ∧ dxin−1 =

∫

γn−1

d(Θn)i1 ∧ · · · ∧ d(Θn)in−1

=

∫

γn−1

θi1 ∧ · · · ∧ θin−1

=

∫

γn

θi1 ∧ · · · ∧ θin−1 ∧ θn+1

=

∫

Θ(γn)

dxi1 ∧ · · · ∧ dxin−1 ∧ dxn+1

= 0

by Stokes’ theorem, since Θn(γn) is a boundary.

Since

∫

Θ̃n(γn−1)

dxi1 ∧ · · · ∧ dxin−1 = 0

for all sequences 1 ≤ i1 < · · · < in−1 ≤ n, Θ̃n(γ+
n−1) is the boundary of some

n-chain, D+
n , in Tn × � . Then Θ̃n(γ−

n−1) = ∂D−
n , where D−

n = D+
n + (0, . . . , 0, 1).

Let Y = Θ̃n(γ̃n)− (−1)n(D+
n −D−

n ), where addition is as singular chains. Then Y

is an n-cycle in Tn × � and under the quotient map, q, q(Y ) = Θn(γn).

Since the map on homology induced by the quotient map q : Tn × � → Tn+1

is injective and q(Y ) is a boundary in Tn+1, we conclude that Y is a boundary

in Tn × � . Say Y = ∂Cn+1, where Cn+1 is a (n + 1)-chain in Tn × � . Then
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∂q(Cn+1) = Θn(γn), so,

∫

q(Cn+1)

dx1 ∧ · · · ∧dxn+1 =

∫

Cn+1

dx1 ∧ · · · ∧ dxn+1

= (−1)n

∫

Y

xn+1 dx1 ∧ · · · ∧ dxn

= (−1)n

∫

Θ̃nγ̃n

xn+1 dx1 ∧ · · · ∧ dxn

−

∫

D+
n

xn+1 dx1 ∧ · · · ∧ dxn +

∫

D−

n

xn+1 dx1 ∧ · · · ∧ dxn

= (−1)n

∫

γ̃n

fn+1 Θ∗
n(dx1 ∧ · · · ∧ dxn) +

∫

Dn

dx1 ∧ · · · ∧ dxn.

We remark that we have used the commutative diagram (†) to identify

Θ̃∗
n(dx1 ∧ · · · ∧ dxn) and Θ∗

n(dx1 ∧ · · · ∧ dxn) by means of the quotient map q,

where dx1 ∧ · · · ∧ dxn is considered as a form on Tn × � and Tn+1, respectively.

It is easily computed that

∫

γ̃n

Θ̃∗
n(dx1 ∧ · · · ∧ dxn) =

∫

γn

Θ∗
n(dx1 ∧ · · · ∧ dxn) =

∫

Θn(γn)

dx1 ∧ · · · ∧ dxn = 0,

since Θn(γn) is a boundary, and it follows that there exists a (n − 1)-form η1,...,n

on γn such that

dη1,...,n = Θ∗
n(dx1 ∧ · · · ∧ dxn).

Suppose
∫

γn
ψ ∧ θn+1 = 0 for all closed (n − 1)-forms ψ on γn. It then follows that

θn+1 is exact on γn, contradicting the hypothesis that this form is not exact. Thus,

there exists a closed (n − 1)-form ψ on γn with

∫

γn

ψ ∧ θn+1 = 1.
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Say
∫

γn

η1,...,n ∧ θn+1 = C.

We then replace η1,...,n by η1,...,n − Cψ and obtain a new (n − 1)-form, which we

will still call η1,...,n, on γn such that

(∗) dη1,...,n = Θ∗
n(dx1 ∧ · · · ∧ dxn) and

∫

γn

η1,...,n ∧ θn+1 = 0.

Then

∫

γ̃n

fn+1Θ
∗
n(dx1 ∧ · · · ∧ dxn) =

∫

γ̃n

fn+1dη1,...,n

=

∫

γ̃n

fn+1dη1,...,n + θn+1 ∧ η1,...,n

=

∫

γ̃n

d(fn+1 η1,...,n)

=

∫

(−1)nγ+
n−1

∪(−1)n+1γ−

n−1

fn+1 η1,...,n

= (−1)n+1

∫

γn−1

η1,...,n.

