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Chapter 1, Section 4: Quasiprojective Varieties

Igor R. Shafarevich

1. Closed Subsets of Projective Space

(1) Let V be a vector space of dimension n+ 1 over a field k. The set of one-dimensional
subspaces of V is n-dimensional projective space, denoted P(V ) or Pn.

(2) Definition of homogeneous coordinates

(3) If f ∈ k[S0, . . . , Sn] vanishes at ξ ∈ Pn for all homogenous coordinates for ξ, then each
homogeneous components vanish at ξ.

(4) A set X ⊂ Pn is a closed subset if it consists of all points at which a finite number of
polynomials with coefficients in k vanish. A closed subset defined by one homogeneous
equation F = 0 is called a hypersurface. The degree of the polynomial is the degree
of the hypersurface. A hypersurface of degree 2 is called a quadric.

(5) The set of polynomials f ∈ k[S0, . . . , Sn] that vanish at all points x ∈X is the ideal of
X, denoted AX ⊂ k[S0, . . . , Sn]. This ideal is homogeneous or graded. In particular,
any closed projective set can be defined by a finite set of homogeneous equations.

(6) Any homogeneous ideal A ⊂ k[S0, . . . , Sn] defines a closed subset X ⊂ Pn.

(7) The Grassmannian. Grass(r, V ) is the algebraic set consisting of all r-dimensional
subspaces in V . Consider ⋀r V and send a basis {f1, . . . , fr} for an r-plane to the
element f1 ∧ ⋯ ∧ fr. Choosing another basis changes the image by a nonzero multi-
plicative constant, so the image of each r-plane in V determines a point in P(⋀r V ).
The coordinates of the image of an r-plane are the Plücker coordinates of the r-plane.

(8) Let u ∈ V ∗. For x ∈ ⋀1 V = V the convolution u ⌟ x is just u(x). For x ∈ ⋀0 V = k we
set u⌟ x = 0. For any x ∈ ⋀r V the convolution u⌟ x = 0 can be extended in a unique
way from x ∈ ⋀1 V = V if we require the property

u ⌟ (x ∧ y) = (u ⌟ x) ∧ y + (−1)a(x ∧ (u ⌟ y)) for x ∈
a

⋀V.
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1 CLOSED SUBSETS OF PROJECTIVE SPACE

Here, u ⌟ ⋀r V ⊂ ⋀r−1 V . The element u ⌟ x for u ∈ V ∗ and x ∈ ⋀r V is called the
convolution of u and x. Finally, for u1, . . . , us ∈ V ∗ the element u1⌟(u2⌟⋯⌟(us⌟x)⋯)
depends only on x and y = u1 ∧ ⋯ ∧ us ∈ ⋀s V ∗, and is denoted by y ⌟ x. Here
y ⌟ x ∈ ⋀r−s V if r ≥ s and y ⌟ x = 0 if r < s.

(9) Generally, not every point in P(⋀r V ) is the image of an r-plane. The conditions for
x ∈ ⋀r V to be of the form x = f1 ∧⋯ ∧ fr are given by

(y ⌟ x) ∧ x = 0 for all y ∈
r−1
⋀ V ∗.

Let {ui} the dual basis for V ∗ to the basis {ei} of V , then these equations can be
written in coordinates. They take the form

r+1
∑
t=1
(−1)tpi1...ir−1jtpj1...ĵt...jr+1 = 0

for all sequences i1, . . . ir−1 and j1, . . . jr+1.
The variety defined in P(⋀r V ) by these equations is called the Grassmannian, de-
noted by Grass(r, V ) or Grass(r, n) where n = dim (V ).
We need to reconstruct L from P (L). Suppose p1...r ≠ 0. If p = (pi1...ir) = P (L), then
L has a basis of the form

fi = ei + ∑
k>r

aikek for i = 1, . . . , r.

where aik = (−1)kp1...k̂...rk, where we have set p1...r = 1 for convenience.

