## The Euler Line of a Triangle

## William M. Faucette

## May 2007

**Theorem 1.** Let  $\triangle ABC$  be a triangle. The orthocenter, the centroid, the circumcenter, and the nine-point center of  $\triangle ABC$  are collinear. Futher, U is the midpoint of the segment  $\overline{HO}$  and G lies on  $\overline{HO}$  two-thirds of the distance from H to O.

 $\mathit{Proof.}\,$  Let  $\Delta ABC$  be a triangle. First, we construct the four points in question.



Figure 1. The orthocenter of  $\Delta ABC$ 

We construct the orthocenter of  $\Delta ABC$  as follows. Construct the altitudes from vertices A, B, and C to the opposite sides, meeting those sides in points D, E, and F, respectively. The three segments  $\overline{AD}$ ,  $\overline{BE}$ , and  $\overline{CF}$  are concurrent, meeting at point H, the orthocenter of  $\Delta ABC$ . See Figure 1.



Figure 2. The circumcenter of  $\Delta ABC$ 

We construct the circumcenter of  $\Delta ABC$  as follows. Construct the midpoints L, M, and N of the sides opposite the vertices A, B, and C, respectively. Construct the line through L perpendicular to segment  $\overline{BC}$ , i.e. the perpendicular bisector of  $\overline{BC}$ . Similarly, construct the perpendicular bisectors of  $\overline{AC}$ and  $\overline{AB}$ . These lines pass through points M and N, respectively. The three perpendicular bisectors are concurrent, meeting at point O, the circumcenter of  $\Delta ABC$ . See Figure 2.



Figure 3. The centroid of  $\Delta ABC$ 

We construct the centroid of  $\Delta ABC$  as follows. Construct the medians of  $\Delta ABC$ , i.e. segments  $\overline{AL}$ ,  $\overline{BM}$ , and  $\overline{CN}$ . These three segments are concurrent, meeting at point G, the centroid of  $\Delta ABC$ . See Figure 3.



Figure 4. The nine point center of  $\Delta ABC$ 

Finally, we construct the nine-point center of  $\Delta ABC$  as follows. Construct segments  $\overline{LM}$ ,  $\overline{LN}$  and  $\overline{MN}$ , and construct the perpendicular bisectors of these lines. This gives the circumcenter U of the triangle  $\Delta LMN$ . The point U is the center of the nine-point circle, which passes through L, M, N, D, E, F, and the midpoints of the segments  $\overline{AH}$ ,  $\overline{BH}$ , and  $\overline{CH}$ . See Figure 4.



Figure 5. The coordinates of the important points of  $\Delta ABC$ 

In order to prove the result, we leave the realm of Euclidean geometry and introduce Cartesian coordinates on the plane containing  $\Delta ABC$ . Let A be the origin with coordinates (0,0). We let B lie on the positive x-axis, having coordinates (a,0). Let the coordinates of C be (b,c). See Figure 5.

Then the coordinates of the midpoints of the various sides are easily found:

$$L = \left(\frac{a+b}{2}, \frac{c}{2}\right)$$
$$M = \left(\frac{b}{2}, \frac{c}{2}\right)$$
$$N = \left(\frac{a}{2}, 0\right)$$

Next, we can compute the slopes of various segments:

$$m(\overline{AB}) = 0$$
  

$$m(\overline{AC}) = \frac{c}{b}$$
  

$$m(\overline{BC}) = \frac{c}{b-a}$$
  

$$m(\overline{AL}) = \frac{c}{a+b}$$
  

$$m(\overline{BM}) = \frac{c}{b-2a}$$
  

$$m(\overline{CN}) = \frac{2c}{2b-a}$$
  

$$m(\overline{AD}) = \frac{a-b}{c}$$
  

$$m(\overline{BE}) = -\frac{b}{c}$$
  

$$m(\overline{CF}) = \infty.$$

Next, let's compute equations of some segments:

$$\overline{AB} : y = 0$$

$$\overline{AC} : y = \frac{c}{b}x$$

$$\overline{BC} : y = \frac{c}{b-a}(x-a)$$

$$\overline{AL} : y = \frac{c}{a+b}x$$

$$\overline{BM} : y = \frac{c}{b-2a}(x-a)$$

$$\overline{CN} : y = \frac{2c}{2b-a}\left(x-\frac{a}{2}\right)$$

$$\overline{AD} : y = \frac{a-b}{c}x$$

$$\overline{BE} : y = -\frac{b}{c}(x-a)$$

$$\overline{CF} : x = b.$$

In addition, we need the equations of the perpendicular bisectors:

$$\overline{AB} : x = \frac{a}{2}$$

$$\overline{AC} : y - \frac{c}{2} = -\frac{b}{c}(x - \frac{b}{2})$$

$$\overline{BC} : y - \frac{c}{2} = \frac{a - b}{c}(x - \frac{a + b}{2})$$

Now, we're ready to compute the coordinates of the four points in question.

