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I cannot remember which of my teachers first introduced me to divisibility
rules. At some point—probably in elementary school—I learned that a number
is divisible by three if the sum of its digits is divisible by three. I also learned
that a number is divisible by nine if the sum of its digits is divisible by nine.

After an undergraduate abstract algebra course where I learned modular
arithmetic, I learned why the divisibility rules for three and nine work. . . and I
learned how to prove them.

However, there is one divisibility rule I was taught—one for divisibility by 7—
that only made sense to me recently. . . and which has a straightforward gener-
alization to other prime divisors.

In this paper, we will define and explore modular arithmetic. We will then
recall the divisibility rules for 2, 3, 4, 5, 6, 8, 9, and 11, and see why these
divisibility rules work. We will then see how the divisibility rule for 7 differs
from these other divisibility rules. We will see why it works and then we will
see there is a straightforward generalization to all primes. In fact, there is a
straightforward generalization to all numbers relatively prime to 10.

Modular Arithmetic

In this section we recall modular arithmetic. Interested readers can consult
[1, pp. 17–26], [2, Section 2.5], or [3, pp. 21–24] for more information. For a
particularly insightful development, I highly recommend [4, Section 1.3].

Let
�

be the set of integers and let n be a natural number greater than one.
We define a relation ∼ on

�
by a ∼ b if a − b is a multiple of n.

Proposition 1. Let n be a natural number greater than one. Define a relation

∼ on
�

by a ∼ b if a−b is a multiple of n. Then the relation ∼ is an equivalence

relation on
�
.

Proof. Let n be a natural number greater than one. For a, b ∈
�
, define a ∼ b

if a − b is a multiple of n.
Let a ∈

�
. Then a − a = 0 is a multiple of n, so a ∼ a. Since a ∈

�
is

arbitrary, the relation ∼ is reflexive.
Let a, b ∈

�
and suppose a ∼ b. Since a ∼ b, a − b is a multiple of n, so

there exists an integer k with a − b = kn. Then b − a = (−k)n, whereby b − a
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is a multiple of n. Hence, b ∼ a. Since a, b ∈
�

are arbitrary, the relation ∼ is
symmetric.

Let a, b, and c ∈
�

with a ∼ b and b ∼ c. Since a ∼ b, a − b is a multiple
of n, so there exists an integer k ∈

�
with a − b = kn. Since b ∼ c, b − c is a

multiple of n, so there exists an integer ` ∈
�

with b − c = `n. Then

a − c = (a − b) + (b − c) = kn + `n = (k + `)n,

so a − c is a multiple of n. Hence, a ∼ c. Since a, b, and c ∈
�

are arbitrary, ∼
is reflexive.

Since ∼ is reflexive, symmetric, and transitive, ∼ is an equivalence relation
on

�
.

Definition 1. Let n be a natural number greater than one and define a relation

∼ on
�

by a ∼ b if a − b is a multiple of n. This equivalence relation is called

congruence modulo n. We will write k for the equivalence class containing the

integer k. If a ∼ b, we will say a and b are congruent modulo n and write

a ≡ b mod n. In this case, we have a = b.

Definition 2. Let n be a natrual number greater than one. Let
�

n denote the

set of equivalence classes of integers modula n. Define addition and multiplica-

tion on
�

n by

a + b = a + b

ab = ab

Then these operations are well-defined and
�

n with these two operations becomes

a ring.

Proof. We will show the two operations are well-defined and leave the verifcation
of the ring properties to the reader.

Suppose a = a′ and b = b′. Then a ≡ a′ mod n and b ≡ b′ mod n, so
a − a′ = kn and b − b′ = `n for some integers k, ` ∈

�
. Then

(a + b) − (a′ + b′) = (a − a′) + (b − b′) = kn + `n = (k + `)n,

so a + b ≡ a′ + b′ mod n, whereby a + b = a′ + b′.
Also,

ab − a′b′ = (ab − ab′) + (ab′ − a′b′)

= a(b − b′) + b′(a − a′)

= a(`n) + b′(kn)

= (a` + b′k)n

so ab ≡ a′b′ mod n, whereby ab = a′b′. This shows that addition modulo n and
multiplication modulo n are well-defined.
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Remark: Notice that
�

n consists of 0, 1, . . . , n − 1.

