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Basic Algebraic Geometry, Volume 1
Chapter 1, Section 4: Quasiprojective Varieties

Igor R. Shafarevich

Closed Subsets of Projective Space

Let V be a vector space of dimension n+ 1 over a field k. The set of one-dimensional
subspaces of V' is n-dimensional projective space, denoted P(V') or P".

Definition of homogeneous coordinates

If f € k[So,...,S,] vanishes at £ € P" for all homogenous coordinates for £, then each
homogeneous components vanish at €.

A set X cP" is a closed subset if it consists of all points at which a finite number of
polynomials with coefficients in k vanish. A closed subset defined by one homogeneous
equation F = 0 is called a hypersurface. The degree of the polynomial is the degree
of the hypersurface. A hypersurface of degree 2 is called a quadric.

The set of polynomials f € k[Sy, ..., Sy,] that vanish at all points z € X is the ideal of
X, denoted 2x c k[Sp,...,Sn]. This ideal is homogeneous or graded. In particular,
any closed projective set can be defined by a finite set of homogeneous equations.

Any homogeneous ideal 2 c k[ Sy, ..., S, ] defines a closed subset X c P".

The Grassmannian. Grass(r, V') is the algebraic set consisting of all r-dimensional
subspaces in V. Consider A"V and send a basis {fi,..., fr} for an r-plane to the
element f; A--- A f.. Choosing another basis changes the image by a nonzero multi-
plicative constant, so the image of each r-plane in V' determines a point in P(A" V).
The coordinates of the image of an r-plane are the Pliicker coordinates of the r-plane.

Let u e V*. For x e A'V =V the convolution v 1z is just u(x). For x e A°V = k we
set u Jx =0. For any x € A"V the convolution u 4z =0 can be extended in a unique
way from x € AV =V if we require the property

ud(zAay)=(udzx)ry+(-1)"(zA(uly)) forxe/a\V.
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1 CLOSED SUBSETS OF PROJECTIVE SPACE

Here, u J A"V ¢ A" V. The element u Jz for v € V* and € A"V is called the
convolution of u and x. Finally, for ui,...,us € V* the element u; J(ugJ---J(usJx) )
depends only on z and y = ug A - Aus € A°V™, and is denoted by y 4 x. Here
ydze N *Vifr>sandydx=0if r<s.

Generally, not every point in P(A" V') is the image of an r-plane. The conditions for
z € A"V to be of the form x = fi A+ A f,. are given by

r—1
(yax)Aaxz=0 forallye A\ V"

Let {u;} the dual basis for V* to the basis {e;} of V, then these equations can be
written in coordinates. They take the form

r+1

t
;(_1) pil---irfljtpjl...ﬁ...errl = 0

for all sequences i1,...%,—1 and ji,...Jr+1-

The variety defined in P(A" V') by these equations is called the Grassmannian, de-
noted by Grass(r, V') or Grass(r,n) where n = dim (V).

We need to reconstruct L from P(L). Suppose p1_, #0. If p=(p;,.i.) = P(L), then
L has a basis of the form

fizei+2aikek forizl,...,r.
k>r

The first nontrivial case is when r = 2. Then

1 2
(qu)/\xzi(u_l(ac/\x)) forueV* and z e A\ V.

This reduces to u 2 (z Az) =0 for all we V*. That is, simply
Az =0.
When n = 4 we have dim A*V = 1, so this reduces to a single equation in the Pliicker
coordinates pi12,p13, P14, P23, P24, P34:
P12P34 — P13P24 + Prapa3 = 0. (1)

Planes L c V in a 4-dimensional space V' correspond to lines ¢ c P(V') in projective
3-space. In this case, coordinates in V are denoted by xg,x1,x2,x3 and the Pliicker
coordinates po1, po2, Po3, P12, P13, P23, and (1) takes the form

Po1P23 — Po2pP13 + Po3p12 = 0. (2)
This is a quadric in projective 5-space P (/\2 V).
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1 CLOSED SUBSETS OF PROJECTIVE SPACE

Determinantal varieties. Quadratic forms in n variables form a vector space V of
dimension (";1) = %n(n +1). Quadrics in an (n - 1) dimensional projective space
are parametrized by point of the product space P(V'). Among these, the degenerate
quadrics are characterized by det(f) = 0, where f is the corresponding quadratic

form. This is a hypersurface X; c P(V).