Note that if we choose another (n − 1)-form η′
1,...,n on γn satisfying (∗), then

η1,...,n − η′
1,...,n is a closed (n − 1)-form on γn, so

∫

γn−1

η1,...,n − η′
1,...,n =

∫

γn

(η1,...,n − η′
1,...,n) ∧ θn+1 = 0,

so the choice of η1,...,n is irrelevant.

So,
∫

Cn+1

dx1 ∧ · · · ∧ dxn+1 =

∫

Dn

dx1 ∧ · · · ∧ dxn −

∫

γn−1

η1,...,n.

26



The n-form dx1∧· · ·∧dxn on Tn×� arises by pulling back the form dx1∧· · ·∧dxn

on Tn by the projection p : Tn × � → Tn. Hence, if D]
n = p](Dn), we have

∫

Dn

dx1 ∧ · · · ∧ dxn =

∫

D]
n

dx1 ∧ · · · ∧ dxn.

Note that ∂D]
n = p](∂Dn) = p](Θ̃n(γn−1) is the image of γn−1 under the map

Θn−1 : γn−1 → Tn, given by integrating θ1, . . . , θn modulo � along a path.

Now γn−1 is an oriented (n − 1)-manifold whose image under the map Θn−1,

defined by integrating θ1, . . . , θn along a path, is the boundary of some n-chain in

Tn. If the form θn is not exact on γn−1, then we have an inductive step.

Thus, we obtain

I(θ) =

∫

D]
n

dx1 ∧ · · · ∧ dxN −

∫

γN−1

η1,...,N − · · · −

∫

γ2k−1

η1,...,2k modulo � ,

where γ2k = Xk and γ` is an `-manifold in γ`+1 dual to θ`+2; D]
N is an N -chain

in TN whose boundary is the image of the map ΘN−1 : γN−1 → TN given by

integrating θ1, . . . , θN modulo � along a path; and η1,...,` is an (` − 1)-form on γ`

with

dη1,...,` = J∗
k (dx1 ∧ · · · ∧ dx`) and

∫

γ`

η1,...,` ∧ θ`+1 = 0.

Since θN is exact on γN−1, the mapping ΘN−1 lifts to a mapping Θ̂N−1 with the

following diagram commuting:

γN−1 �
Θ̂N−1

TN−1 × �



q

γN−1 �
ΘN−1

TN
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The injectivity of the map induced on homology by q : TN−1 × � → TN yields

that Θ̂N−1(γN−1) is a boundary in TN−1 × � . If DN is an N -chain in TN−1 × �

with boundary Θ̂N−1(γN−1), then

∫

D]
n

dx1 ∧ · · · ∧ dxN ≡

∫

Dn

dx1 ∧ · · · ∧ dxN modulo �

= (−1)N−1

∫

Θ̂N−1(γN−1)

xN dx1 ∧ · · · ∧ dxN−1

= (−1)N−1

∫

γN−1

fN θ1 ∧ · · · ∧ θN−1.

This serves to complete the proof. �

Our next result is the crucial connection between harmonic volume and the image

of Wk − W−

k in the intermediate Jacobian J (J(X)).

Proposition 3.2. On good forms, the homomorphism ν defined by integration

over a chain whose boundary is Wk −W−

k , equals twice the harmonic volume. That

is ν = 2I.

Proof: By defining j : H1(X; � ) → H1(X; � ) by j(α) = − ∗ α, where ∗ denotes

the Hodge star operator, we induce a complex structure on H1(X; � ) which makes

it isomorphic to H1,0(X), so we may consider the Jacobian J to be
[
H1(X; � )

]∗

modulo the lattice generated by periods of θ1, . . . , θg, ∗θ1, . . . , ∗θg.

Consider the commutative digram

Xk �Ik J



π

Xk �Jk T 2k+1
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where Jk is the map defined above by integrating θ1, . . . , θ2k+1 along a path; and

π is projection on the first 2k + 1 factors.

If D2k+1 is a (2k + 1)-chain on J with boundary Wk − W−

k and C2k+1 is a

chain on T 2k+1 with boundary JkXk, then it is easily shown that π]D2k+1 and

C2k+1 − i]C2k+1, where i is the group involution on T 2k+1, are homologous. Now

using this fact and the definition of ν and I, the result follows. �

We now show that, for k ≥ 2 and for an element in Gk−1, the image ν(θ) lies

in a discrete subgroup of � /� . We will use this result in §4 to show that the

homomorphism ν is identically zero on Gk−1.

