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1. Irreducible Algebraic Sets

(1) A closed algebraic set X is reducible if there exist proper closed subsets X1, X2 ⊊ X
such that X = X1 ∪X2. Otherwise X is irreducible.

(2) Any closed set X is a finite union of irreducible closed sets. (Proof: Use Noetherian
property.)

(3) If X = ∪iXi is an expression of X as a finite union of irreducible closed sets, that if
Xi ⊊ Xj for all i ̸= j, we say such a representation is irredundant, and the Xi are
the irreducible components of X.

(4) The irredundant representation of X as a finite union of irreducible closed sets is
unique.

(5) A closed set X is irreducible if and only if its coordinate ring k[X] has no zerodivisors.
That is, if and only if AX is a prime ideal.

(6) If Y ⊂ X are closed subsets, then the components of Y are contained in the com-
ponents of X. The irreducibility of Y ⊂ X is reflected in AY ⊂ k[X] being a prime
ideal.

(7) A hypersurface X ⊂ An with equation f = 0 is irreducible if and only if f is irre-
ducible.

(8) A product of irreducible closed sets is irreducible.

2. Rational Functions

(1) If a closed set X is irreducible then the field of fractions of the coordinate ring k[X]
is the function field or field of rational functions of X, denoted k(X).
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(2) The field k(X) consists of rational functions F (T )/G(T ) such that G(T ) /∈ AX and
F/G = F1/G1 if FG1 − F1G ∈ AX . This means k(X) can be contructed as follows.
Consider the subring OX ⊂ k(T1, . . . , Tn) of rational functions f = P/Q with P,Q ∈
k[T ] and Q /∈ AX .

The functions f with P ∈ AX form an ideal MX and k(X) = OX/MX .

This confuses polys in k[T1, . . . , Tn] and regular functions in k[X].

(3) A rational function may not define a function on all of X.

(4) A rational function φ ∈ k(X) is regular at x ∈ X if it can be written in the form
φ = f/g with f, g ∈ k[X] and g(x) ̸= 0. Then the element f(x)/g(x) ∈ k is the value
of φ at x.

(5) A rational function φ that is regular at all points of a closed subset X is a regular
function on X.

(6) If φ is a rational function on a closed set X, the set of points at which φ is regular is
nonempty and open. The set U where φ is regular is called the domain of definition
of φ.

(7) For any finite system φ1, . . . , φm of rational functions, the set of points x ∈ S at
which they are all regular is again open and nonempty. Open is clear. Nonempty
since X is irreducible.

(8) A rational function φ ∈ k(X) is uniquely determined if it is specified on some
nonempty open subset U ⊂ X. (Suppose φ(x) = 0 for all x ∈ U and φ ̸= 0 on
X. If φ = f/g with f, g ∈ k[X]. Then X = X1 ∪X2 where X1 = X \ U and X2 is
given by f = 0. This contradicts the fact that X is irreducible.)

3. Rational Maps

(1) For X ⊂ An an irreducible closed set, a rational map φ : X 99K Am is a map given
by an m-tuple of rational functions φ1, . . . , φm ∈ k(X). The function φ is defined on
some open subset of X.

(2) A rational map φ : X 99K Y to a closed subset Y ⊂ Am is an m-tuple of rational
functions φ1, . . . , φm ∈ k(X) such that, for all points x ∈ X at which all the φi are
regular, φ(x) ∈ Y . The image of X is the set

φ(X) = {φ(x) | x ∈ X and φ is regular at x}.

(3) The rational map φ is defined on an open set U ⊂ X.
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(4) Rational functions φ1, . . . , φm ∈ k(X) define a rational map φ : X 99K Y , we
need φ1, . . . , φm, as elements of k(X), to satisfy all the equations on Y . Indeed,
if this property holds then for any polynomial u(T1, . . . , Tm) ∈ AY the function
u(φ1, . . . , φm) = 0 on X. Then at each point x where all the φi are regular, we have
u(φ1(x), . . . , φm(x)) = 0 for all u ∈ AY . That is (φ1(x), . . . , φm(x)) ∈ Y .

Conversely, if φ : X 99K Y is a rational map, then for every u ∈ AY the function
u(φ1, . . . , φm) ∈ k(X) vanishes on some nonempty open set U ⊂ X, and so is 0 on
the whole of X. It follows that u(φ1, . . . , φm) = 0 ∈ k(X).

Does the above make sense?

(5) If φ : X 99K Y is a rational map and φ(X) is dense in Y , then φ∗ : k(Y ) → k(X) is
an isomorphic inclusion. (φ(X) being dense in Y makes the homomorphism k[Y ] →
k(X) injective. Thus, we are able to extend this homomorphism to k(Y ).)

(6) Given two rational maps φ : X 99K Y and ψ : Y 99K Z such that φ(X) is dense in
Y then we can define a composition map ψ ◦ φ : X 99K Z. If, in addition, ψ(Y ) is
dense in Z, then so is (ψ ◦ φ)(X). Then the inclusions satisfy (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

(7) A rational map φ : X 99K Y is birational or is a birational equivalence if φ has an
inverse rational map ψ : Y 99K X, that is φ(X) is dense in Y and ψ(Y ) is dense in
X, and ψ ◦ φ = 1 and φ ◦ ψ = 1, where defined. In that case we say that X and Y
are birational or birationally equivalent.

(8) The closed sets X and Y are birational iff the fields k(X) and k(Y ) are isomorphic
over k.

(9) A closed set that is birational to an affine space An is rational.

(10)

Examples 1. (a) Isomorphic sets are birational.

(b) An irreducible quadric X ⊂ An is rational.

(c) The hypersurface X ⊂ A3, char(k) ̸= 3, given by x3 + y3 + z3 = 1 contains
several lines, for example the two skew lines L1 and L2 defined by

L1 : x+ y = 0, z = 1, and L2 : x+ εy = 0, z = ε,

where ε ̸= 1 is a cube root of 1. This hypersurface is also rational.

Choose some plane E ⊂ A3 not containing L1 or L2. For x ∈ X \ (L1 ∪ L2), it
is easy to verify that there is a unique line L passing through x and intersecting
L1 and L2. Write f(x) for the point of intersection L∩E; then x 7→ f(x) is the
required rational map X → E.

The argument applies to any cubic surface in A3 containing two skew lines.

(11) Any irreducible closed set X is birational to a hypersurface of some affine space Am.
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