Basic Algebraic Geometry, Volume 2 Chapter 5, Section 1: The Spectrum of a Ring

Igor R. Shafarevich

1. Definition of Spec(A)

- (1) The set of prime ideals of A is its **prime spectrum** or simply **spectrum**, and denoted by Spec(A). Prime ideals are called points of Spec(A).
- (2) The ring itself is NOT a prime ideal.
- (3) Every nonzero ring has at least one maximal ideal.
- (4) A ring homomorphism $\varphi : A \to B$. The inverse of any prime ideal B is a prime ideal of A. This defines a map ${}^{a}\varphi : \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ called the **associated map**.
- (5) Work through the map $\operatorname{Spec}(\mathbb{C}[T]) \to \operatorname{Spec}(\mathbb{R}[T])$ associated with the inclusion $\mathbb{R}[T] \hookrightarrow \mathbb{C}[T]$.
- (6) Work through the map $\operatorname{Spec}(\mathbb{Z}[i]) \to \operatorname{Spec}(\mathbb{Z})$ associated with the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Z}[i]$.
- (7) Work through the map $\operatorname{Spec}(\mathbb{Z}[T]) \to \operatorname{Spec}(\mathbb{Z})$ associated with the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Z}[T]$.
- (8) There is a map $\varphi : A \to A_S$ defined by $a \mapsto a/1$, and hence a map ${}^a\varphi : \operatorname{Spec}(A_S) \to \operatorname{Spec}(A)$. This map is inclusion and the image U_S is the set of prime ideals disjoint from S. The inverse map $\psi : U_S \to \operatorname{Spec}(A_S)$ is of the form

 $\psi(\mathfrak{p}) = \mathfrak{p}A_S = \{x/s \mid x \in \mathfrak{p} \text{ and } s \in S\}.$

If $f \in A$ and $S = \{f^n \mid n = 0, 1, ...\}$ then A_S is denoted A_f .

2. Properties of Points of Spec(A)

- Each x ∈ Spec(A) has a field of fractions k(x), the residue field of x. There is a map A → k(x) whose kernel is the prime ideal corresponding to the point x ∈ Spec(A). We write f(x) for the image of f ∈ A in k(x) under this map. This is the value of f at x. So, each element of A gives a function on Spec(A), but the values of the function lie in different fields depending on x.
- (2) The element $f \in A$ is not uniquely determined by its corresponding function on $\operatorname{Spec}(A)$. For example, any f in the nilradical of A is identically zero on $\operatorname{Spec}(A)$, but is not 0 in A.

Proposition. An element $f \in A$ is contained in every prime ideal of A if and only if it is nilpotent (that is, $f^n = 0$ for some n).

- (3) For each point $x \in \text{Spec}(A)$ there is a local ring \mathcal{O}_x . A point $x \in \text{Spec}(A)$ is **regular** (or **simple**) if the local ring \mathcal{O}_x is Noetherian and is a regular local ring. A Noetherian local ring A of dimension d with maximal ideal \mathfrak{m} is regular if $\dim_k(\mathfrak{m}/\mathfrak{m}^2) = d$. This means \mathfrak{m} can be generated by d elements.
- (4) Suppose A = k[X] and $x \in \text{Spec}(A)$ be a nonclosed point. What is the geometric meaning of a prime ideal $x \in \text{Spec}(A)$ being regular? This means the subvariety $Y \subset \text{Spec}(A)$ is not contained in the subvariety of singular points of X.
- (5) Let \mathfrak{m}_x be the maximal ideal of the local ring \mathcal{O}_x of a point $X \in \operatorname{Spec}(A)$. Then $\mathcal{O}_x/\mathfrak{m}_x = k(x)$, and the group $\mathfrak{m}/\mathfrak{m}^2$ is a vector space over k(x). If \mathcal{O}_x is Noetherian, then this space a finite dimensional. The dual vector space

$$\Theta_x = \operatorname{Hom}_{k(x)}(\mathfrak{m}/\mathfrak{m}^2, k(x))$$

is the **tangent space** to Spec(A) at x.

- (6) For $A = \mathbb{Z}$, each closed point has 1-dimensional tangent space, so each closed point is regular.
- (7) Consider $A = \mathbb{Z}[mi] = \mathbb{Z}[y]/(y^2 + m^2) = \mathbb{Z} + \mathbb{Z}mi$, where m > 1 is an integer and $i^2 = -1$. The inclusion $\varphi : A \hookrightarrow A' = \mathbb{Z}[i]$ defines a map

$${}^{a}\varphi: \operatorname{Spec}(A') \to \operatorname{Spec}(A).$$
 (1)

If we look at prime ideals coprime to m then this is a one-to-one correspondence and the corresponding local rings are equal. Hence a point $x \in \text{Spec}(A')$ is not regular only if the prime ideal divides m. Primes ideals of A' dividing m are in one-to-one correspondence with prime factors p of m, and are given by $\mathbf{p} = (p, mi)$. In this case, $k(x) = \mathbb{F}_p$ is the field of p elements, and $\mathfrak{m}/\mathfrak{m}^2 = \mathfrak{p}/\mathfrak{p}^2$ is a 2-dimensional \mathbb{F}_p -vector space, since $\mathfrak{p}^2 \subset (p)$. Hence \mathfrak{m}_x is not principal, and the local ring \mathcal{O}_x is not regular. Thus all the prime ideals $\mathfrak{p} = (p, mi)$ with $p \mid m$ are singular points of $\operatorname{Spec}(A)$. The map (1) is a resolution of these singularities.