Lemma 3.3. For k ≥ 2 and θ = θ1 ∧ · · · ∧ θ2k+1 a generator of Ok−1, as defined in

§2, then ν(θ) is a (k!)-torsion point in � /� . Consequently, if θ is a decomposable

integral (2k + 1)-form in the kernel of the (g − k − 2)th power of the Lefschetz

operator, then θ is (k − 1)-good and ν(θ) is a (k!)-torsion point in � /� .

Proof: Rather than considering Wk, the image of Xk in J , consider m]W
k
1 , the

image of Xk in J , where m : J × · · · × J → J is multiplication.

We write W k
1 − (W−

1 )k as the sum

m](W
k
1 − (W−

1 )k) =

k−1∑

j=0

m]

[
(W1 − W−

1 ) × W k−j−1
1 × (W−

1 )
j
]
.

Now, choosing a 3-chain D3 whose boundary is W1 −W−
1 , then the cycle m](W

k
1 −

(W−
1 )k) is the boundary of

D2k+1 =

k−1∑

j=0

m]

[
D3 × W k−j−1

1 × (W−
1 )

j
]
.
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Using the fact that k!ν(θ) =
∫

D2k+1
θ and the fact that θ is in Ok−1 and therefore

at least k +3 of the θi’s are orthogonal, a simple computation of
∫

D2k+1
θ completes

the proof. �

We summarize the results from this section in the following theorem:

Theorem 3.4. Let X be a nonsingular algebraic curve of genus g ≥ 2k + 1 for a

fixed natural number k. Let J = J(X) be the Jacobian variety of X. Let I denote

the harmonic volume map and let ν denote the map on integral (2k + 1)-forms

given by integration modulo � over a chain D2k+1 whose boundary is the k-cycle

Wk −W−

k . Let ν̃ be the associated vector space map, which is well-defined modulo

periods. Then the � -linear map ν̃ is identically zero on (r, 2k+1−r)-forms if r <
[

k
2

]

or if r > 2k + 1 −
[

k
2

]
. Further, harmonic volume is a well-defined map which is

independent of the basepoint in X used to define the map Jk. Proposition 3.1

presents a formula demonstrating harmonic volume as a sum of integrals over a

nested sequence of submanifolds of Xk.

Further, when restricted to k-good (2k + 1)-forms, the homomorphism ν equals

twice the harmonic volume. The image of Gk−1 under the homomorphism ν is

contained in a discrete subgroup of � /� . Recalling Proposition 1.1, if Wk is alge-

braically equivalent to W−

k , it is necessary for ν̃ to vanish on forms of Hodge type

(r, 2k + 1 − r) if r 6= k and r 6= k + 1.
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4. Variation of Harmonic Volume.

In this section we will use the interpretation of harmonic volume as the “volume”

of a chain to utilize the methods of integral calculus in order to compute the change

in harmonic volume as the complex structure on X varies. The connection between

harmonic volume and ν will the allow us to derive a formula for the “vertical

codifferential” of ν when considered as a section of a holomorphic torus bundle.

Let G be the free abelian group of good (2k + 1)-forms on J . Let G� = G ⊗� �

and G� = G� ⊗� � . We remark that G� and G� may be considered as vector

subspaces of H2k+1(J ; � ) and H2k+1(J ; � ), respectively. By the Hodge Theorem,

H2k+1(J ; � ) =
⊕

p+q=2k+1 Hp,q(J), and, letting Gp,q = Hp,q(J) ∩ G� , we get

G� =
⊕

Gp,q, since the Lefschetz operator is a real operator of bidegree (1, 1).

As mentioned in the introduction, the Hodge filtration induces a filtration on the

subspace of H2k+1(J ; � ) generated by good forms. The inclusion

G� → G� /F k+1G� ∼= F k+1G� ,

gives G� a natural complex structure that, by the work of Griffiths, varies holomor-

phically with the complex structure on J .