The quadrics of rank < n — k correspond to points of a set X defined by setting all
(n-k+1)x(n-k+1) minors of the matrix of f to 0. A set of this type is called
a determinantal variety. Another type of determinantal variety M}, is defined in the
space P(V'), where V is the space of n x m matrices, by the condition that a matrix
has rank < k.

A homogeneous ideal 2 c k[S] defines the empty set if and only if it contains the
ideal I, for some s > 0.

Closed subsets of projective space are projective closed sets, just as closed subsets of
affine space are affine closed sets. For Y ¢ X both closed sets, X \Y is a open set in
X.

The set A" = {(&o,...,&n} | & # 0} ¢ P™ is in one-to-one corresponding with A™ and
P" = ULy AY. The set A? is an affine piece of P".

For any projective closed set X c P, and any ¢ =0, ...,n, the set U; = X nA? is open
in X. It is a closed subset of A"

If X is given by a system of homogeneous equations Fp = --- = F,, = 0 and deg F}; = n;,
then, for example, Uy is given by the system

Sy Fj=F;j(1,Ty,...,T,,) =0, forj=1,....,m,

where T; = S;/Sp for i = 0,...,n. The U; are the affine pieces of X. Obviously
X = UzUZ

A closed subset U c A{} defines a closed projective set U called its projective comple-
tion; U is the intersection of projective closed sets containing U. If F(Ty,...,T;) is
any polynomial in the ideal 2 of U of degree deg F' = k, then the equations of U are
of the form SY¥F(S1/So,...,Sn/S0). Tt follows that

U=UnAj. (3)

For the time being, a quasiprojective variety is an open subset of a closed projective
set. Both projective closed sets and affine closed sets are quasiprojective varieties.
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A closed subset os a quasiprojective variety X c IP" is its intersection with a closed set
of projective space. Open set and neighborhood are defined similarly. The notion of
irreducible variety and decomposition a variety into irreduicible components carries
over word-for-word from the case of affine sets.

From now on we use subvariety Y of a quasiprojective variety X c P" to mean any
subset Y ¢ X which is itself a quasiprojective variety in P". This is equivalent to
saying that Y = Z \ Z; with Z and Z; c X closed subsets.

Regular Functions

If X c P is a quasiprojective variety, x € X and f = P/Q is a homogenous function of
degree 0 with Q(z) # 0, then f defines a function on a neighborhood of z in X with
values in k. We say f is reqular in a neighborhood of z, or simply at z. A function
that is regular at all points x € X is a reqular function on X. All regular functions
on X form a ring, that we denote by k[X].

For X a closed subset of affine space, this is the same definition as before.
If X is an irreducible projective set, k[ X ] consists only of constants. [Proof later]

OTOH, if X is quasiprojective, k[ X ] may turn out to be unexpectedly large. There
are quasiprojective varieties for which k[ X] is not finitely generated.

A map f: X - Y between quasiprojective varieties, with Y c P™, is regular if
for every point z € X and for some affine piece A" containing f(x) there exists a
neighborhood U containing x such that f(U) c A" and the map f: U — AT is
regular.

This is independent of the choice of affine piece Af".
A regular map f: X — Y defines a homomorphism f*: k[Y] - k[ X].

In practice f(z) = (Fo(z):-+-: Fyp(z)) € P where Fy, ..., F,, are forms of the same
degree and Fj(x) # 0 for some 3.

Two different formulas

f(@) = (Fo(x) - F(2)) and g(x) = (Go(z) : - : Gm(w)) (1)
define the same map if and only if

F;G;=F;Gyon X for0<i,j<m. (2)
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A regular map f: X — P™ of an irreducible quasiprojective variety X to projective
space P™ is given by an (m + 1)-tuple of forms

(Fo:-: Fn) (3)

of the same degree in the homogeneous coordinates of x € P", so that F;(x) # 0 for at
least one i. Then we write f(x) = (Fo(z) :---: Fpp(2)). Two maps (1) are considered
equal if (2) holds.

An isomorphism of varieties is a regular map having an inverse regular map.

A quasiprojective variety X’ isomorphic to a closed subset of an affine space will be
called an affine variety. The quasiprojective variety X = A! \ 0 is an affine variety
even though it is not a closed set in A'. The set X is isomorphic to the hyperbola
xy = 1 which is a closed set in A2,

A quasiprojective variety isomorphic to a closed projective set will be called a pro-
jective variety. It is a fact that if X c P" is a projective variety then it is closed in
P™. So the notions of closed projective set and projective variety coincide and are
both invariant under isomorphism.

There are quasiprojective varieties that are neither affine nor projective.

The property that a subset Y c X is closed in a quasiprojective variety X is a local
property.

