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Chapter 1, Section 1: Algebraic Curves in the Plane

Igor R. Shafarevich

1. Plane Curves

(1) An algebraic plane curve is a curve consisting of the points in the plane whose
coordinates (x, y) satisfy f(x, y) = 0, f ∈ k[X,Y ] a nonconstant polynomial.

(2) The affine plane is denoted A2. The curve just defined is an affine plane curve.

(3) The degree of f is the degree of the curve.

(4) k[X,Y ] is a UFD. If f = fk11 · · · fkrr is a prime factorization of f . The algebraic curve
X given by f = 0 is the union of Xi given by fi = 0. A curve is irreducible if
its defining polynomial is irreducible. The decomposition X = X1 ∪ · · · ∪ Xr is a
decomposition of X into irreducible components.

(5) We let k be algebraically closed. Then degree is well-defined.

(6)

Lemma. Let k be an arbitrary field, f ∈ k[x, y] an irreducible polynomial, and g ∈
k[x, y] an arbitrary polynomial. If g is not divisible by f then the system of equations
f(x, y) = g(x, y) = 0 has only a finite number of solutions.

Proof. View f, g ∈ k(y)[x]. They are relatively prime. f remains irreducible and
f ∤ g. (f, g) = 1, so there exist ũ, ṽ ∈ k(y)[x] so that ũf + ṽg = 1. Multiplying by
a(y) ∈ k[y], the common denominator of ũ, ṽ, we get aũf + aṽg = a. Let u = aũ,
v = aṽ ∈ k[x, y]. We have uf + vg = a. If f(x, y) = g(x, y) = 0, then a(y) = 0, so
there are only finitely many y-coordinates. Likewise for the x-coordinate.

(7) An algebraically closed field is infinite and if f is nonconstant, f(x, y) = 0 has
infinitely many points.

(8) From the lemma, the polynomial for the curve is defined up to a constant multiple.
If there are no repeated factors, then the degree of the curve is well-defined.
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2 RATIONAL CURVES

(9) Bézout’s Theorem

(10) We assume k is algebraically closed throughout.

(11) If P is a point outside a circle C, construct the two tangents to C through P . The
line joining their points of contact is the polar line of P .

(12) These usually require passing to algebraically closed fields.

(a) k = Q
(b) finite fields

(c) k = C(z)

2. Rational Curves

(1) The curve y2 = x2 + x3 can be parametrized by x = t2 − 1, y = t(t2 − 1).

(2) An irreducible algebraic curve X defined by f(x, y) = 0 is rational if there exist two
rational functions φ(t), ψ(t), at least one nonconstant, such that f(φ(t), ψ(t)) ≡ 0.

(3) the correspondence t0 ↔ (φ(t0), ψ(t0)) is a one-to-one correspondence, provided we
exclude finitely values of t where denominators are zero and finitely many points of
the curve.

(4) Conversely, t can be expressed as a rational function of x, y.

(5) You can use this to reduce
∫
g(x, y) dx to an integral of a rational function of t is

g(x, y) if a rational curve.

(6) Curves of degrees 1 and 2 are rational. For curves of degree 2, look at the pencil of
lines through one point on the curve to trace out the other point on each line of the
pencil.

(7) If there is one solution in a field k and the rational functions have coefficients in k,
then we can find (almost) all k-points on the curve.

(8) For any rational function g(x, y), the integral
∫
g(x,

√
ax2 + bx+ c) dx can be ex-

pressed in elementary functions. This leads to the Euler substitutions.
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3. Relation with Field Theory

(1) For an irreducible curve defined by f(x, y) = 0, look at rational functions p/q, with
f ∤ q. Two rational functions are equal if their difference is zero on the curve, i.e. f
divides the difference of the two rational functions.

(2) The rational functions on X form a field. This is the function field or field of
rational functions of X. It is denoted k(X).

(3) k(X) has transcendence degree 1 over k.

(4) If X is rational, then k(X) = k(t), the field of rational functions in t. The converse
is true as well.

(5) Lüroth’s Theorem: A subfield of k(t) containing k is of the form k(g(t)), where
g(t) is some rational function. This theorem can be proved by simply properties of
field extensions.