Divisibility Rules for 2 and 5

Proposition 2. A natural number a is divisible by 2 if and only if the last digit

is even. A natural number a is divisible by 5 if and only if the last digit is 0

or 5.

Proof. Let a be any natural number. By the Division Algorithm, we can write
a uniquely as 10t + d, where t and d are natural numbers with 0 ≤ d < 10.

Reducing the equation a = 10t + d modulo 2, we have

a = 10t + d

= 10t + d

= 0t + d

= d

Hence, a ≡ d mod 2. Now, a is even if and only if a ≡ 0 mod 2. It follows that
a is even if and only if d ≡ 0 mod 2. But this says that a is even if and only if
the last digit is even.

Simlarly, reducing the equation a = 10t + d modulo 5, we have

a = 10t + d

= 10t + d

= 0t + d

= d

Hence, a ≡ d mod 5. Now, a is a multiple of 5 if and only if a ≡ 0 mod 5. It
follows that a is a multiple of 5 if and only if d ≡ 0 mod 5. But this says that
a is a multiple of 5 if and only if the last digit is 0 or 5.
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Divisibility Rules for 3 and 9

Proposition 3. A natural number a is divisible by 3 if and only if the sum of

the digits is divisible by 3. A natural number a is divisible by 9 if and only if

the sum of the digits is divisible by 9.

Proof. The heart of these divisibility rules is that 10 ≡ 1 mod 3 and 10 ≡

1 mod 9.
Let a be any natural number. By repeated use of the Division Algorithm,

we can write a uniquely as

a =

n
∑

i=0

10idi,

where 0 ≤ di < 10 for all i, 0 ≤ i ≤ n. What we have done here is to write the
number a in terms of the digits in the decimal expression for a and the powers
of ten the various decimal places represent.

Reducing the equation

a =

n
∑

i=0

10idi

modulo 3, we have

a =
n

∑

i=0

10idi

=

n
∑

i=0

10idi

=

n
∑

i=0

10
i

di

=

n
∑

i=0

1
i

di

=

n
∑

i=0

di

=

n
∑

i=0

di .

Hence, a ≡
∑

n

i=0
di mod 3. Now, a is a multiple of 3 if and only if a ≡ 0 mod 3.

It follows that a is a multiple of 3 if and only if
∑

n

i=0
di ≡ 0 mod 3. But this

says that a is a multiple of 3 if and only if
∑

n

i=0
di is a multiple of 3, i.e. the

sum of the digits is divisible by 3.
Reducing the equation

a =

n
∑

i=0

10idi
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modulo 9, we have

a =

n
∑

i=0

10idi

=

n
∑

i=0

10idi

=

n
∑

i=0

10
i

di

=

n
∑

i=0

1
i

di

=

n
∑

i=0

di

=

n
∑

i=0

di .

Hence, a ≡
∑

n

i=0
di mod 9. Now, a is a multiple of 9 if and only if a ≡ 0 mod 9.

It follows that a is a multiple of 9 if and only if
∑

n

i=0
di ≡ 0 mod 9. But this

says that a is a multiple of 9 if and only if
∑

n

i=0
di is a multiple of 9, i.e. the

sum of the digits is divisible by 9.

Divisibility Rule for 6

Proposition 4. A natural number a is divisible by 6 if and only if a is even

and the sum of the digits is divisible by 3.

Proof. This follows immediately from the Fundamental Theorem of Arithmetic
and the divisibility tests for 2 and 3.

Divisibility Rules for 4 and 8

Proposition 5. A natural number a is divisible by 4 if and only if the number

represented by the last two digits of a is divisible by 4. A natural number a is

divisible by 8 if and only if the number represented by the last three digits of a

is divisible by 8.

Proof. The heart of these divisibility rules is that 4 divides 100 and 8 divides
1000.

Let a be a natural number. By the Division Algorithm, we have

a = 100h + d
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where 0 ≤ d < 100. In fact, d is the number represented by the last two digits
of a.