Every point x € X has a neighborhood isomorphic to an affine variety.

An open set D(f) = X ~ V(f) consisting fo the points of an affine variety X such
that f(x) # 0 is called a principal open set. Also k[D(f)]=k[X][f™].

Under any regular map, the inverse image f~1(Z) under any regular map f: X - Y
os any closed subset Z cY is closed in X.

The inverse image of any open set under a regular map is open. That is, regular
maps are continuous.

Any function ¢ regular in a neighborhood of f(x) € Y, the function f*(y) is regular
in a neighborhood of x.

Rational Functions

Let X c P" be an irreducible quasiprojective variety. Write Ox for the set of rational
functions f = P/Q in homogeneous coordinates Sy, ...,S, such that P, @ are forms
of the same degree and @ ¢ Ax. Ox is the ring of rational functions on X.
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(2) The functions f € Ox with P € Ax is the maximal ideal Mx in Ox. The quotient
ring Ox/Mx is the function field of X, and denoted k(X).

(3) If U is an open subset of an irreducible quasiprojective variety X, then k(X) = k(U).
In particular, k(X) = k(X). So, in discussing function fields, we can restrict to affine
or projective varieties.

(4) If X is an affine variety, this definition agrees with the earlier one.

(5) We say f € k(X) is regular at a point = € X if it can be written in the form
f =F/G, with F and G homogeneous of the same degree and G(X) # 0. The value
f(x) = F(x)/G(x) is the value of the function at x. The set of points at which a
rational function f is regular is a nonempty, open subset of X, called the domain
of definition.

(6) A rational function can also be defined as a function regular on some open set U c X.

(7) A rational map f: X — P™ is defined by giving m + 1 forms (Fj : --- : F;) of the
same degree in the n + 1 homogeneous coordinates of P" containing X. At least one
of these forms must not vanish on X.

(8) Two maps (Fp:--: Fy,) and (Go: - : Gy,) are equal if F;G; = F;G; on X for all 4, j.

(9) If we divide by one of the coordinate functions, we can define a rational map by m+1
rational functions on X, then the same notion of equality of maps.

(10) A rational map f defined by functions (fy : --- : f,) such that all f; are regular at
x € X and not all zero at x, then f is regular at x. If defines a regular map on some
neighborhood of x € P™.

(11) The set where a rational function is regular is open. We can define a rational map
to be a function regular on some open set U ¢ X on which f is regular.

(12) Let Y c P™ is a quasiprojective variety and f: X - P, we say f: X — Y if there
is an open set U ¢ X on which f is regular and f(U) c Y. The union U of all such
open sets is the domain of definition of f, and f(U) c Y is the image of X in Y.

(13) If the image of a rational map f: X — Y is dense, rational map defines and inclusion
of fields f*: k(Y) — k(X).

(14) If a rational map f: X — Y has an inverse rational map then f is birational or is a
birational equivalence, and X and Y are birational. In this case, f*: k(Y) - k(X)
is an isomorphism.

(15) Proposition: Two irreducible varieties X and Y are birational if and only if they
contain isomorphic open subsets U ¢ X and V c Y.
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Examples of Regular Maps

Projection with center F ¢ P", dim(F) = d. E given by n — d linear equations
L1 = L2 == Ln—d- Then

7P prdl

7T($) = (Ll([E) Deeed Ln_d(.’IJ))

Take any (n—d-1)-dimensional linear subspace H c P" disjoint from E. Then there
is a unique (d + 1)-dimensional linear subspace (FE,x) passing through E and any
point & € P" \ E. This subspace intersects H in a unique point, which is 7 ().

If X intersects E but is not contained in it, then projection from F is a rational map
on X.

The Veronese embedding vy, ,, : P - PV where N = ("+m) -1

m
The regular map vy, : P — PV defined by vig..i,, = uf)o---ufl" for 3 i; =m/. This is the
m'" Veronese embedding of P” and the image is the Veronese variety. This is
a determinantal variety cut out by quadrics.

If F'is a form of degree m in the homogeneous coordinates of P* and H c P" is
the hypersuface defined by F = 0, then v,,(H) c v, (P") c PV is the intersection
of vy, (P") with a hyperplane of PV. The Vernoese embedding allows us to reduce
the study of some problems ocncerning hypersurfaces of degree m to the case of
hyperplanes.

The m'™ Vernoese image of the porjective line v,,(P') ¢ P™ is called the Veronese
curve, the twisted m-ic curve, of the rational normal curve of degree m.



