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When doing geometry—particularly when doing geometry over the field of complex numbers—it is most conve-

nient to work in an ambient space which is compact. This requires that we work in projective spaces.

1 Preliminaries.

DEFINITION 1. Let k be any field and let
�

n =
�

n(k) be the set of all n-tuples in k. Projective n-space over k,

written � n(k). Projective n-space over k, written � n(k), or simply � n , is defined to be the set of all lines through

(0, . . . , 0) in
�

n+1. Any nonzero point (x) = (x0, . . . , xn) ∈
�

n+1 \ {(0, . . . , 0)} determines a unique such line,

namely {λx1, . . . , λxn | λ ∈ k}. Two such points (x) and (y) determine the same line if yi = λxi for some nonzero

λ ∈ k. Elements of � n(k) will be called points. The point in � n defined by the point (x0, . . . , xn) ∈
�

n+1 \{(0, . . . , 0)}

will be denoted by [x0, . . . , xn], in which case the xi ’s are called homogeneous coordinates.

We remark that the affine plane sits naturally in the projective plane given by the map

φ :
� 2 → � 2

φ(X, Y ) = [X, Y, 1].

The remaining points in � 2 form the line at infinity:

L∞ = {[X, Y, 0] ∈ � 2}

DEFINITION 2. An affine plane curve is the zero set of a nonzero polynomial F(X, Y ) in
�

2. A projective plane curve

is the zero set of a nonzero homogeneous polynomial F(X, Y, Z) in � 2. We say the curve has degree d if the defining

polynomial has degree d . Curves of degree one, two, and three are called lines, conics, and cubics, respectively. For

convenience, we will identify each curve—affine or projective— with its defining polynomial, so that we can speak of

the projective curve F or F(X, Y ) or F(X, Y, Z).

DEFINITION 3. Associated to each projective plane curve F(X, Y, Z), there is a corresponding affine plane curve defined

by the polynomial F∗(X, Y ) := F(X, Y, 1). This affine plane curve is simply the intersection of the projective plane

curve with the embedded affine plane.

DEFINITION 4. If F defines a projective plane curve and F = F1 · . . . · Fk , where each Fi is irreducible, then the curves

Fi are the (irreducible) components of the curve F . Such curves Fi are called irreducible.

DEFINITION 5. Let
�

2(k) =
�

2 be the affine plane over k. The local ring of
�

2 at P is

OP(
� 2) =

{

F

G
∈ k(X, Y ) : G(P) 6= 0

}

.

This ring is a local ring, i.e. it has a unique maximal ideal, in this case consisting of those rational functions vanishing

at P:

m P(
� 2) =

{

F

G
∈ k(X, Y ) : F(P) = 0, G(P) 6= 0

}

.

DEFINITION 6. Let F and G be affine plane curves and let P ∈ F ∩ G. The intersection number I (P, F ∩ G) of F

and G at P is

I (P, F ∩ G) = dimk

(

OP(
� 2)/(F, G)

)

.

EXAMPLE 1. Let F(X, Y ) = 3X3 − 2X2Y + XY − Y and G(X, Y ) = Y . Then the intersection number at P = (0, 0)

is
(

OP(
� 2)/(F, G)

)

∼= k[X, Y ](x,y)/(F, G) ∼= k[X ](x)/(X3),

which has basis {1, X, X2} as a complex vector space, so I (P, F ∩ G) = 3.

1Apologies to Jules Verne
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Intersection numbers can also be defined for projective plane curves by choosing a line not containing the point

of intersection, letting this line be the line at infinity, and looking at the corresponding affine plane curve.

THEOREM 1 (BEZOUT’S THEOREM). Let F and G be projective plane curves of degrees m and n respectively. Assume

F and G have no common component. Then
∑

P

I (P, F ∩ G) = mn.

Although we will not prove this theorem in it full generality, if G is a linear polynomial L , then F ∩ L is the

intersection of the curve F and a line. Bézout’s Theorem then immediately follows from the Fundamental Theorem of

Algebra.

DEFINITION 7. A point P on a affine curve F is called a simple point or smooth point if FX (P) 6= 0 or FY (P) 6= 0.

Otherwise, P is called a singular point or multiple point.

These definitions extend to projective plane curves in the obvious way, with the condition for smoothness being

FX (P) 6= 0 or FY (P) 6= 0 or FZ (P) 6= 0.