Reducing the equation
a = 100h + d

modulo 4, we have

a = 100h + d

= 100 h + d

= 0 h + d

= d .

Hence, a ≡ d mod 4. Now, a is a multiple of 4 if and only if a ≡ 0 mod 4. It
follows that a is a multiple of 4 if and only if d ≡ 0 mod 4. But this says that a

is a multiple of 4 if and only if d is a multiple of 4, i.e. the number represented
by the last two digits of a is divisible by 4.

By the Division Algorithm again, we have

a = 1000h′ + d′

where 0 ≤ d′ < 1000. In fact, d′ is the number represented by the last three
digits of a.

Reducing the equation
a = 1000h′ + d′

modulo 8, we have

a = 1000h′ + d′

= 1000 h′ + d′

= 0 h′ + d′

= d′ .

Hence, a ≡ d′ mod 8. Now, a is a multiple of 8 if and only if a ≡ 0 mod 8. It
follows that a is a multiple of 8 if and only if d′ ≡ 0 mod 8. But this says that a

is a multiple of 8 if and only if d′ is a multiple of 8, i.e. the number represented
by the last three digits of a is divisible by 8.

Divisibility Rule for 11

Proposition 6. A natural number a is divisible by 11 if and only if the alter-

nating sum of the digits of a is divisible by 11.

Proof. The heart of this divisibility test is that 10 ≡ −1 mod 11.
Let a be any natural number. By repeated use of the Division Algorithm,

we can write a uniquely as

a =

n
∑

i=0

10idi,
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where 0 ≤ di < 10 for all i, 0 ≤ i ≤ n. What we have done here is to write the
number a in terms of the digits in the decimal expression for a and the powers
of ten the various decimal places represent.

Reducing the equation

a =

n
∑

i=0

10idi

modulo 11, we have

a =

n
∑

i=0

10idi

=

n
∑

i=0

10idi

=

n
∑

i=0

10
i

di

=

n
∑

i=0

(−1)
i

di

=

n
∑

i=0

(−1)idi

=

n
∑

i=0

(−1)idi .

Hence, a ≡
∑

n

i=0
(−1)idi mod 11. Now, a is a multiple of 11 if and only if

a ≡ 0 mod 11. It follows that a is a multiple of 11 if and only if
∑

n

i=0
(−1)idi ≡

0 mod 11. But this says that a is a multiple of 11 if and only if
∑

n

i=0
(−1)idi is

a multiple of 11, i.e. the alternating sum of the digits of a is divisible by 11.

Divisibility Rule for 7

Proposition 7. Let a be a natural number. Let b be the integer obtained by

subtracting twice the last digit from the number represented by the remaining

digits of a. Then a is divisible by 7 if and only if b is divisible by 7.

Before we prove this proposition, let’s see how the process works with an
example.

Example 1. Determine if the number 748569231 is divisible by 7.

Solution: Start with the number 748569231. Now, subtract twice the last
digit from the number represented by the remaining digits: 74856923 − 2 =
74856921. The proposition tells us that 748569231 is divisible by 7 if and only
if 74856921 is divisible by 7.
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Let’s continue this process until we get with something we can cope with:

7485692 − 2 = 7485690

748569 − 0 = 748569

74856 − 18 = 74838

7483 − 16 = 7467

746 − 14 = 732

73 − 4 = 69.

Since 69 is not divisible by 7, neither is the original number, 748569231.

But why does this test work?

Let’s consider the example we just looked at. First, we note that

748569231 ≡ 4 mod 7

74856921 ≡ 6 mod 7

7485690 ≡ 2 mod 7

748569 ≡ 3 mod 7

74838 ≡ 1 mod 7

7467 ≡ 5 mod 7

732 ≡ 4 mod 7

69 ≡ 6 mod 7.

In particular, we notice that the process described in the divisibility test for 7
does not preserve the value modulo seven.

So exactly what is happening here? Let’s see.

Proof. Let a be any natural number. By the Division Algorithm, we can write
a uniquely as

a = 10t + d

where 0 ≤ d < 10.
Reducing the equation

a = 10t + d

modulo 7, we have

a = 10t + d

= 10 t + d

10 t = a − d .

