Basic Algebraic Geometry, Volume 2 Chapter 5, Section 2: Sheaves

Igor R. Shafarevich

1. Presheaves

(1)

Definition. Let X be a given topological space. Suppose that with every open set $U \subset X$ we have associated a set $\mathcal{F}(U)$ and with any open sets $U \subset V$ a map

$$\rho_U^V : \mathcal{F}(V \to \mathcal{F}(U).)$$

This sytem of sets and maps is a **presheaf** if the following conditions hold:

- (1) If U is empty, the set $\mathcal{F}(U)$ consists of 1 element;
- (2) ρ_U^U is the identity map for any open set U;
- (3) for any open sets $U \subset V \subset W$, we have

$$\rho_U^W = \rho_U^V \circ \rho_V^W.$$

- (2) A presheaf is sometimes denoted \mathcal{F} . If we need to emphasize the that the maps ρ_U^V refer to \mathcal{F} , we denote them by $\rho_{U,\mathcal{F}}^V$.
- (3) If all the sets $\mathcal{F}(U)$ are groups, rings, or modules over a ring A, and the maps ρ_U^V are homomorphisms of these structures, then \mathcal{F} is a presheaf of groups, rings, or A-modules.
- (4) The choice $\mathcal{F}(\emptyset)$ is irrelevant. For a sheaf of groups, we let $\mathcal{F}(\emptyset)$ be the group with one element.
- (5) If \mathcal{F} is a presheaf on X and $U \subset X$ is an open set, then sending V to $\mathcal{F}(V)$ for open subset $V \subset U$ obviously defines a presheaf on U. This is the **restriction** of the presheaf \mathcal{F} and is denoted $\mathcal{F}|_U$.

Start with Example 1 on page 29 in the box.

4 STALKS OF A SHEAF

2. The Structure Presheaf

(1)

3. Sheaves

(1)

4. Stalks of a Sheaf

(1)