DEFINITION 8. Let P = (x0, y0) be a simple point on an affine plane curve F(X, Y ) The tangent line to F at P is the

line

FX (x0, y0)(X − x0) + FY (x0, y0)(Y − y0) = 0.

DEFINITION 9. A simple point P on a curve F is called a flex if I (P, F ∩ L) ≥ 3, where L is the tangent line to F at P .

DEFINITION 10. Let F be a projective plane curve of degree n. The Hessian of F is the polynomial

H(X, Y, Z) = det

[

FX X FXY FX Z

FY X FY Y FY Z

FZ X FZY FZ Z

]

THEOREM 2. (Assume char(k) 6= 0). A simple point P is a flex of a curve F if and only if the Hessian of F vanishes at

P .

PROOF: Let P = (x0, y0) be a nonsingular point of a curve F(X, Y ). We will find the conditions that guarantee that

P is an inflection point.

First, write the equation F in the form

F(X, Y ) = a(X − x0) + b(Y − y0) + c(X − x0)
2 + d(X − x0)(Y − y0) + e(Y − y0)

2 + higher order terms

Restricting F to the line L given by X = x0 + λt , Y = y0 + µt , we have

F = (aλ + bµ)t + (cλ2 + dλµ + eµ2)t2 + t3ψ(t).

Therefore, the line L will have intersection multiplicity at least 3 if

aλ + bµ = 0

cλ2 + dλµ + eµ2 = 0.

The first of these equations says that

FX (x0, y0)λ + FY (x0, y0)µ = 0,

which is equivalent to L being the tangent line to F at P .

The second equation, taken together with the first, means the conic cu2 +duv+ev2 = 0 is reducible: It’s divisible

by au + bv = 0. In particular, the quadratic equation g(u, v) := au + bv + cu2 + duv + ev2 is reducible. The

condition for this quadratic polynomial to be reducible is that

det

[

2c d a

d e b

a b 0

]

= det

[

guu guv gu

guv gvv gv

gu gv 0

]

= 0.

If we “homogenize” this last matrix, we have

det

[

FX X FXY FX Z

FXY FY Y FY Z

FX Z FY Z FZ Z

]

= 0,

which is the desired result. �
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THEOREM 3. Every cubic curve has nine flexes.

PARTIAL PROOF: Let F be a nonsingular cubic curve and let H be the Hessian of F . Then F has degree 3 and H has

degree 3(3 − 2) = 3, so by Bézout’s Theorem,
∑

P I (P, F ∩ H) = 9. These are nine distinct points with intersection

number 1 at each. �

2 Choosing the Right Coordinates.

Let C be a nonsingular cubic curve with defining polynomial F . Let O ∈ C be a flex. By changing coordinates,

we may take the tangent line at O = [0, 1, 0] to be the line at infinity L∞. Then

F(X, Y, Z) = ZY 2 + bY Z2 + cXY Z + terms in X, Z

By the map Y 7→ Y − b
2

Z− c
2

X , which is an invertible linear transformation on � 3 and therefore induces an automorphism

of � 2, we can put F in the form

ZY 2 = cubic in X, Z .

Setting Z = 1, a nonsingular cubic curve has the affine equation

y2 = x3 + ax2 + bx + c.

If k = � we can do even better. First, set Z = 1 so we’re looking in the affine plane, � 2. In the cubic polynomial

on the right, there is a unique linear fractional transformation in the X coordinate taking the roots of the resulting cubic

polynomial to zero, one, and some complex number λ 6= 0, 1. Hence, we may assume the equation of F has the form

ZY 2 = X (X − Z)(X − λZ)

So, in the affine plane � 2, a nonsingular cubic curve has the equation

y2 = x(x − 1)(x − λ).

3 Families of Cubic Curves.

Let’s consider the family of all cubic curves in the projective plane. This amounts to looking at the family of all

homogeneous cubic polynomials in three variables. The typical such polynomial has the form

aX3 + bY 3 + cZ3 + d X2Y + eX2 Z + f Y Z2 + gXY 2 + h X Z2 + iY 2 Z + j XY Z ,

so we may view the family of such polynomials as the set of all 10-tuples of complex numbers, (a, b, c, d, e, f, g, h, i, j).