(6) Proposition: The parametrization x = φ(t), y = ψ(t) has the following properties

(i) Except possibly for a finite number of points, any (x0, y0) ∈ X has a represen-
tation (x0, y0) = (φ(t0), ψ(t0))

(ii) Except possibly for a finite number of points, this representation is unique.

This is not true for any parametrization, but for a specifically constructed one.

4. Rational Maps

(1) Let X, Y be a two irreducible algebraic plane curves, u, v ∈ k(X). The map φ(P ) =
(u(P ), v(p)) is defined at all points P of X where both u and v are defined. This is
a rational map from X to Y if φ(P ) ∈ Y for every P ∈ X at which φ is defined.

(2) If Y has the equation g = 0, then g(u, v) ∈ k(X) must vanish at all but finitely many
points of X. So, g(u, v) = 0 in k(X).

(3) A rational map φ : X → Y is birational, or is a birational equivalence of X to
Y , if φ has a rational inverse. That is, there exists a rational map ψ : Y → X such
that φ◦ψ = idY and ψ ◦φ = idX wherever these functions are defined. In this case,
we say that X and Y are birational or birationally equivalent.

(4) If f(x, y) is an irreducible curve of degree n all of whose terms are monomials in x,
y of degree n− 1 and n only. Projection from the origin defines a birational map of
the curve to the line.
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(5) If f(x, y) is an irreducible curve of degree n all of whose terms are monomials in x, y
of degree n− 2, n− 1 and n only. f = un−2+un−1+un, ui homogeneous of degree i.
Set y = tx and cancel the factor xn−2, thus reducing it to a(t)x2 + b(t)x+ c(t) = 0.
Setting s = 2ax+ b to complete the square (if char(k) ̸= 2), our curve is birational to
s2 = p(t), where p = b2 − 4ac. A curve of this type is called a hyperelliptic curve.
If p(t) has even degree 2m, rewriting it as p(t) = q(t)(t− α) and dividing both sides
by (t− α)2m, the curve is birational to the curve

η2 = h(ξ), where ξ =
1

t− α
, η =

s

(t− α)m
and h(ξ) =

q(t)

(t− α)2m−1
,

where h is a polynomial of degree ≤ 2m− 1 in ξ. This is the Weierstrass normal
form of the equation of the cubic.

(6) If char(k) ̸= 3, apply translation x 7→ x− a
3 gives

y2 = x3 + px+ q.

(7) Affine algebraic curves X and Y are birational iff k(X) ∼= k(Y ).

5. Singular and Nonsingular Points

(1) P is a singular point or singularity of a curve f(x, y) = 0 if f ′x(P ) = f ′y(P ) =
f(P ) = 0. If we translate P to the origin, (0, 0) is singular if f does not have constant
of linear terms.

(2) A point is nonsingular if it is not singular.

(3) A curve is nonsingular or smooth if all its points are nonsingular.

(4) An irreducible curve has finitely many singular points if char(k) = 0. If char(k) = p,
then f ′x(P ) = f ′y(P ) = f(P ) = 0 implies f is a polynomial in xp, and hence is
reducible mod p. Hence, an irreducible curve always has only finitely many singular
points.

(5) If P = (0, 0) and the leading terms in the equation have degree r, then r is called
the multiplicity of P , and we say that P is an r-tuple point, or a point of
multiplicity r.

(6) A nonsingular point has multiplicity 1. If a nonsingular point has multiplicity 2 and
the terms of degree 2 in the equation are ax2+bxy+cy2, there are two posibilities: (a)
ax2 + bxy + cy2 factors into two distinct linear factors, in which case the singularity
is a node, or (b) ax2 + bxy+ cy2 is a perfect square, in which case the singularity is
a cusp.
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(7) A curve of degree n cannot have a singularity of multiplicity > n. If a curve of degree
n has a singular point of multiplicity n, then the curve is a union of n lines passing
through the singular point.

(8) If a curve of degree n has a point of multiplicity n− 1, then the curve is rational.

