Basic Algebraic Geometry, Volume 1 Chapter 1, Section 4: Quasiprojective Varieties

Igor R. Shafarevich

1. Closed Subsets of Projective Space

- (1) Let V be a vector space of dimension n + 1 over a field k. The set of one-dimensional subspaces of V is *n*-dimensional projective space, denoted $\mathbb{P}(V)$ or \mathbb{P}^n .
- (2) Definition of homogeneous coordinates
- (3) If $f \in k[S_0, \ldots, S_n]$ vanishes at $\xi \in \mathbb{P}^n$ for all homogenous coordinates for ξ , then each homogeneous components vanish at ξ .
- (4) A set $X \subset \mathbb{P}^n$ is a *closed subset* if it consists of all points at which a finite number of polynomials with coefficients in k vanish. A closed subset defined by one homogeneous equation F = 0 is called a *hypersurface*. The degree of the polynomial is the *degree* of the hypersurface. A hypersurface of degree 2 is called a *quadric*.
- (5) The set of polynomials $f \in k[S_0, \ldots, S_n]$ that vanish at all points $x \in X$ is the *ideal* of X, denoted $\mathfrak{A}_X \subset k[S_0, \ldots, S_n]$. This ideal is *homogeneous* or *graded*. In particular, any closed projective set can be defined by a finite set of homogeneous equations.
- (6) Any homogeneous ideal $\mathfrak{A} \subset k[S_0, \ldots, S_n]$ defines a closed subset $X \subset \mathbb{P}^n$.
- (7) The Grassmannian. Grass(r, V) is the algebraic set consisting of all *r*-dimensional subspaces in *V*. Consider $\wedge^r V$ and send a basis $\{f_1, \ldots, f_r\}$ for an *r*-plane to the element $f_1 \wedge \cdots \wedge f_r$. Choosing another basis changes the image by a nonzero multiplicative constant, so the image of each *r*-plane in *V* determines a point in $\mathbb{P}(\wedge^r V)$. The coordinates of the image of an *r*-plane are the *Plücker coordinates* of the *r*-plane.
- (8) Let $u \in V^*$. For $x \in \bigwedge^1 V = V$ the convolution $u \, \lrcorner \, x$ is just u(x). For $x \in \bigwedge^0 V = k$ we set $u \, \lrcorner \, x = 0$. For any $x \in \bigwedge^r V$ the convolution $u \, \lrcorner \, x = 0$ can be extended in a unique way from $x \in \bigwedge^1 V = V$ if we require the property

$$u \,\lrcorner\, (x \wedge y) = (u \,\lrcorner\, x) \wedge y + (-1)^a (x \wedge (u \,\lrcorner\, y)) \quad \text{for } x \in \bigwedge^a V.$$

0

Here, $u \, \lrcorner \, \wedge^r V \subset \wedge^{r-1} V$. The element $u \, \lrcorner \, x$ for $u \in V^*$ and $x \in \wedge^r V$ is called the *convolution* of u and x. Finally, for $u_1, \ldots, u_s \in V^*$ the element $u_1 \, \lrcorner \, (u_2 \, \lrcorner \cdots \, \lrcorner \, (u_s \, \lrcorner \, x) \cdots)$ depends only on x and $y = u_1 \wedge \cdots \wedge u_s \in \wedge^s V^*$, and is denoted by $y \, \lrcorner \, x$. Here $y \, \lrcorner \, x \in \wedge^{r-s} V$ if $r \geq s$ and $y \, \lrcorner \, x = 0$ if r < s.

(9) Generally, not every point in $\mathbb{P}(\bigwedge^r V)$ is the image of an *r*-plane. The conditions for $x \in \bigwedge^r V$ to be of the form $x = f_1 \wedge \cdots \wedge f_r$ are given by

$$(y \sqcup x) \land x = 0$$
 for all $y \in \bigwedge^{r-1} V^*$.

Let $\{u_i\}$ the dual basis for V^* to the basis $\{e_i\}$ of V, then these equations can be written in coordinates. They take the form

$$\sum_{t=1}^{r+1} (-1)^t p_{i_1 \dots i_{r-1} j_t} p_{j_1 \dots \widehat{j_t} \dots j_{r+1}} = 0$$

for all sequences $i_1, \ldots i_{r-1}$ and $j_1, \ldots j_{r+1}$.

The variety defined in $\mathbb{P}(\wedge^r V)$ by these equations is called the *Grassmannian*, denoted by $\operatorname{Grass}(r, V)$ or $\operatorname{Grass}(r, n)$ where $n = \dim(V)$.