However, polynomials which are constant multiples of one another represent the same projective curve, so we must

identify all 10-tuples (a, b, c, d, e, f, g, h, i, j) which are nonzero multiples of one another, i.e. we must form a

projective space.

As before, we will define a 10-tuple (a, b, c, d, e, f, g, h, i, j) to be equivalent to

(a′, b′, c′, d ′, e′, f ′, g′, h′, i ′, j ′) if a′ = λa, b′ = λb, . . . , j ′ = λ j for some non-zero complex constant λ. The

resulting space is the set of all linear subspaces of dimension one in � 10, a space which we will denote � 9, nine

dimensional projective space.

Suppose a cubic curve C with equation

F(X, Y, Z) = aX3 + bY 3 + cZ3 + d X2Y + eX2 Z + f Y Z2 + gXY 2 + h X Z2 + iY 2 Z + j XY Z

passes through the point [X0, Y0, Z0] in the projective plane � 2. Then

0 = aX3
0 + bY 3

0 + cZ3
0 + d X2

0Y0 + eX2
0 Z0 + f Y0 Z2

0 + gX0Y 2
0 + h X0 Z2

0 + iY 2
0 Z0 + j X0Y0 Z0.

Viewing this as an equation in the variables a, b, c, d, e, f , g, h, i , and j with complex coefficients, we see that

the family of cubic curves in the projective plane passing through a point is the zero locus of a linear homogeneous

polynomial—it is a hyperplane in � 9.

Now let’s choose nine points in the projective plane Pi = [X i , Yi , Z i ] and look at the family of cubic curves

passing through all nine points. This family is then the intersection of nine hyperplanes in � 9. As long as the conditions

imposed on the projective space � 9 are independent, that is, as long as the linear equations

aX3
i + bY 3

i + cZ3
i + d X2

i Yi + eX2
i Z i + f Yi Z2

i + gX i Y
2
i + h X i Z2

i + iY 2
i Z i + j X i Yi Z i = 0,

are linearly independent, then the solution of this system of linear equations is a one-dimensional linear subspace of

� 10— a point in � 9. This gives us the following proposition:
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PROPOSITION 4. Given nine general points in the projective plane � 2, there is a unique cubic containing those points.

In this same vein, suppose we have two projective plane curves C1 and C2, given by homogeneous polynomials

F1 and F2, respectively, which pass through the nine points P1, . . . , P9, which we assume are in general position.

Suppose C is another cubic curve in the projective plane given by a homogeneous polynomial F and suppose C passes

through P1, . . . , P8.

We have seen that the family of homogeneous cubic polynomials in three variables is ten dimensional. Each point

a cubic curve passes through defines one linear condition on this ten dimensional family. If the points are in general

position, the family of cubic curves passing through eight points is then two dimensional. Since C1, C2, and C are all

curves which pass through the eight points P1, . . . , P8, the three polynomials F1, F2, and F must be linearly dependent.

In particular, since F1 and F2 vanish at P9 and F is linearly dependent on F1 and F2, we must likewise have that F

vanishes at P9. This gives the following proposition:

PROPOSITION 5. Let C , C1, and C2 be three cubic curves. Suppose C goes through eight of the nine intersection points

of C1 and C2. Then C goes through the ninth intersection point.

4 Group Structure on a Nonsingular Cubic.

If we take two points, P and Q, on a nonsingular cubic C , construct the line
←→
P Q. Since C has degree three,

the line
←→
P Q meets C in one additional point S. This would appear to be something like a group, where you take two

elements of some set, perform some operation, and get another element of that set. Unfortunately, the operation just

described has no identity.

In order to remedy this problem, we modify the operation. Take two points, P and Q, on a nonsingular cubic C ,

construct the line
←→
P Q and let S be the third point of intersection of

←→
P Q and C . Now, construct the line

←→
O S , where O

is a fixed point on C . (Typically, O is chosen to be one of the nine flexes.) Next, we define the sum P + Q be to the

third point of intersection of the line
←→
O S with C . (See Figure 1.)

Figure 1.
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THEOREM 6. The operation just described gives an abelian group structure to the set of points on a nonsingular cubic

curve.

PROOF: Closure is clear since the sum of two points on the curve clearly produces another point on the curve. It is also

clear that this operation is commutative since the line through two points is independent of the order of the points.