(9) If a curve of degree n has a point of multiplicity n−2, then the curve is hyperelliptic.

(10) A cubic curve in Weierstrass normal form y2 = x3 + px + q is nonsingular iff 4p3 −
27q2 ̸= 0. In this case it is called an elliptic curve.

(11) If k = R and f ′y(P ) ̸= 0, then y is locally a function of x. Substituting, we can
express any rational function on the curve as a function of x near P .

(12) If k is a general field, suppose P = (0, 0) is a nonsingular point. Then f = αx+βy+g,
where g contains only terms of degree ≥ 2. We distinguish the terms in f that involve
x only, writing f = xφ(x) + yβ + yh, with h(0, 0) = 0. Thus on the curve f = 0 we
have y(β + h) = −xφ(x), or, in other words, y = xv, where v = −φ(x)/(β + h) is a
regular function at P (because β + h(P ) ̸= 0).

(13) Let u ∈ k(X) regular at P with u(P ) = 0. Then u = p/q and p(P ) = 0 and q(P ) ̸= 0.
Substituting y = xv gives p(x, y) = p(x, xv) = xr (because p has no constant term),
where r is a regular function on the curve and hence u = xr/q = xu1. If u1(P ) = 0,
we can repeat this argument. If u is not identically zero, then this process must stop
after a finite number of steps.

(14)

Theorem. At any nonsingular point P of an irreducible algebraic curve, there exists
a regular function t that vanishes at P and such that every rational function u that
is not identically 0 on the curve can be written in the form u = tkv, with v regular
at P and v(P ) ̸= 0. The function is regular at P iff k ≥ 0.

(15) A function t with this property is a local parameter on the curve at P . Two
local parameters are multiples of each other by a rational function regular at P and
v(P ) ̸= 0. If f ′y(P ) ̸= then x can be a local parameter.

(16) The number k is the multiplicity of the zero of u at P . It is independent of the
choice of the local parameter.

(17) If X and Y are algebraic curves with equations f = 0 and g = 0, and suppose that
X is irreducible and not contained in Y , and that P ∈ X ∩ Y is a nonsingular point
of X. Then g defines a function on X that is not identically zero; the multiplicity of
the zero of g at P . It is the intersection multiplicity of X and Y at P .
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(18) We analyze the intersection multiplicity of a line and X. Let P = (α, β) ∈ X, and let
the equation of X be written f(x, y) = a(x− α) + b(y − β) + g, where g is expanded
in powers of x− α and y − β has only terms of degree ≥ 2.

(19) Write the equation of a line L through P in the form x = α + λt and y = β + µt,
where t is a local parameter on L at P . The restriction of f to L is of the form

f(α+ λt, β + µt) = (aλ+ bµ)t+ t2φ(t).

(20) If P is singular, then a = b = 0, and every line through P has intersection multiplicity
> 1 with X at P .

(21) If P is nonsingular, there is only one line with multiplicity > 1 with X at P . It has
equation a(x− α) + b(y− β) = 0, with a = f ′x(P ), b = f ′y(P ). So the equation of the
tangent line to X at the nonsingular point P is

f ′x(P )(x− α) + f ′y(P )(y − β) = 0.

(22) When does the line have intersection multiplicity ≥ 3? Write

f(x, y) = a(x− α) + b(y − β) + c(x− α)2 + d(x− α)(y − β) + e(y − β)2 + h

where h is a polynomial which has only terms of degree ≥ 3. Restricting f to L, we
get

f = (aλ+ bµ)t+ (cλ2 + dλµ+ eµ2)t2 + t3ψ(t),

The intersection multiplicity of L and X at P will be ≥ 3 if

aλ+ bµ = cλ2 + dλµ+ eµ2 = 0

(23) The first of these means the line is tangent to X at P . The second of these means that
cu2+duv+ ev2 is divisible by au+ bv. Together, this shows that q = au+ bv+ cu2+
duv + ev2 is reducible. The reducibility of the conic q = au + bv + cu2 + duv + ev2

is a necessary and sufficient condition for there to exist a line L through P with
intersection multiplicity ≥ 3 at P . Such a point is called an inflexion point or flex
of X.

