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Chapter 5, Section 1: The Spectrum of a Ring

Igor R. Shafarevich

1. Definition of Spec(A)

(1) The set of prime ideals of A is its prime spectrum or simply spectrum, and
denoted by Spec(A). Prime ideals are called points of Spec(A).

(2) The ring itself is NOT a prime ideal.

(3) Every nonzero ring has at least one maximal ideal.

(4) A ring homomorphism φ : A→ B. The inverse of any prime ideal B is a prime ideal
of A. This defines a map aφ : Spec(B) → Spec(A) called the associated map.

(5) Work through the map Spec(C[T ]) → Spec(R[T ]) associated with the inclusion
R[T ] ↪→ C[T ].

(6) Work through the map Spec(Z[i]) → Spec(Z) associated with the inclusion Z ↪→ Z[i].

(7) Work through the map Spec(Z[T ]) → Spec(Z) associated with the inclusion Z ↪→
Z[T ].

(8) There is a map φ : A → AS defined by a 7→ a/1, and hence a map aφ : Spec(AS) →
Spec(A). This map is inclusion and the image US is the set of prime ideals disjoint
from S. The inverse map ψ : US → Spec(AS) is of the form

ψ(p) = pAS = {x/s | x ∈ p and s ∈ S}.

If f ∈ A and S = {fn | n = 0, 1, . . . } then AS is denoted Af .
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2 PROPERTIES OF POINTS OF SPEC(A)

2. Properties of Points of Spec(A)

(1) Each x ∈ Spec(A) has a field of fractions k(x), the residue field of x. There is a map
A → k(x) whose kernel is the prime ideal corresponding to the point x ∈ Spec(A).
We write f(x) for the image of f ∈ A in k(x) under this map. This is the value of
f at x. So, each element of A gives a function on Spec(A), but the values of the
function lie in different fields depending on x.

(2) The element f ∈ A is not uniquely determined by its corresponding function on
Spec(A). For example, any f in the nilradical of A is identically zero on Spec(A),
but is not 0 in A.

Proposition. An element f ∈ A is contained in every prime ideal of A if and only
if it is nilpotent (that is, fn = 0 for some n).

(3) For each point x ∈ Spec(A) there is a local ring Ox. A point x ∈ Spec(A) is regular
(or simple) if the local ringOx is Noetherian and is a regular local ring. A Noetherian
local ring A of dimension d with maximal ideal m is regular if dimk

(
m/m2

)
= d. This

means m can be generated by d elements.

(4) Suppose A = k[X] and x ∈ Spec(A) be a nonclosed point. What is the geometric
meaning of a prime ideal x ∈ Spec(A) being regular? This means the subvariety
Y ⊂ Spec(A) is not contained in the subvariety of singular points of X.

(5) Let mx be the maximal ideal of the local ring Ox of a point X ∈ Spec(A). Then
Ox/mx = k(x), and the group m/m2 is a vector space over k(x). If Ox is Noetherian,
then this space a finite dimensional. The dual vector space

Θx = Homk(x)(m/m
2, k(x))

is the tangent space to Spec(A) at x.

(6) For A = Z, each closed point has 1-dimenional tangent space, so each closed point is
regular.

(7) Consider A = Z[mi] = Z[y]/(y2 +m2) = Z + Zmi, where m > 1 is an integer and
i2 = −1. The inclusion φ : A ↪→ A′ = Z[i] defines a map

aφ : Spec(A′) → Spec(A). (1)

If we look at prime ideals coprime to m then this is a one-to-one correspondence and
the corresponding local rings are equal. Hence a point x ∈ Spec(A′) is not regular
only if the prime ideal divides m. Primes ideals of A′ dividing m are in one-to-one
correspondence with prime factors p of m, and are given by p = (p,mi). In this case,
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3 THE ZARISKI TOPOLOGY OF SPEC(A)

k(x) = Fp is the field of p elements, and m/m2 = p/p2 is a 2-dimensional Fp-vector
space, since p2 ⊂ (p). Hence mx is not principal, and the local ring Ox is not regular.
Thus all the prime ideals p = (p,mi) with p | m are singular points of Spec(A). The
map (1) is a resolution of these singularites.

3. The Zariski Topology of Spec(A)

(1) Any set E ⊂ A defined a subset V (E) ⊂ Spec(A) consisting of prime ideals p con-
taining E.