Next, we check that O is the additive identity. Let P be any point on the curve. Construct the line
←→
O P and let S

be the third point of intersection of this line with C . Now, construct the line
←→
O S . Noting that O , P , and S are collinear,

it follows that the third point of intersection of the line
←→
O S with C is P . Hence, P + O = P , as desired.

Next, we check additive inverses. Let P be any point on the curve. First, we need a candidate for −P . Construct

the tangent line
←→
O O to C and let T be the third point of intersection of this line with C . Construct the line

←→
PT and let

U be the third point of intersection of this line with C . We claim that −P = U .

To see this, construct the line
←→
PU . Noting that P , T , and U are collinear, we see that the third point of intersection

of this line with C is T . Next, construct the line
←→
T O . Since the line

←→
T O is the tangent line to C at O , the third point

of intersection of this line with C is O . Hence, P + U = O , as desired.

The hardest part of this is to show that the operation is associative. Suppose P , Q, and R are points on C . Construct

the line L1 =
←→
P Q and let S′ be the third point of intersection of this line with C . Construct the line M1 =

←→
S′O and let

S be the third point of intersection of this line with C . Next, construct the line L2 =
←→
S R and let T ′ be the third point

of intersection of this line with C . By definition, (P + Q) + R is the third point of intersection of the line
←→
T ′O and C .

On the other hand, construct the line M2 =
←→
Q R and let U ′ be the third point of intersection of this line with C .

Now, construct the line L3 =
←→
U ′O and let U be the third point of intersection of this line with C . Next, construct the

line M3 =
←→
U P and let T ′′ be the third point of intersection of this line with C . Once again, by definition, P + (Q + R)

is the third point of intersection of the line
←→
T ′′O and C .

So, it suffices to show that T ′ = T ′′. See Figure 2.

Figure 2.
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Let C ′ be the reducible cubic L1L2L3 and let C ′′ be the reducible cubic M1 M2 M3. Then

C ′ ∩ C = {P, Q, R, O, S, S′, T ′, U, U ′} and C ′′ ∩ C = {P, Q, R, O, S, S′, T ′′, U, U ′}. Since C passes through

eight points of the intersection of C ′ and C ′′, namely {P, Q, R, O, S, S′, U, U ′}, C must pass through the ninth point

of intersection of C ′ and C ′′. It follows that T ′ = T ′′ and associativity follows immediately. �
5 Explicit formulas.

We assume that the nonsingular cubic C has an equation of the form

y2 = x3 + ax2 + bx + c

as shown earlier.

Let P = (x1, y1) and Q = (x2, y2) be points on C with x1 6= x2. Let the third point of intersection of
←→
P Q be the

point P ∗ Q = (x3, y3). By the choice of coordinates, P + Q is the point (x3, −y3).

Let λ =
y2 − y1

x2 − x1

and ν = y1 − λx1 = y2 − λx2. Then the line through P and Q has the equation y = λx + ν.

To get the third point of intersection of the line
←→
P Q with C , we solve

(λx + ν)2 = x3 + ax2 + bx + c.

By construction, two of the roots of this polynomial are x1 and x2, this polynomial factors as

(x − x1)(x − x2)(x − x3),

so that the coefficient of x2 is −(x1 + x2 + x3). This observation and a little algebra allows us to compute

x3 = λ2 − a − x1 − x2

y3 = λx3 + ν

Of course, these formulas make sense over any field. In particular, if we look over number fields, i.e. algebraic

extensions of the field � of rational numbers, you get the amazingly rich area in number theory called elliptic curves.

A point on an elliptic curve is called a rational point if its coefficients are rational numbers. Undoubtedly, one of the

central results here is

THEOREM 7 (MORDELL’S THEOREM). Let C be a nonsingular rational cubic curve, then there is a finite set of rational

points such that all other rational points can be obtained from the geometric construction described above. In particular,

the group of rational points on C is a finitely generated abelian group.

This result is now being used in cryptographical applications called elliptic curve cryptography, which is a

collection of algorithms for using the group structure on an elliptic curve to encode sensitive data for electronic

transmission.

6 Cubic Curves from a Different Perspective.

Earlier, we showed that a nonsingular cubic curve over the complex numbers can always be represented by an

affine equation of the form

y2 = x(x − 1)(x − λ).