(10) The first nontrivial case is when r = 2. Then

(u ⌟ x) ∧ x = 1

2
(u ⌟ (x ∧ x)) for u ∈ V ∗ and x ∈

2

⋀V.

This reduces to u ⌟ (x ∧ x) = 0 for all u ∈ V ∗. That is, simply

x ∧ x = 0.

(11) When n = 4 we have dim⋀4 V = 1, so this reduces to a single equation in the Plücker
coordinates p12, p13, p14, p23, p24, p34:

p12p34 − p13p24 + p14p23 = 0. (1)

Planes L ⊂ V in a 4-dimensional space V correspond to lines ℓ ⊂ P(V ) in projective
3-space. In this case, coordinates in V are denoted by x0, x1, x2, x3 and the Plücker
coordinates p01, p02, p03, p12, p13, p23, and (1) takes the form

p01p23 − p02p13 + p03p12 = 0. (2)

This is a quadric in projective 5-space P (⋀2 V ).

2



1 CLOSED SUBSETS OF PROJECTIVE SPACE

(12) Determinantal varieties. Quadratic forms in n variables form a vector space V of
dimension (n+12 ) =

1
2n(n + 1). Quadrics in an (n − 1) dimensional projective space

are parametrized by point of the product space P(V ). Among these, the degenerate
quadrics are characterized by det(f) = 0, where f is the corresponding quadratic
form. This is a hypersurface X1 ⊂ P(V ).
The quadrics of rank ≤ n − k correspond to points of a set Xk defined by setting all
(n − k + 1) × (n − k + 1) minors of the matrix of f to 0. A set of this type is called
a determinantal variety. Another type of determinantal variety Mk is defined in the
space P(V ), where V is the space of n ×m matrices, by the condition that a matrix
has rank ≤ k.

(13) A homogeneous ideal A ⊂ k[S] defines the empty set if and only if it contains the
ideal Is for some s > 0.

(14) Closed subsets of projective space are projective closed sets, just as closed subsets of
affine space are affine closed sets. For Y ⊂X both closed sets, X ∖Y is a open set in
X.

(15) The set An
i = {(ξ0, . . . , ξn} ∣ ξi ≠ 0} ⊂ Pn is in one-to-one corresponding with An and

Pn = ⋃n
i=0An

i . The set An
i is an affine piece of Pn.

(16) For any projective closed set X ⊂ Pn, and any i = 0, . . . , n, the set Ui =X ∩An
i is open

in X. It is a closed subset of An
i .

(17) If X is given by a system of homogeneous equations F0 = ⋯ = Fm = 0 and degFj = nj ,
then, for example, U0 is given by the system

S
−nj

0 Fj = Fj(1, T1, . . . , Tn) = 0, for j = 1, . . . ,m,

where Ti = Si/S0 for i = 0, . . . , n. The Ui are the affine pieces of X. Obviously
X = ∪iUi.

(18) A closed subset U ⊂ An
0 defines a closed projective set U called its projective comple-

tion; U is the intersection of projective closed sets containing U . If F (T1, . . . , Tn) is
any polynomial in the ideal A of U of degree degF = k, then the equations of U are
of the form Sk

0F (S1/S0, . . . , Sn/S0). It follows that

U = U ∩An
0 . (3)

(19) For the time being, a quasiprojective variety is an open subset of a closed projective
set. Both projective closed sets and affine closed sets are quasiprojective varieties.
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(20) A closed subset os a quasiprojective varietyX ⊂ Pn is its intersection with a closed set
of projective space. Open set and neighborhood are defined similarly. The notion of
irreducible variety and decomposition a variety into irreduicible components carries
over word-for-word from the case of affine sets.

(21) From now on we use subvariety Y of a quasiprojective variety X ⊂ Pn to mean any
subset Y ⊂ X which is itself a quasiprojective variety in Pn. This is equivalent to
saying that Y = Z ∖Z1 with Z and Z1 ⊂X closed subsets.