The group homomorphism can then be realized as a point on the torus

Hom� (F k+1G� , � )/ Hom� (G, � )

in the following manner. The map ν is an element of Hom(G, � /� ). Now,

Hom(G, � /� ) is isomorphic to the quotient Hom(G, � )/ Hom(G, � ), and Hom(G, � )
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can be identified with Hom� (G� , � ). Further, if we define

µ : Hom� (G� , � ) → Hom� (G� , � )

by

µ(λ)(p) = λ(j(p)) + iλ(p),

we then identify Hom� (G� , � ) with Hom� (G� , � ). Denoting Hom(G, � ) by G∗ and

Hom� (F k+1G� , � ) by G∗
+, we may consider ν as a point on the torus G∗

+/G∗, a

compact complex Lie group similar to the intermediate Jacobian of the manifold J .

Now suppose we consider a holomorphic family of compact Riemann surfaces

Xs, all of a fixed genus g ≥ 2k + 1, where s ranges over some complex open disk

about the origin and X0 = X. Then we may consider the homology basis as

fixed and the complex structure as varying holomorphically. Then the torus bundle

on Torelli space with fiber G∗
+(s)/G∗(s) is holomorphic and the linear functional

ν provides a holomorphic section of this bundle. These results are essentially the

work of Griffiths [G1, Proposition 3.8, G2, Theorem 1.1 and 1.27]. The holomorphic

variation of ν implies the following result which generalizes the fact that ν vanishes

on holomorphic differentials as shown in Proposition 1.2.

Proposition 4.1. For k ≥ 2, the homomorphism ν is identically zero on Gk−1.

Proof: Let k ≥ 2 and let X be a Riemann surface of genus g ≥ 2k + 1. Consider

X as varying in Torelli space. That is, let ∆ be a (3g − 3)-dimensional complex

disk containing the origin with each s ∈ ∆ corresponding to a Riemann surface

32



Xs so that X0 = X and so that ∆ is a complete, effective parameterization of the

variation of complex structure of X.

Let θ = θ1 ∧ · · · ∧ θ2k+1 be a decomposable (2k + 1)-form on the Jacobian J(X)

which generates Ok−1 and let θs be a harmonic 1-form on Xs representing the same

cohomology class as θ. Thus, θs is a (k − 1)-good form on Js and by Lemma 3.3,

νs(θs) is a (k!)-torsion point in � /� . Since νs varies analytically with s and maps

continuously into a discrete set, νs is constant on θs as s varies. Now, choosing some

s0 for which the corresponding Riemann surface Xs0 is hyperelliptic, and therefore

νs0 is known to be identically zero, serves to conclude the proof. �

Hence, the homomorphism ν is identically zero on primitive forms for k ≥ 2.

Hence, in order to gather any useful information about the algebraic equivalence of

Wk and W−

k one must consider the larger class of good forms.

Now we consider the variation of harmonic volume as the complex structure of

X varies. To accomplish this, we will invoke the theory of deformation of complex

structure as described in [SS]. For a more modern treatment, the reader is also

referred to [K].

Fix a point t in the Riemann surface X and introduce a local coordinate z which

vanishes at t. Let s = ρ2e2iφ be a complex number of sufficiently small modulus so

that the closed disk |z| ≤ ρ lies in the image of the local coordinate z. Let z∗ be

a local coordinate whose image contains an annular neighborhood U of the curve

|z| = ρ, but which omits a neighborhood of t. We define a new Riemann surface Xs
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by removing the disk |z| < ρ from X and attaching a disk with local coordinate z

by identifying z∗ = z + s
z along the overlap U ∩ {z | |z| ≥ ρ}. Thus, X0 = X and

Xs defines a holomorphic family of Riemann surfaces as s varies over some small

open disk. A Riemann surface X∗ is a deformation of X if X∗ is conformal to Xs

for some s.

We remark that if θ is a harmonic 1-form on X representing a cohomology class

[θ] in H1(X; � ), then since H1(X; � ) ∼= H1(X∗; � ), so [θ] may also be considered

as a cohomology class in H1(X; � ). However, θ may no longer be harmonic on X∗,

but there is a unique harmonic 1-form θ∗ on X∗ with [θ∗] = [θ]. We say θ∗ is the

harmonic 1-form on X∗ associated to θ.