3. The Zariski Topology of Spec(A)

- (1) Any set $E \subset A$ defined a subset $V(E) \subset \text{Spec}(A)$ consisting of prime ideals \mathfrak{p} containing E.
- (2) We have

$$V\left(\bigcup_{\alpha} E_{\alpha}\right) = \bigcap_{\alpha} V(E_{\alpha})$$
$$V(I) = V(E') \cup V(E''), \text{ where } I = (E') \cap (E'')$$

This shows that the set V(E) satisfy the axioms for the closed sets of a topological space.

- (3) The topology on Spec(A) in which the V(E) are the closed sets is called the **Zariski** topology or spectral topology.
- (4) For a homomorphism $\varphi : A \to B$ and any set $E \subset A$, we have $({}^a\varphi)^{-1}(V(E)) = V(\varphi(E))$. So, ${}^a\varphi$ is a continuous map.
- (5) The natural homomorphism $\varphi : A \to A/\mathfrak{a}$ for an ideal $\mathfrak{a} \subset A$. Then ${}^{a}\varphi$ is a homeomorphism of $\operatorname{Spec}(A/\mathfrak{a})$ to the closed set $V(\mathfrak{a})$. So, every closed subset of $\operatorname{Spec}(A)$ is isomorphic to Spec of a ring.
- (6) For $S \subset A$ a multiplicatively closed set, let

$$\varphi: A \to A_S, \quad U_S = {}^a \varphi(\operatorname{Spec}(A_S)) \quad \text{and} \quad \psi: U_S \to \operatorname{Spec}(A_S)$$

be as before. Give $U_S \subset \text{Spec}(A)$ the subspace topology. Then ψ is also continuous, so $\text{Spec}(A_S)$ is homeomorphic to the subspace $U_S \subset \text{Spec}(A)$.

(7) Special case: $S = \{f^n \mid n = 0, 1, ...\}$ with $f \in A$ and element that is not nilpotent. Then $U_S = \text{Spec}(A) \setminus V(f)$, where V(f) = V(E) with $E = \{f\}$. The open sets of the form $\text{Spec}(A) \setminus V(f)$ are called *principal open sets*. They are denoted D(f). They form a basis for the Zariski topology. The principal open sets D(f) are homeomorphic to $\text{Spec}(A_f)$.

- (8) $\operatorname{Spec}(A)$ is compact.
- (9) The Zariski topology is very nonclassical on Spec(A). Not only is it not Hausdorff, it actually has non-closed points.
- (10) $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p})$. So the closed points in Spec(A) are the maximal ideals in A. If A is a domain, then $(0) \in \text{Spec}(A)$ is an everywhere dense point.
- (11) x is a specialization of y if $x \in \overline{\{y\}}$. An everywhere dense point if called a generic point of the space. Spec(A) has a generic point if the nilradical is prime.
- (12) Let \mathcal{O}_x be the local ring of a nonsingular point of an algebraic curve. Then (0) is the generic point of $\operatorname{Spec}(\mathcal{O}_x)$ and is open. The maximal ideal \mathfrak{m}_x is a closed point.

4. Irreducibility, Dimension

- (1) A topological space X is **reducible** if $X = X_1 \cup X_2$ where $X_1, X_2 \subsetneq X$ are closed sets.
- (2) Spec(A) is irreducible if and only if it has a generic point if and only if $\mathfrak{N}(A)$ is a prime ideal.
- (3) Since every closed subset of Spec(A) is Spec of quotient of A, there is a one-to-one correspondence between points and irreducible subsets of Spec(A) given by sending a point to its closure.
- (4) If A is a Noetherian ring, then there exists a decomposition

$$\operatorname{Spec}(A) = X_1 \cup \cdots \cup X_r,$$

where X_i are irreudicible closed subsets and $X_i \not\subset X_j$ for $i \neq j$ and this decomposition is unique.

- (5) If $A = A_1 \oplus \cdots \oplus A_r$, then $\operatorname{Spec}(A) = \coprod_i \operatorname{Spec}(A_i)$.
- (6) Take $A = \mathbb{Z}[\sigma] = \mathbb{Z} + \mathbb{Z}\sigma$, with $\sigma^2 = 1$. The nilradical of A is (0), but it's not a prime ideal.

Spec(A) =
$$X_1 \cup X_2$$
, where $X_1 = V(1 + \sigma)$ and $X_2 = V(1 - \sigma)$. (1)

The homomorphisms $\varphi_1, \varphi_2 : A \to \mathbb{Z}$ with kernels $(1 + \sigma)$ and $(1 - \sigma)$ define homeomorphisms

$${}^{a}\varphi_{1}:\operatorname{Spec}(\mathbb{Z})\to V(1+\sigma)$$

 ${}^{a}\varphi_{2}:\operatorname{Spec}(\mathbb{Z})\to V(1-\sigma)$

which show that X_1 and X_2 are irreducible. So that (1) is a decomposition of Spec(A) into irreducible components.

The intersection $X_1 \cap X_2$ is a point x_0 . All the points unequal to x_0 are regular while x_0 is singular. x_0 is a "double point with distinct tangents" of Spec(A).

We can picture $\operatorname{Spec}(A)$ using the map ${}^{a}\varphi : \operatorname{Spec}(A) \to \operatorname{Spec}(\mathbb{Z})$ where $\mathbb{Z} \hookrightarrow A$ is the natural inclusion. See Figure 1.

Figure 1: Picture of Spec(A)

(7) The **dimension** of a topological space X is the number n such that X has a chain of irreducible closed sets

$$\emptyset \neq X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_n,$$

and no such chain with more than n terms.

- **Propositon A.** If A is a Noetherian local ring, then the dimension of Spec(A) is finite, and equal to the Krull dimension of A.
- **Propositon B.** A ring that is finitely generated over a ring having finite dimension is again finite dimensional.
- **Propositon C.** If A is Noetherian then

$$\dim \left(A[T_1, \dots, T_n] \right) = \dim \left(A \right) + n.$$