2. Regular Functions

(1) If X ⊂ Pn is a quasiprojective variety, x ∈X and f = P /Q is a homogenous function of
degree 0 with Q(x) ≠ 0, then f defines a function on a neighborhood of x in X with
values in k. We say f is regular in a neighborhood of x, or simply at x. A function
that is regular at all points x ∈ X is a regular function on X. All regular functions
on X form a ring, that we denote by k[X].
For X a closed subset of affine space, this is the same definition as before.

(2) If X is an irreducible projective set, k[X] consists only of constants. [Proof later]

(3) OTOH, if X is quasiprojective, k[X] may turn out to be unexpectedly large. There
are quasiprojective varieties for which k[X] is not finitely generated.

(4) A map f ∶ X → Y between quasiprojective varieties, with Y ⊂ Pm, is regular if
for every point x ∈ X and for some affine piece Am

i containing f(x) there exists a
neighborhood U containing x such that f(U) ⊂ Am

i and the map f ∶ U → Am
i is

regular.

This is independent of the choice of affine piece Am
i .

(5) A regular map f ∶X → Y defines a homomorphism f∗ ∶ k[Y ] → k[X].

(6) In practice f(x) = (F0(x) ∶ ⋅ ⋅ ⋅ ∶ Fm(x)) ∈ Pm where F0, . . . , Fm are forms of the same
degree and Fi(x) ≠ 0 for some i.

(7) Two different formulas

f(x) = (F0(x) ∶ ⋅ ⋅ ⋅ ∶ Fm(x)) and g(x) = (G0(x) ∶ ⋅ ⋅ ⋅ ∶ Gm(x)) (1)

define the same map if and only if

FiGj = FjGi on X for 0 ≤ i, j ≤m. (2)
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(8) A regular map f ∶ X → Pm of an irreducible quasiprojective variety X to projective
space Pm is given by an (m + 1)-tuple of forms

(F0 ∶ ⋯ ∶ Fm) (3)

of the same degree in the homogeneous coordinates of x ∈ Pn, so that Fi(x) ≠ 0 for at
least one i. Then we write f(x) = (F0(x) ∶ ⋯ ∶ Fm(x)). Two maps (1) are considered
equal if (2) holds.

(9) An isomorphism of varieties is a regular map having an inverse regular map.

(10) A quasiprojective variety X ′ isomorphic to a closed subset of an affine space will be
called an affine variety. The quasiprojective variety X = A1 ∖ 0 is an affine variety
even though it is not a closed set in A1. The set X is isomorphic to the hyperbola
xy = 1 which is a closed set in A2.

(11) A quasiprojective variety isomorphic to a closed projective set will be called a pro-
jective variety. It is a fact that if X ⊂ Pn is a projective variety then it is closed in
Pn. So the notions of closed projective set and projective variety coincide and are
both invariant under isomorphism.

(12) There are quasiprojective varieties that are neither affine nor projective.

(13) The property that a subset Y ⊂ X is closed in a quasiprojective variety X is a local
property.

(14) Every point x ∈X has a neighborhood isomorphic to an affine variety.

(15) An open set D(f) = X ∖ V (f) consisting fo the points of an affine variety X such
that f(x) ≠ 0 is called a principal open set. Also k[D(f)] = k[X][f−1].

(16) Under any regular map, the inverse image f−1(Z) under any regular map f ∶X → Y
os any closed subset Z ⊂ Y is closed in X.

(17) The inverse image of any open set under a regular map is open. That is, regular
maps are continuous.

(18) Any function φ regular in a neighborhood of f(x) ∈ Y , the function f∗(φ) is regular
in a neighborhood of x.

3. Rational Functions

(1) Let X ⊂ Pn be an irreducible quasiprojective variety. Write OX for the set of rational
functions f = P /Q in homogeneous coordinates S0, . . . , Sn such that P , Q are forms
of the same degree and Q ∉ AX . OX is the ring of rational functions on X.
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(2) The functions f ∈ OX with P ∈ AX is the maximal ideal MX in OX . The quotient
ring OX/MX is the function field of X, and denoted k(X).