If we consider the map πx : � 2 → � given by projection onto the first coordinate: φ(x, y) = x . If we look at the cubic

curve from this perspective, the nonsingular cubic curve can be realized as a branched covering of the Riemann sphere,

the branch points being the three roots of the cubic polynomial in x on the right side of the equation and the point at

infinity.

This perspective gives rise to the rich area in complex variables called Riemann surface theory, the study of

complex manifolds of complex dimension 1.

From the topological classification theorem of orientable surfaces (which every Riemann surface is), every Riemann

surface is topologically the Riemann sphere with a finite number of handles attached. The number of handles, g, is

called the genus of the Riemann surface. In the case of a nonsingular cubic curve, the genus is 1, so that the Riemann

surface associated with a nonsingular cubic curve is S1 × S1, at least topologically. Then, since it’s clear that S1

itself is a group, so S1 × S1 is likewise a group. However, from this perspective, we don’t get the beautiful geometric

interpretation of the group structure.
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7 Back to Algebraic Geometry.

On the other hand, every Riemann surface of genus 1 can be realized as a nonsingular cubic projective plane curve.

To see this, we need a bit more terminology and one extremely major result.

DEFINITION 11. Let C be a Riemann surface. A divisor on C is a formal sum

D =
∑

P∈C

n P P, n P ∈ � and n P = 0 for all but a finite number of P.

DEFINITION 12. Let f be a meromorphic function on a Riemann surface C . The divisor of f is

( f ) = zeroes of f − poles of f.

QUICK FACTS:

• Any meromorphic function on a Riemann surface has an equal number of zeroes and poles, counted with

multiplicity. So, the degree of the divisor ( f ) is 0.

• It follows immediately that the only holomorphic functions on a Riemann surface are the constant functions.

DEFINITION 13. Let ω be a holomorphic differential on a Riemann surface C . The divisor of ω is

(ω) = zeroes of ω − poles of ω.

QUICK FACTS:

• the degree of the divisor (ω) is 2g − 2 on a Riemann surface of genus g. This divisor is called the canonical

divisor. Hence, for a curve of genus g = 1, the degree of any canonical divisor is 0.

• More specifically, dz is a holomorphic differential on Riemann surface of genus g = 1. It has no zeroes and no

poles, so (dz) = (0).

DEFINITION 14. Let D be a divisor on a Riemann surface C . The vector space L(D) is

L(D) = {meromorphic functions f | ( f ) + D ≥ 0}.

To put this in simpler terms, if D =
∑

n P P and all the n P ≥ 0, then a meromorphic function f is in L(D) exactly

when f has poles no worse than order n P at P for each P in C . Let `(D) denote the dimension of L(D) over � .

Unquestionably, one of the central results in the theory of Riemann surfaces is

THEOREM 8 (RIEMANN-ROCH THEOREM). Let K be a canonical divisor on a Riemann surface C of genus g. Then for

any divisor D on C ,

`(D) = deg(D) − g + 1 + `(K − D).

Note that for a Riemann surface of genus g = 1, the Riemann-Roch theorem implies

`(n P) = n,

for any P ∈ C and any natural number n. Here, L(n P) is just the vector space of meromorphic functions with a pole

at P no worse than order n.

Fix P ∈ C . Then

`(P) = 1

and since the constant functions are included in L(P), we see that C has no meromorphic function f with a single,

simple pole at P and holomorphic elsewhere.

Next,

`(2P) = 2,

so there exists a meromorphic function x on C with a pole of order 2 at P and holomorphic elsewhere.
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Next,

`(3P) = 3,

so there exists a meromorphic function y on C with a pole of order 3 at P and holomorphic elsewhere. In fact, we can

take y to be the derivative of x .2

Finally, since

`(6P) = 6,

and the functions x3, x2, x , y2, y, xy, and 1 all lie in the vector space L(6P), these seven functions must be linearly

dependent, so there is a complex linear relation between these seven functions. This relationship (almost) demonstrates

C as a (necessarily nonsingular) projective plane curve of degree 3.

This brings us back to where we started, which is a perfectly good place to end.

2We should mention in passing that the function we call x is the Weierstrass ℘-function ℘(z) and the function we call

y is the derivative ℘ ′(z).
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