We need to reconstruct L from P(L). Suppose $p_{1...r} \neq 0$. If $p = (p_{i_1...i_r}) = P(L)$, then L has a basis of the form

$$f_i = e_i + \sum_{k>r} a_{ik} e_k$$
 for $i = 1, \dots, r$.

where $a_{ik} = (-1)^k p_{1...\hat{k}...rk}$, where we have set $p_{1...r} = 1$ for convenience.

(10) The first nontrivial case is when r = 2. Then

$$(u \sqcup x) \land x = \frac{1}{2}(u \sqcup (x \land x)) \text{ for } u \in V^* \text{ and } x \in \bigwedge^2 V.$$

This reduces to $u \,\lrcorner\, (x \land x) = 0$ for all $u \in V^*$. That is, simply

$$x \wedge x = 0.$$

(11) When n = 4 we have dim $\wedge^4 V = 1$, so this reduces to a single equation in the Plücker coordinates $p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}$:

$$p_{12}p_{34} - p_{13}p_{24} + p_{14}p_{23} = 0. (1)$$

Planes $L \subset V$ in a 4-dimensional space V correspond to lines $\ell \subset \mathbb{P}(V)$ in projective 3-space. In this case, coordinates in V are denoted by x_0, x_1, x_2, x_3 and the Plücker coordinates $p_{01}, p_{02}, p_{03}, p_{12}, p_{13}, p_{23}$, and (1) takes the form

$$p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0. (2)$$

This is a quadric in projective 5-space $\mathbb{P}(\wedge^2 V)$.

1 CLOSED SUBSETS OF PROJECTIVE SPACE

(12) Determinantal varieties. Quadratic forms in n variables form a vector space V of dimension $\binom{n+1}{2} = \frac{1}{2}n(n+1)$. Quadrics in an (n-1) dimensional projective space are parametrized by point of the product space $\mathbb{P}(V)$. Among these, the degenerate quadrics are characterized by $\det(f) = 0$, where f is the corresponding quadratic form. This is a hypersurface $X_1 \subset \mathbb{P}(V)$.

The quadrics of rank $\leq n - k$ correspond to points of a set X_k defined by setting all $(n - k + 1) \times (n - k + 1)$ minors of the matrix of f to 0. A set of this type is called a *determinantal variety*. Another type of determinantal variety M_k is defined in the space $\mathbb{P}(V)$, where V is the space of $n \times m$ matrices, by the condition that a matrix has rank $\leq k$.

- (13) A homogeneous ideal $\mathfrak{A} \subset k[S]$ defines the empty set if and only if it contains the ideal I_s for some s > 0.
- (14) Closed subsets of projective space are projective closed sets, just as closed subsets of affine space are affine closed sets. For $Y \subset X$ both closed sets, $X \smallsetminus Y$ is a open set in X.
- (15) The set $\mathbb{A}_i^n = \{(\xi_0, \dots, \xi_n\} \mid \xi_i \neq 0\} \subset \mathbb{P}^n$ is in one-to-one corresponding with \mathbb{A}^n and $\mathbb{P}^n = \bigcup_{i=0}^n \mathbb{A}_i^n$. The set \mathbb{A}_i^n is an affine piece of \mathbb{P}^n .
- (16) For any projective closed set $X \subset \mathbb{P}^n$, and any i = 0, ..., n, the set $U_i = X \cap \mathbb{A}_i^n$ is open in X. It is a closed subset of \mathbb{A}_i^n .
- (17) If X is given by a system of homogeneous equations $F_0 = \cdots = F_m = 0$ and deg $F_j = n_j$, then, for example, U_0 is given by the system

$$S_0^{-n_j}F_j = F_j(1, T_1, \dots, T_n) = 0, \text{ for } j = 1, \dots, m,$$

where $T_i = S_i/S_0$ for i = 0, ..., n. The U_i are the affine pieces of X. Obviously $X = \bigcup_i U_i$.

(18) A closed subset $U \subset \mathbb{A}_0^n$ defines a closed projective set \overline{U} called its *projective comple*tion; \overline{U} is the intersection of projective closed sets containing U. If $F(T_1, \ldots, T_n)$ is any polynomial in the ideal \mathfrak{A} of U of degree deg F = k, then the equations of \overline{U} are of the form $S_0^k F(S_1/S_0, \ldots, S_n/S_0)$. It follows that

$$U = \overline{U} \cap \mathbb{A}_0^n. \tag{3}$$

(19) For the time being, a *quasiprojective variety* is an open subset of a closed projective set. Both projective closed sets and affine closed sets are quasiprojective varieties.

- (20) A closed subset os a quasiprojective variety $X \subset \mathbb{P}^n$ is its intersection with a closed set of projective space. Open set and neighborhood are defined similarly. The notion of irreducible variety and decomposition a variety into irreducible components carries over word-for-word from the case of affine sets.
- (21) From now on we use subvariety Y of a quasiprojective variety $X \subset \mathbb{P}^n$ to mean any subset $Y \subset X$ which is itself a quasiprojective variety in \mathbb{P}^n . This is equivalent to saying that $Y = Z \setminus Z_1$ with Z and $Z_1 \subset X$ closed subsets.