The orthocenter is the point where the altitudes are concurrent. Taking the equations for two altitudes, say  $\overline{CF}$  and  $\overline{AD}$ , and solving simultaneously, we get the point  $H = \left(b, \frac{b(a-b)}{c}\right)$ .

The centroid is the point where the medians are concurrent. Taking the equations for two medians, say  $\overline{AL}$  and  $\overline{BM}$ , and solving simultaneously, we get the point  $G = \left(\frac{1}{3}(a+b), \frac{1}{3}c\right)$ .

The circumcenter is the point where the perpendicular bisectors are concurrent. Taking the equations for two perpendicular bisectors, say the perpendicular bisector to  $\overline{AB}$  and the perpendicular bisector to  $\overline{AC}$ , we get the point  $O = \left(\frac{1}{2}a, \frac{b^2 + c^2 - ab}{2c}\right).$ 

Finding the nine-point center requires a bit more effort. First, let's compute the midpoints of the segments  $\overline{LM}$ ,  $\overline{LN}$ , and  $\overline{MN}$ :

$$\begin{array}{rcl} \overline{LM} & : & \left( \frac{a+2b}{4}, \frac{c}{2} \right) \\ \\ \overline{LN} & : & \left( \frac{2a+b}{4}, \frac{c}{4} \right) \\ \\ \\ \overline{MN} & : & \left( \frac{a+b}{4}, \frac{c}{4} \right). \end{array}$$

Further, the slopes of the perpendicular bisectors of these segments is the same as the slope of the altitudes of  $\Delta ABC$ , since the respective segments are parallel:

$$m_{\perp}(\overline{LM}) = m_{\perp}(\overline{AB}) = m(CF) = \infty$$
$$m_{\perp}(\overline{LN}) = m_{\perp}(\overline{AC}) = m(BE) = -\frac{b}{c}$$
$$m_{\perp}(\overline{MN}) = m_{\perp}(\overline{BC}) = m(AD) = \frac{a-b}{c}.$$

So, the equations of the perpendicular bisectors of the sides of triangle  $\Delta LMN$  are

perpendicular bisector of  $\overline{LM}$  :  $x = \frac{a+2b}{4}$ perpendicular bisector of  $\overline{LN}$  :  $y - \frac{c}{4} = -\frac{b}{c}\left(x - \frac{2a+b}{4}\right)$ perpendicular bisector of  $\overline{MN}$  :  $y - \frac{c}{4} = \frac{a-b}{c}\left(x - \frac{a+b}{4}\right)$ .

Solving these equations simultaneously gives us the coordinates of the nine-point center:  $U = \left(\frac{a+2b}{4}, \frac{ab+c^2-b^2}{4c}\right)$ .

The slope of the segment  $\overline{HG}$ , the segment  $\overline{HO}$ , and the segment  $\overline{HU}$  is then computed to be  $\frac{c^2 + 3b^2 - 3ab}{c(a-2b)}$ . Since these three segments share the point H, the points H, G, O, and U are collinear, as desired.

Further, if we compute the various distances using the distance formula, we see that

$$HO = \frac{1}{2c}\sqrt{(10c^{2}b^{2} - 10c^{2}ab + c^{2}a^{2} + 9a^{2}b^{2} - 18ab^{3} + 9b^{4} + c^{4})}$$
  

$$HG = \frac{1}{3c}\sqrt{(10c^{2}b^{2} - 10c^{2}ab + c^{2}a^{2} + 9a^{2}b^{2} - 18ab^{3} + 9b^{4} + c^{4})} = \frac{2}{3}HO$$
  

$$HU = \frac{1}{4c}\sqrt{(10c^{2}b^{2} - 10c^{2}ab + c^{2}a^{2} + 9a^{2}b^{2} - 18ab^{3} + 9b^{4} + c^{4})} = \frac{1}{2}HO.$$

So, we see that U is the midpoint of the segment  $\overline{HO}$  and G lies on  $\overline{HO}$  two-thirds of the distance from H to O, as desired.