Choose 3g− 3 generic points t1, . . . , t3g−3 on X and perform this same deforma-

tion technique at each pont tj , making sure that the coordinate patches on which

the deformations take place do not overlap. This gives a (3g − 3)-dimensional pa-

rameter space ∆ with coordinates s1, . . . , s3g−3 over which the complex structure

of X varies. If the points t1, . . . , t3g−3 are chosen generically so that any quadratic

differential vanishing at all these points vanishes identically, then the evaluation

map

Ts(∆) ⊗ H0(X;K2) → � ,

3g−3∑

j=1

cj
∂

∂sj
⊗ q(z)(dz)2 7→

3g−3∑

j=1

cjq(tj),

is nondegenerate in the second factor, and it follows that the Kodaira-Spencer map

taking Ts(∆) to H1(X; Φ), where Φ = K−1, is surjective, hence an isomorphism.

34



Hence, by the Kodaira-Spencer completeness theorem, the disk ∆ is a complete,

effective parameterization of all possible variations of the complex structure of X.

Let X be a Riemann surface of genus g ≥ 2k+1 for a fixed natural number k and

let θ1, . . . , θ2k+1 be harmonic 1-forms on X and let θ∗1 , . . . , θ∗2k+1 be the harmonic

1-forms on X∗ associated to θ1, . . . , θ2k+1. We remark that θ∗1 ∧ · · · ∧ θ∗2k+1 is still

a good (2k + 1)-form. Let Jk : Xk → T 2k+1 be defined as in §2. That is,

Jk(x1, . . . , xk) =




k∑

j=1

∫ xj

p

θ1, . . . ,

k∑

j=1

∫ xj

p

θ2k+1


 modulo � 2k+1.

Likewise, let J∗
k : X∗

k → T 2k+1 be defined using θ∗1 , . . . , θ∗2k+1.

Recall that the harmonic volume of θ, I(θ), is the volume modulo � of a (2k+1)-

chain in Y 2k+1 which is bounded by JkXk. Similarly, I(θ∗) is the volume modulo

� of a (2k + 1)-chain in T 2k+1 which is bounded by J∗
kX∗

k . Thus, for X∗ near X,

and hence for X∗
k near Xk, I(θ∗)− I(θ) is the volume between the “surfaces ” JkXk

and J∗
kX∗

k in T 2k+1. In the case k = 1, this variation is computed by the method

of integral calculus [BH1, Theorem 5.8]:

Proposition 4.2. Let θ1, θ2, and θ3 be integral harmonic 1-forms subject to the

condition that
∫

X
θi ∧ θj = 0 for all i, j. This condition is equivalent to the three

form θ = θ1 ∧ θ2 ∧ θ3 being primitive on the Jacobian J of X. For 1 ≤ i, j ≤ 3

with i 6= j, let ηi,j be the unique 1-form on X such that dηi,j = θi ∧ θj and ηi,j is

orthogonal to all closed 1-forms on X. Define Q : P ⊗� � → H0(X;K2) by

Q(θ1 ∧ θ2 ∧ θ3) =
∑

(1,2,3)

(θi + i∗θ1)(η2,3 + i∗η2,3),

35



where ∗ indicates the Hodge star operator and the sum is over cycle permutations

of the set {1, 2, 3}.

Consider the harmonic volume I(θ; s) for s = (s1, . . . , s3g−3) near s = 0. Then

I(θ; s) − I(θ; 0) = Im


2π

3g−3∑

j=1

sj
Q(θ)

(dzi)2
(tj)


 + o(s)

where zj is the complex coordinate on X = X0 near tj. Further, harmonic volume

varies holomorphically with s.

We will use this result for the case k = 1 to derive an analogous formula for

the variation of harmonic volume for arbitrary k. Our result, which completes this

section, is

Theorem 4.3. Define Q1 : G� → H0(X;K2) by

Q1(θ1 ∧ · · · ∧ θ2k+1) =
∑

µ∈S2k+1

(sgn µ)(θµ(2k+1) + i∗θµ(2k+1))

· (ηµ(2k−1),µ(2k) + i∗ηµ(2k−1),µ(2k))

k−1∏

`=1

∫

X

θµ(2`−1) ∧ θµ(2`),

where ηi,j is the unique 1-form on X such that dηi,j = θi ∧ θj and ηi,j is orthogonal

to all closed 1-forms on X.