2. Regular Functions

(1) If $X \in \mathbb{P}^n$ is a quasiprojective variety, $x \in X$ and f = P/Q is a homogenous function of degree 0 with $Q(x) \neq 0$, then f defines a function on a neighborhood of x in X with values in k. We say f is *regular* in a neighborhood of x, or simply at x. A function that is regular at all points $x \in X$ is a *regular function* on X. All regular functions on X form a ring, that we denote by k[X].

For X a closed subset of affine space, this is the same definition as before.

- (2) If X is an irreducible projective set, k[X] consists only of constants. [Proof later]
- (3) OTOH, if X is quasiprojective, k[X] may turn out to be unexpectedly large. There are quasiprojective varieties for which k[X] is not finitely generated.
- (4) A map $f : X \to Y$ between quasiprojective varieties, with $Y \subset \mathbb{P}^m$, is regular if for every point $x \in X$ and for some affine piece \mathbb{A}_i^m containing f(x) there exists a neighborhood U containing x such that $f(U) \subset \mathbb{A}_i^m$ and the map $f : U \to \mathbb{A}_i^m$ is regular.

This is independent of the choice of affine piece \mathbb{A}_i^m .

- (5) A regular map $f: X \to Y$ defines a homomorphism $f^*: k[Y] \to k[X]$.
- (6) In practice $f(x) = (F_0(x) : \dots : F_m(x)) \in \mathbb{P}^m$ where F_0, \dots, F_m are forms of the same degree and $F_i(x) \neq 0$ for some *i*.
- (7) Two different formulas

$$f(x) = (F_0(x):\dots:F_m(x)) \text{ and } g(x) = (G_0(x):\dots:G_m(x))$$
 (1)

define the same map if and only if

$$F_i G_j = F_j G_i \text{ on } X \quad \text{for } 0 \le i, j \le m.$$

$$\tag{2}$$

(8) A regular map $f: X \to \mathbb{P}^m$ of an irreducible quasiprojective variety X to projective space \mathbb{P}^m is given by an (m+1)-tuple of forms

$$(F_0:\dots:F_m)\tag{3}$$

of the same degree in the homogeneous coordinates of $x \in \mathbb{P}^n$, so that $F_i(x) \neq 0$ for at least one *i*. Then we write $f(x) = (F_0(x) : \cdots : F_m(x))$. Two maps (1) are considered equal if (2) holds.

- (9) An *isomorphism* of varieties is a regular map having an inverse regular map.
- (10) A quasiprojective variety X' isomorphic to a closed subset of an affine space will be called an *affine variety*. The quasiprojective variety $X = \mathbb{A}^1 \setminus 0$ is an affine variety even though it is not a closed set in \mathbb{A}^1 . The set X is isomorphic to the hyperbola xy = 1 which is a closed set in \mathbb{A}^2 .
- (11) A quasiprojective variety isomorphic to a closed projective set will be called a *projective variety*. It is a fact that if $X \in \mathbb{P}^n$ is a projective variety then it is closed in \mathbb{P}^n . So the notions of closed projective set and projective variety coincide and are both invariant under isomorphism.
- (12) There are quasiprojective varieties that are neither affine nor projective.
- (13) The property that a subset $Y \subset X$ is closed in a quasiprojective variety X is a local property.
- (14) Every point $x \in X$ has a neighborhood isomorphic to an affine variety.
- (15) An open set $D(f) = X \setminus V(f)$ consisting fo the points of an affine variety X such that $f(x) \neq 0$ is called a **principal open set**. Also $k[D(f)] = k[X][f^{-1}]$.
- (16) Under any regular map, the inverse image $f^{-1}(Z)$ under any regular map $f: X \to Y$ os any closed subset $Z \subset Y$ is closed in X.
- (17) The inverse image of any open set under a regular map is open. That is, regular maps are continuous.
- (18) Any function φ regular in a neighborhood of $f(x) \in Y$, the function $f^*(\varphi)$ is regular in a neighborhood of x.

3. Rational Functions

(1) Let $X \subset \mathbb{P}^n$ be an irreducible quasiprojective variety. Write \mathcal{O}_X for the set of rational functions f = P/Q in homogeneous coordinates S_0, \ldots, S_n such that P, Q are forms of the same degree and $Q \notin \mathfrak{A}_X$. \mathcal{O}_X is the ring of **rational functions** on X.