(3) If U is an open subset of an irreducible quasiprojective variety X, then k(X) = k(U).
In particular, k(X) = k(X). So, in discussing function fields, we can restrict to affine
or projective varieties.

(4) If X is an affine variety, this definition agrees with the earlier one.

(5) We say f ∈ k(X) is regular at a point x ∈ X if it can be written in the form
f = F /G, with F and G homogeneous of the same degree and G(X) ≠ 0. The value
f(x) = F (x)/G(x) is the value of the function at x. The set of points at which a
rational function f is regular is a nonempty, open subset of X, called the domain
of definition.

(6) A rational function can also be defined as a function regular on some open set U ⊂X.

(7) A rational map f ∶ X → Pm is defined by giving m + 1 forms (F0 ∶ ⋯ ∶ Fm) of the
same degree in the n + 1 homogeneous coordinates of Pn containing X. At least one
of these forms must not vanish on X.

(8) Two maps (F0 ∶ ⋯ ∶ Fm) and (G0 ∶ ⋯ ∶ Gm) are equal if FiGj = FjGi on X for all i, j.

(9) If we divide by one of the coordinate functions, we can define a rational map by m+1
rational functions on X, then the same notion of equality of maps.

(10) A rational map f defined by functions (f0 ∶ ⋯ ∶ fm) such that all fi are regular at
x ∈X and not all zero at x, then f is regular at x. If defines a regular map on some
neighborhood of x ∈ Pm.

(11) The set where a rational function is regular is open. We can define a rational map
to be a function regular on some open set U ⊂X on which f is regular.

(12) Let Y ⊂ Pm is a quasiprojective variety and f ∶ X → Pm, we say f ∶ X → Y if there
is an open set U ⊂ X on which f is regular and f(U) ⊂ Y . The union Ũ of all such
open sets is the domain of definition of f , and f(Ũ) ⊂ Y is the image of X in Y .

(13) If the image of a rational map f ∶X → Y is dense, rational map defines and inclusion
of fields f∗ ∶ k(Y ) → k(X).

(14) If a rational map f ∶X → Y has an inverse rational map then f is birational or is a
birational equivalence, andX and Y are birational. In this case, f∗ ∶ k(Y ) → k(X)
is an isomorphism.

(15) Proposition: Two irreducible varieties X and Y are birational if and only if they
contain isomorphic open subsets U ⊂X and V ⊂ Y .
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4 EXAMPLES OF REGULAR MAPS

4. Examples of Regular Maps

(1) Projection with center E ⊂ Pn, dim (E) = d. E given by n − d linear equations
L1 = L2 = ⋯ = Ln−d. Then

π ∶ Pn → Pn−d−1

π(x) = (L1(x) ∶ ⋯ ∶ Ln−d(x))

Take any (n−d− 1)-dimensional linear subspace H ⊂ Pn disjoint from E. Then there
is a unique (d + 1)-dimensional linear subspace (E,x) passing through E and any
point x ∈ Pn ∖E. This subspace intersects H in a unique point, which is π(x).
If X intersects E but is not contained in it, then projection from E is a rational map
on X.

(2) The Veronese embedding νn,m ∶ Pn → PN where N = (n+mm ) − 1.

The regular map vm ∶ Pn → PN defined by vi0⋯in = u
i0
0 ⋯u

in
n for ∑ ij =m/. This is the

mth Veronese embedding of Pn and the image is the Veronese variety. This is
a determinantal variety cut out by quadrics.

If F is a form of degree m in the homogeneous coordinates of Pn and H ⊂ Pn is
the hypersuface defined by F = 0, then vm(H) ⊂ vm(Pn) ⊂ PN is the intersection
of vm(Pn) with a hyperplane of PN . The Vernoese embedding allows us to reduce
the study of some problems ocncerning hypersurfaces of degree m to the case of
hyperplanes.

The mth Vernoese image of the porjective line vm(P1) ⊂ Pm is called the Veronese
curve, the twisted m-ic curve, of the rational normal curve of degree m.
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