For s = (s1, . . . , s3g−3) ∈ � 3g−3 of sufficiently small modulus,

I(θ; s) − I(θ; 0) =
1

2k

1

(k − 1)!
Im


2π

3g−3∑

j=1

sj
Q1(θ)

(dzj)2
(tj)


 + o(s),

where zj is a local coordinate on X = X0 around tj.
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Proof: From the computation in the proof of Lemma 3.3, we have

k!ν(θ) = k
∑

I∈I

εI

∫

D3

θi1 ∧ θi2 ∧ θi3 ·

k−1∏

`=1

∫

X

θ2`+2 ∧ θ2`+3,

where I is the collection of all multi-indices I = {i1, . . . , i2k+1} with 1 ≤ i1 < i2 <

i3 ≤ 2k + 1; 1 ≤ i2` < i2`+1 ≤ 2k + 1, for 2 ≤ ` ≤ k; and εI is the sign of the

permutation i1, . . . , i2k+1 of 1, . . . , 2k + 1.

Since θ is k-good, we may assume θ is k-orthogonal by Proposition 2.9. Hence,

some k + 2 of the θi’s are mutually orthogonal under the skew symmetric pairing

(α, β) 7→
∫

X
α ∧ β. We may assume that θi1 , θi2 , and θi3 are mutually orthogonal,

for otherwise the summand is zero. So, θi1 ∧ θi2 ∧ θi3 is a primitive 3-form on J .

Then

∫

D3

θi1 ∧ θi2 ∧ θi3

is simply ν(θ), where this ν is the Abel-Jacobi map on integral 3-forms.

Now consider X as varying in Torelli space. Then

k! [ν(θ∗) − ν(θ)] =k
∑

I∈I

εI

∫

D3

θ∗i1 ∧ θ∗i2 ∧ θ∗i3 ·

k−1∏

`=1

∫

X

θ∗i2`+2
∧ θ∗i2`+3

− k
∑

I∈I

εI

∫

D3

θi1 ∧ θi2 ∧ θi3 ·

k−1∏

`=1

∫

X

θi2`+2
∧ θi2`+3

.

Since the pairing (α, β) 7→
∫

X
α ∧ β is topological, and therefore independent of

complex structure, the integrals appearing in the products are constant with respect
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to variation in Torelli space. Hence, we obtain

(∗)
k![ν(θ∗)−ν(θ)] =

=k
∑

I∈I

εI

(∫

D3

θ∗i1 ∧ θ∗i2 ∧ θ∗i3 −

∫

D3

θi1 ∧ θi2 ∧ θi3

) k−1∏

`=1

∫

X

θi2`+2
∧ θi2`+3

=k
∑

I∈I

εI

{
ν(θ∗i1 ∧ θ∗i2 ∧ θ∗i3) − ν(θi1 ∧ θi2 ∧ θi3)

} k−1∏

`=1

∫

X

θi2`+2
∧ θi2`+3

,

where the ν’s in the braces signify the Abel-Jacobi map on primitive 3-forms.

Quoting Proposition 4.2 and using the fact that ν = 2I on good forms, we have

ν(θ∗) − ν(θ) = 2 Im


2π

3g−3∑

j=1

sj
Q(θ)

(dzj)2
(tj)


 + o(s),

where

Q(θ1 ∧ θ2 ∧ θ3) =
∑

(1,2,3)

(θ1 + i∗θ1)(η2,3 + i∗η2,3)

and zj is the complex coordinate on X = X0 near tj . Substituting this into (∗), we

obtain

k![ν(θ∗) − ν(θ)] =

= 2k
∑

i∈I

εI Im


2π

3g−3∑

j=1

sj

∑
(i1,i2,i3)

(θi1 + i∗θi1)(ηi2,i3 + i∗ηi2,i3)

(dzj)2
(tj)




·

k−1∏

`=1

∫

X

θi2`+2
∧ θi2`+3

+ o(s).

The use of a combinatorial argument and that fact that ν is twice the value of

harmonic volume on good forms now concludes the proof.

The fact that the map Q1 has values in the holomorphic quadratic differentials

follows from Proposition 4.2. �
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5. Nondegeneracy of Harmonic Volume.