- (2) The functions $f \in \mathcal{O}_X$ with $P \in \mathfrak{A}_X$ is the maximal ideal M_X in \mathcal{O}_X . The quotient ring \mathcal{O}_X/M_X is the function field of X, and denoted k(X).
- (3) If U is an open subset of an irreducible quasiprojective variety X, then k(X) = k(U). In particular, $k(X) = k(\overline{X})$. So, in discussing function fields, we can restrict to affine or projective varieties.
- (4) If X is an affine variety, this definition agrees with the earlier one.
- (5) We say $f \in k(X)$ is **regular** at a point $x \in X$ if it can be written in the form f = F/G, with F and G homogeneous of the same degree and $G(X) \neq 0$. The value f(x) = F(x)/G(x) is the **value** of the function at x. The set of points at which a rational function f is regular is a nonempty, open subset of X, called the **domain of definition**.
- (6) A rational function can also be defined as a function regular on some open set $U \subset X$.
- (7) A rational map $f: X \to \mathbb{P}^m$ is defined by giving m + 1 forms $(F_0: \dots: F_m)$ of the same degree in the n + 1 homogeneous coordinates of \mathbb{P}^n containing X. At least one of these forms must not vanish on X.
- (8) Two maps $(F_0 : \dots : F_m)$ and $(G_0 : \dots : G_m)$ are equal if $F_i G_j = F_j G_i$ on X for all i, j.
- (9) If we divide by one of the coordinate functions, we can define a rational map by m+1 rational functions on X, then the same notion of equality of maps.
- (10) A rational map f defined by functions $(f_0 : \dots : f_m)$ such that all f_i are regular at $x \in X$ and not all zero at x, then f is regular at x. If defines a regular map on some neighborhood of $x \in \mathbb{P}^m$.
- (11) The set where a rational function is regular is open. We can define a rational map to be a function regular on some open set $U \subset X$ on which f is regular.
- (12) Let $Y \subset \mathbb{P}^m$ is a quasiprojective variety and $f: X \to \mathbb{P}^m$, we say $f: X \to Y$ if there is an open set $U \subset X$ on which f is regular and $f(U) \subset Y$. The union \widetilde{U} of all such open sets is the **domain of definition** of f, and $f(\widetilde{U}) \subset Y$ is the **image** of X in Y.
- (13) If the image of a rational map $f: X \to Y$ is dense, rational map defines and inclusion of fields $f^*: k(Y) \to k(X)$.
- (14) If a rational map $f: X \to Y$ has an inverse rational map then f is **birational** or is a **birational equivalence**, and X and Y are birational. In this case, $f^*: k(Y) \to k(X)$ is an isomorphism.
- (15) **Proposition**: Two irreducible varieties X and Y are birational if and only if they contain isomorphic open subsets $U \subset X$ and $V \subset Y$.

4. Examples of Regular Maps

(1) Projection with center $E \subset \mathbb{P}^n$, dim (E) = d. E given by n - d linear equations $L_1 = L_2 = \cdots = L_{n-d}$. Then

$$\pi : \mathbb{P}^n \to \mathbb{P}^{n-d-1}$$
$$\pi(x) = (L_1(x) : \dots : L_{n-d}(x))$$

Take any (n-d-1)-dimensional linear subspace $H \subset \mathbb{P}^n$ disjoint from E. Then there is a unique (d+1)-dimensional linear subspace (E,x) passing through E and any point $x \in \mathbb{P}^n \setminus E$. This subspace intersects H in a unique point, which is $\pi(x)$.

If X intersects E but is not contained in it, then projection from E is a rational map on X.

(2) The Veronese embedding $\nu_{n,m}: \mathbb{P}^n \to \mathbb{P}^N$ where $N = \binom{n+m}{m} - 1$.

The regular map $v_m : \mathbb{P}^n \to \mathbb{P}^N$ defined by $v_{i_0 \cdots i_n} = u_0^{i_0} \cdots u_n^{i_n}$ for $\sum i_j = m/$. This is the m^{th} Veronese embedding of \mathbb{P}^n and the image is the Veronese variety. This is a determinantal variety cut out by quadrics.

If F is a form of degree m in the homogeneous coordinates of \mathbb{P}^n and $H \subset \mathbb{P}^n$ is the hypersuface defined by F = 0, then $v_m(H) \subset v_m(\mathbb{P}^n) \subset \mathbb{P}^N$ is the intersection of $v_m(\mathbb{P}^n)$ with a hyperplane of \mathbb{P}^N . The Vernoese embedding allows us to reduce the study of some problems ocncerning hypersurfaces of degree m to the case of hyperplanes.

The m^{th} Vernoese image of the porjective line $v_m(\mathbb{P}^1) \subset \mathbb{P}^m$ is called the Veronese curve, the twisted *m*-ic curve, of the **rational normal curve** of degree *m*.