(24) We can write this condition in the form∣∣∣∣∣∣
f ′′xx f ′′xy f ′x
f ′′xy f ′′yy f ′y
f ′x f ′y 0

∣∣∣∣∣∣ (P ) = 0.
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6. The Projective Plane

(1) Definition of homogeneous coordinates (ξ, η, ζ) on P2. We write P = (ξ : η : ζ).

(2) There is an inclusion A2 ⊂ P2 which sends (x, y) ∈ A2 to (x : y : 1). This gives us all
points in P2 with ζ ̸= 0. A point (ξ : η : ζ) ∈ P2 with ζ ̸= 0 corresponds to the point
(ξ/ζ, η/ζ) ∈ A2. The points complementary to this are the points at infinity.

(3) Every point in P2 is contained in A2
1 = {(ξ : η : ζ) | ξ ̸= 0}, A2

2 = {(ξ : η : ζ) | η ̸= 0},
or A2

3 = {(ξ : η : ζ) | ζ ̸= 0}. So, every point in P2 can be given affine coordinates in
at least one of these pieces.

(4) A projective algebraic curve, an algebraic curve in P2, is defined by a homoge-
neous polynomial F (ξ, η, ζ) = 0. The corresponding affine curve is f(x, y) = 0 where
f(x, y) = F (x, y, 1).

(5) A homogeneous polynomial is called a form.

(6) An affine algebraic curve of degree n with equation f(x, y) = 0 defines a homogeneous
polynomial F (ξ, η, ζ) = ζnf(ξ/ζ, η/ζ), and hence a projective curve with equation
F (ξ, η, ζ) = 0.

(7) Euler’s formula on homogeneous functions gives us

F ′
ξξ + F ′

ηη + F ′
ζζ = nF.

(8) The equation of the tangent is

F ′
ξ(P )ξ + F ′

η(P )η + F ′
ζ(P )ζ = 0.

(9) P is an inflexion point if ∣∣∣∣∣∣
F ′′

ξξ F ′′
ξη F ′′

ξζ

F ′′
ηξ F ′′

ηη F ′′
ηζ

F ′′
ζξ F ′′

ζη F ′′
ζζ

∣∣∣∣∣∣ (P ) = 0.

The determinant on the left-hand side is called the Hessian form of F , and denoted
by H(F ).

(10) A rational function is a quotient of homogeneous polynomials of the same degree. A
rational map is of the form

(ξ, η, ζ) 7→ (A(ξ, η, ζ) : B(ξ, η, ζ) : C(ξ, η, ζ))

where A, B, and C are homogeneous polynomials of the same degree. The map is
regular at P if one of A, B, or C is nonzero at P .
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(11)

Theorem. A rational map from a projective plane curve C to P2 is regular at every
nonsingular point of C.

(12)

Corollary. A birational map between nonsingular projective plane curves is regular
at every point, and is a one-to-one correspondence.

(13)

Theorem (Bézout’s Theorem). Let X and Y be projective curves, with X nonsin-
gular and not contained in Y . Then the sum of the multiplicities of intersection of
X and Y at all points of X ∩ Y equals the product of the degrees of X and Y .

(14) Statement of Pascal’s Theorem

Theorem (Pascal’s Theorem). For a hexagon inscribed in a conic, the 3 points of
intersection of pairs of opposite sides are collinear.

Proof. (Due to Plücker) Let ℓ1 and m1, ℓ2 and m2, ℓ3 and m3 be linear forms that are
the equations of the opposite sides of a hexagon. Consider the cubic with equation
fλ = ℓ1ℓ2ℓ3 + λm1m2m3 where λ is an arbitrary parameter. This has six points of
intersection with the conic, the vertices of the hexagon. Moreover, we can choose the
value of λ so that fλ(P ) = 0 for any given point P ∈ X, distinct from these 6 points
of intersection. We get a cubic fλ having seven points of intersection with a conic X,
and by Bézout’s Theorem this must decompose as the conic X plus a line L. This
line L must contain the points of intersection, ℓ1 ∩m1, ℓ2 ∩m2, ℓ3 ∩m3.
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