We first show that the homomorphism Q1 of the last section may be interpreted as

the codifferential in the direction of the fiber of the mapping ν, considered as a map

from Torelli space into the torus bundle with fiber G∗
+/G∗. Using this it is possible

to perform a computation which shows that, for a hyperelliptic Riemann surface

X which has its branch points located radially about the origin and symmetrically

about the real axis, this codifferential of harmonic volume maps surjectively onto

the (−1)-eigenspace of the hyperelliptic involution on the hyperelliptic locus in

Torelli space. Thus, the differential of the harmonic volume map at the point of

Torelli space represented by X is injective on the subspace of the tangent space to

Torelli space which is dual to the (−1)-eigenspace of the hyperelliptic involution

on the hyperelliptic locus. In particular, whereas harmonic volume is identically

zero on primitive forms, it is nondegenerate on good forms. This implies that an

intermediate Jacobian based on good forms might be valuable in determining the

algebraic equivalence of algebraic cycles.

Let X be a hyperelliptic Riemann surface of genus g ≥ 2k + 1. Without loss of

generality, we may assume that X has equation y2 =
∏n

i=1(x−ei), where n = 2g+2.

Let ωj = xj dx/y, 0 ≤ j ≤ g− 1, be a basis for H0(X;K), where K is the canonical

bundle on X. Let x = reiθ and x − ej = rje
iθj . We assume

∏n
j=1 rj is an even

function of θ which is also invariant under the transformation taking θ to θ +2π/n.

This condition is fulfilled if the branch points of X are located radially about the
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origin with one branch point located on the positive real axis.

A computation [BH1, §6] shows that Re(ω`) ∧ Re(ωm) is a well-defined form on

� 1 and that integration of this form over � 1 yields zero, so we conclude that

Re(ω`) · Re(ωm) = 0 for all `, m.

Similarly, it is shown that

Im(ω`) · Im(ωm) = 0 for all `, m.

We next compute

Re(ω`) ∧ Im(ωm) =
ω` + ω`

2
∧

ωm − ωm

2i

= −
1

4i
(ωm ∧ ω` + ω` ∧ ωm)

= −
1

4i

r`+m(ei(m−`)θ + ei(`−m)θ)∏
rj

− 2ir dr dθ

=
r`+m cos(m − `)θ∏

rj
r dr dθ.

which is also a well-defined form on � 1. Thus, we have

∫

X

Re(ω`) ∧ Im(ωm) = 2

∫ 2π

θ=0

∫ ∞

r=0

r`+m cos(m − `)θ∏
rj

r dr dθ.

Since the function
∏

rj is presumed to be an even function of θ which is also

invariant under the transformation taking θ to θ +2π/n, we conclude that it is also
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invariant under the transformation taking θ to θ − 2π/n. Now we compute

∫ 2π

θ=0

r`+m

∏
rj

cos[(m − `)θ] dθ =

∫ 2π+2π/n

θ=2π/n

r`+m

∏
rj

cos

[
(m − `)

(
θ −

2π

n

)]
dθ

=

∫ 2π+2π/n

θ=2π/n

r`+m

∏
rj

{
cos [(m − `)θ] cos

[
(m − 1)

2π

n

]

+ sin [(m − `)θ] sin

[
(m − 1)

2π

n

] }
dθ

= cos

[
(m − `)

2π

n

] ∫ 2π+2π/n

θ=2π/n

r`+m

∏
rj

cos [(m − `)θ] dθ

= cos

[
(m − `)

2π

n

] ∫ 2π

θ=0

r`+m

∏
rj

cos

[
(m − `)

(
θ +

2π

n

)]
dθ

= cos2
[
(m − `)

2π

n

] ∫ 2π

θ=0

r`+m

∏
rj

cos [(m − `)θ] dθ

We conclude that if Re(ω`) · Im(ωm) 6= 0, then (m−`)2π/n is an integral multiple

of π, or equivalently, m − ` is an integral multiple of g + 1. Since 0 ≤ m, ` ≤ g − 1,

this forces m = `. So, we obtain

Re(ω`) · Im(ωm) = 0 for ` 6= m.

Any holomorphic 1-form ω can be written ω = θ + i∗θ where θ is a harmonic

1-form. Further, since ∗∗ = −1, it is easily seen that ∗ω = −iω. The Hodge star

operator defines a hermitian positive definite bilinear form on H1,0(X) given by

〈φ, ψ〉 =

∫

X

φ ∧ ∗ψ = i

∫

X

φ ∧ ψ.