Now, if we were working with rational numbers or real numbers, at this stage
we could divide by 10 and solve for t. Fortunately, we can divide by 10 because
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10 has a multiplicative inverse in the ring
�

7. That is, 10 is a unit in the ring
�

7.
The multiplicative inverse of 10 in

�
7 is 5, so we have

10 t = a − d

5
(

10 t
)

= 5
(

a − d
)

(

5 · 10
)

t = 5 a − 5 d

t = 5 a − 5 d

t − 2d = 5 a − 5 d − 2 d

= 5 a − 7 d

= 5 a.

Notice that t−2d is the number obtained by the divisibility rule: subtract twice
the number represented by the last digit from the number represented by the
rest of the digits.

From this computation, we see that t−2d is congruent modulo 7 to 5a. Now,
5 is a unit in

�
7, so t − 2d is a multiple of 7 if and only if 5a is a multiple of 7,

and this occurs if and only if a is a multiple of 7. This concludes the proof of
the divisibility test for 7.

Units in
�

n

The divisibility rule for 7 hinges on the fact that 10 has a multiplicative in-
verse in

�
7. What other values of n have the quality that 10 has a multiplicative

inverse in
�

n?

Proposition 8. Let n be a natural number greater than 1. Let m be a natural

number. Then m is a unit in
�

n if and only if m and n are relatively prime.

Proof. Let n be a natural number greater than 1. Let m be a natural number.
⇒ Suppose m is a unit in

�
n. Then there exists k ∈

�
n so that m k = 1. Then

mk − 1 is divisible by n.
Suppose d divides n and m. Then d divides both mk and mk − 1, so d

divides mk − (mk − 1) = 1. Hence d = 1, and m and n are relatively prime.
⇐ Suppose m and n are relatively prime. Then there exists integers u and v so
that mu + nv = 1. Reducing this equation modulo n, we have m u = 1. Hence,
m is a unit in

�
n.

Divisibility Rule for 13

We can use this same technique to construct a divisibility rule for 13, using
the fact that 10 has a multiplicative inverse in

�
13. In fact, we can use this

same technique to construct a divisibility rule for any natural number relatively
prime to 10.
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Proposition 9. Let a be a natural number. Let b the the integer obtained by

subtracting nine times the last digit from the number represented by the remain-

ing digits of a. Then a is divisible by 13 if and only if b is divisible by 13.

Proof. Let a be any natural number. By the Division Algorithm, we can write
a uniquely as

a = 10t + d,

where 0 ≤ d < 10.
Reducing the equation

a = 10t + d

modulo 13, we have

a = 10t + d

= 10 t + d

10 t = a − d .

Since 13 and 10 are relatively prime, 10 has a multiplicative inverse in
�

13. A
simple computation shows that 4 is the multiplicative inverse of 10 in

�
13. So

we have

10 t = a − d

4
(

10 t
)

= 4
(

a − d
)

(

4 · 10
)

t = 4 a − 4 d

t = 4 a − 4 d

t − 9d = 4 a − 4 d − 9 d

= 4 a − 13 d

= 4 a.

Notice that t− 9d is the number obtained by the divisibility rule: subtract nine
times the number represented by the last digit from the number represented by
the rest of the digits.

From this computation, we see that t − 9d is congruent modulo 13 to 4a.
Now, 4 is a unit in

�
13, so t−9d is a multiple of 13 if and only if 4a is a multiple

of 13, and this occurs if and only if a is a multiple of 13. This concludes the
proof of the divisibility test for 13.

References

[1] J. A. Gallian. Contemporary Abstract Algebra, Fifth Edition. Houghton-
Mifflin Company, 2002.

[2] L. Gilbert, J. & Gilbert. Elements of Modern Algebra, Second Edition. PWS
Kent Publishing Company, 1992.

10



[3] I. N. Herstein. Topics in Algebra, Second Edition. John Wiley & Sons, Inc.,
1975.

[4] T. Shifrin. Abstract Algebra: A Geometric Approach. Prentice-Hall, Inc.,
1996.

11