(2) We have

V

(⋃
α

Eα

)
=
⋂
α

V (Eα)

V (I) = V
(
E′) ∪ V (E′′), where I = (E′) ∩ (E′′)

This shows that the set V (E) satisfy the axioms for the closed sets of a topological
space.

(3) The topology on Spec(A) in which the V (E) are the closed sets is called the Zariski
topology or spectral topology.

(4) For a homomorphism φ : A → B and any set E ⊂ A, we have (aφ)−1(V (E)) =
V (φ(E)). So, aφ is a continuous map.

(5) The natural homomorphism φ : A → A/a for an ideal a ⊂ A. Then aφ is a homeo-
morphism of Spec(A/a) to the closed set V (a). So, every closed subset of Spec(A) is
isomorphic to Spec of a ring.

(6) For S ⊂ A a multiplicatively closed set, let

φ : A→ AS , US = aφ(Spec(AS)) and ψ : US → Spec(AS)

be as before. Give US ⊂ Spec(A) the subspace topology. Then ψ is also continuous,
so Spec(AS) is homeomorphic to the subspace US ⊂ Spec(A).

(7) Special case: S = {fn | n = 0, 1, . . . } with f ∈ A and element that is not nilpotent.
Then US = Spec(A)\V (f), where V (f) = V (E) with E = {f}. The open sets of the
form Spec(A) \ V (f) are called prinicipal open sets. They are denoted D(f). They
form a basis for the Zariski topology. The prinicipal open setsD(f) are homeomorphic
to Spec(Af ).
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4 IRREDUCIBILITY, DIMENSION

(8) Spec(A) is compact.

(9) The Zariski topology is very nonclassical on Spec(A). Not only is it not Hausdorff,
it actually has non-closed points.

(10) {p} = V (p). So the closed points in Spec(A) are the maximal ideals in A. If A is a
domain, then (0) ∈ Spec(A) is an everywhere dense point.

(11) x is a specialization of y if x ∈ {y}. An everywhere dense point if called a generic
point of the space. Spec(A) has a generic point if the nilradical is prime.

(12) Let Ox be the local ring of a nonsingular point of an algebraic curve. Then (0) is the
generic point of Spec(Ox) and is open. The maximal ideal mx is a closed point.

4. Irreducibility, Dimension

(1) A topological space X is reducible if X = X1 ∪ X2 where X1, X2 ⊊ X are closed
sets.

(2) Spec(A) is irreducible if and only if it has a generic point if and only if N(A) is a
prime ideal.

(3) Since every closed subset of Spec(A) is Spec of quotient of A, there is a one-to-one
correspondence between points and irreducible subsets of Spec(A) given by sending
a point to its closure.

(4) If A is a Noetherian ring, then there exists a decomposition

Spec(A) = X1 ∪ · · · ∪Xr,

where Xi are irreudicble closed subsets and Xi ̸⊂ Xj for i ̸= j and this decomposition
is unique.

(5) If A = A1 ⊕ · · · ⊕Ar, then Spec(A) =
∐

i Spec(Ai).

(6) Take A = Z[σ] = Z+Zσ, with σ2 = 1. The nilradical of A is (0), but it’s not a prime
ideal.

Spec(A) = X1 ∪X2, where X1 = V (1 + σ) and X2 = V (1− σ). (1)

The homomorphisms φ1, φ2 : A→ Z with kernels (1 + σ) and (1− σ) define homeo-
morphisms

aφ1 : Spec(Z) → V (1 + σ)
aφ2 : Spec(Z) → V (1− σ)
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4 IRREDUCIBILITY, DIMENSION

which show that X1 and X2 are irreducible. So that (1) is a decomposition of Spec(A)
into irreducible components.

The intersection X1∩X2 is a point x0. All the points unequal to x0 are regular while
x0 is singular. x0 is a “double point with distinct tangents” of Spec(A).

We can picture Spec(A) using the map aφ : Spec(A) → Spec(Z) where Z ↪→ A is the
natural inclusion. See Figure 1.

Figure 1: Picture of Spec(A)

(7) The dimension of a topological space X is the number n such that X has a chain
of irreducible closed sets

∅ ≠ X0 ⊊ X1 ⊊ · · · ⊊ Xn,

and no such chain with more than n terms.

Propositon A. If A is a Noetherian local ring, then the dimension of Spec(A) is finite, and
equal to the Krull dimension of A.

Propositon B. A ring that is finitely generated over a ring having finite dimension is again
finite dimensional.

Propositon C. If A is Noetherian then

dim (A[T1, . . . , Tn]) = dim (A) + n.
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