This is called the Hodge inner product. It is easily computed that

〈φ, ψ〉 = 0 if and only if Re(φ) · Re(ψ) = Re(φ) · Im(ψ) = 0.
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Fix j with 0 ≤ j ≤ g − 3. Let ω′
1 = ωj , ω′

2 = ωj+1, and ω′
3 = ωj+2. It follows

from the preceding paragraph and our preceding computations that ω′
1, ω′

2, and ω′
3

are mutually orthogonal holomorphic 1-forms under the Hodge inner product. We

now complete ω′
1, ω′

2, ω′
3 to a basis ω′

1, . . . , ω′
g for H1,0(X) consisting of pairwise

orthogonal holomorphic 1-forms. For 1 ≤ i ≤ 3, let θi = Re(ω′
i). Further, let

θ2(i−2) = Re(ω′
i) and θ2(i−2)+1 = Im(ω′

i) for 4 ≤ i ≤ k + 2. Since ω′
1, . . . , ω′

g are

pairwise orthogonal under the Hodge inner product, we have Re(ω′
`) · Re(ω′

m) = 0

for all `, m and Re(ω′
`) · Im(ω′

m) = 0 for all ` 6= m. It follows that

(†) θi · θj = 0

if {i, j} 6= {2m + 2, 2m + 3} for some 1 ≤ m ≤ k − 1. It also follows that θ1, θ2, θ3,

and θ2`, for 2 ≤ ` ≤ k, are k+2 mutually orthogonal 1-forms, so that θ1∧· · ·∧θ2k+1

is good, by Proposition 2.9.

Recall the formula in Theorem 4.3 computing the change in harmonic volume, a

formula which we now denote by δI. Since ν = 2I, we may interpret this map as the

“vertical codifferential” of the map ν, considered as a section of the holomorphic

torus bundle with fiber G+(s)∗/G(s)∗ as s varies in a disk ∆ in Torelli space.

In order to see this interpretation, recall that the fiber of this bundle is actually

the real dual space of G� , and we have endowed G� with a complex structure

making it canonically complex-isomorphic to F k+1G� . Hence, over a small (3g−3)-

dimensional disk in Torelli space, the torus bundle is analytically trivial, and we may

identify all the fibers over ∆ with a single fiber, say over a point p in Torelli space

42



representing a Riemann surface X, and then reintroduce the complex structure on

that fiber via the identification of G� with G+(p)∗/G(p)∗. (See [G2, §II.1].) Thus,

we may consider ν as mapping ∆ into a fixed fiber, and then δI (modulo a factor

of two) represents the codifferential

G+ → T ∗
p (∆) ∼= H0(X, Ω2).

By Theorem 4.3,

δI =
∑

µ∈S2k+1

(sgn µ)(θµ(2k+1) + i ∗θµ(2k+1))

· (ηµ(2k−1),µ(2k) + i ∗ηµ(2k−1),µ(2k))

k−1∏

`=1

(θµ(2`−1) · θµ(2`))

and, using what we know about (θi · θj) from equation (†), we obtain

δI = 2k−1(k − 1)!
∑

τ∈S3

(sgn τ)(θτ(3) + i ∗θτ(3))

· (ητ(1),τ(2) + i ∗ητ(1),τ(2))

k−1∏

`=1

(θ2`+2 · θ2`+3).

The computation done in §5 of [BH1] now allows us to conclude that δI maps

indecomposable good forms onto the space of quadratic differentials of the form

xj(dx)2/y, where 0 ≤ j ≤ g − 3.

This set of holomorphic quadratic differentials forms a basis for the (−1)-eigen-

space of the hyperelliptic involution on the hyperelliptic locus in Torelli space. It

follows that the differential of the mapping ν is injective on the dual space of this
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(−1)-eigenspace. In particular, the section ν is not identically zero, and therefore

generically nonzero by analyticity.

We remark that a careful examination of the proof of this result shows that we

actually need only take g ≥ k + 2 and the the real (2k + 1)-forms used in the

computation correspond to (k + 2, k − 1)-forms in G+, on which ν must vanish if

Wk is algebraically equivalent to W−

k . Presumably with additional knowledge on

the value of the change in harmonic volume on (k+1, k)-forms lying in the image of

the differentiation of ν with respect to a generic deformation of X in Torelli space,

an independent proof of Ceresa’s theorem might be achieved.
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