
Chapter 1

Affine Algebraic Sets

1.1 Algebraic Preliminaries

Problems

1.1. Let R be a domain.

(a) If F , G are forms of degree r, s respectively in R[X1, . . . , Xn], show that
FG is a form of degree r + s.

(b) Show that any factor of a form in R[X1, . . . , Xn] is also a form.

Solution. (a) Proof. Suppose F,G are forms of degree r, s respectively. Then

F (X1, . . . , Xn) =
∑

aIX
i1
1 . . . Xin

n

and
G(X1, . . . , Xn) =

∑
bJX

j1
1 . . . Xjn

n ,

where
∑
ik = r and

∑
jk = s. Then

FG(X1, . . . , Xn) =
∑
i,j

aIbJX
i1+j1
1 . . . Xin+jn

n ,

and we see that every monomial in this expression has degree
∑
ik+ jk =∑

ik +
∑
jk = r + s, so FG is a form of degree r + s.

(b) Proof. Let H be a form of degree d and suppose H = FG where F = F0+
F1+· · ·+Fd where Fi is a form of degree i. Similarly G = G0+G1+· · ·+Gd
whereGj is a form of degree j. ThenH = FG =

∑d
i,j=0 FiGj , and sinceH

is homogeneous of degree d and FiGj is homogeneous of degree i+j by (a),
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we must have that FiGj = 0 unless i+j = d. So, H = FG =
∑d
i=0 FiGd−i.

Suppose FI and FJ are not equal to zero. Suppose GK is not equal to
zero. Then I +K = J +K = d, so I = J . So, Fi ̸= 0 for only one index.
Thus, F = Fi is a form of degree i. Reversing F and G, Thus, G = Gd−i
is a form of degree d− i. So F , G are homogeneous.

1.2. Let R be a UFD, K the quotient field of R. Show that every element z
of K may be written z = a/b, where a, b ∈ R have no common factors; this
representative is unique up to units of R.

Solution. Proof. Let z ∈ K. Then z = x/y for some x, y ∈ R, y ̸= 0. Since
R is a UFD, write x = x1 . . . xn and y = y1 . . . ym where each xi and yj is
irreducible.

If x, y have a common factor, they must have a common irreducible factor,
and it follows that xi and yj are associates for some i = i0, j = j0. Consequently
xi0/yj0 is a unit. The existence result follows by an inductive argument on the
number of irreducible factors.

Suppose z = x/y = x′/y′ where x and y have no common factor and x′ and
y′ have no common factor. Then xy′ = x′y. If xi is an irreducible factor of x,
then xi must divide x′y. Since x and y have no common factors, xi divides x

′,
so xi is an irreducible factor of x′. So every irreducible factor of x divides x′.
Reversing the roles of x and x′, every irreducible factor of x′ divides x. This
forces x and x′ to be associates. Similarly, y and y′ are associates. This proves
the result.

1.3. Let R be a PID. Let P be a nonzero, proper, prime ideal in R.

(a) Show that P is generated by an irreducible element.

(b) Show that P is maximal.

Solution. (a) Proof. Let P be a nonzero, proper, prime ideal in a PID R.
Say P = (x). Since P is nonzero and proper, x is nonzero and not a unit.

Suppose x is reducible, say x = yz for nonunits y, z ∈ R. Since P is a
prime ideal, either y ∈ P or z ∈ P . If y ∈ P , then x divides y, and it
follows that x and y are associates and z is a unit. This is a contradiction.
Similarly, if z ∈ P , then x divides z, and it follows that x and z are
associates and y is a unit. This is also a contradiction.

Hence x is irreducible.

(b) Proof. Let P = (x) be a prime ideal. By part (a), x is irreducible. Suppose
I = (y) is an ideal with P ⊂ I ⊂ R. Since P ⊂ I, y must divide x, and
since x is irreducible, either y is a unit or y is an associate of x. But if y
is a unit, then I = R. If y is an associate of x, then I = P . Hence, P is a
maximal ideal.
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1.4. Let k be an infinite field, F ∈ k[X1, . . . , Xn]. Suppose F (a1, . . . , an) = 0
for all a1, . . . , an ∈ k. Show that F = 0. (Hint: Write F =

∑
i FiX

i
n, Fi ∈

k[X1, . . . , Xn−1]. Use induction on n, and the fact that F (a1, . . . , an−1, Xn) has
only a finite number of roots if any Fi(a1, . . . , an−1) ̸= 0.)

Solution. Proof. We proceed by induction on n. If n = 1, then by the Funda-
mental Theorem of Algebra, a nonzero F of degree d can have at most d roots.
Since F (a) = 0 for all a ∈ k and k is infinite, F ≡ 0.

Assume that if F (a1, . . . , an−1) = 0 for all a1, . . . , an−1 ∈ k, then F ≡ 0.
Suppose F (a1, . . . , an) = 0 for all a1, . . . , an ∈ k. Write F =

∑
FiX

i
n where

Fi ∈ k[X1, . . . , Xn−1]. Then F (a1, . . . , an−1, Xn) =
∑
i Fi(a1, . . . , an−1)X

i
n has

infinitely many roots, so we conclude that Fi(a1, . . . , an−1) ≡ 0 for all a1,. . . ,
an−1 ∈ k and for all i. By our inductive hypothesis, Fi = 0 for all i, so
F = 0.

1.5. Let k be any field. Show that there are an infinite number of irreducible
monic polynomials in k[X]. (Hint: Suppose F1, . . . , Fn were all of them, and
factor F1 · · ·Fn + 1 into irreducible factors.)

Solution. Proof. Suppose F1, . . . , Fn is a complete list of irreducible monic
polynomials in k[X]. Let F = F1 · · ·Fn + 1. Then F is a monic polynomial.
Since k[X] is a UFD, F must have an irreducible factor, G, and this must be one
of the Fi’s since F1, . . . , Fn is a complete list of irreducible monic polynomials in
k[X]. It now follows that G divides 1 which is absurd. So, there are an infinite
number of irreducible monic polynomials in k[X].

1.6. Show that any algebraically closed field is infinite. (Hint: The irreducible
monic polynomials are X − a, a ∈ k.)

Solution. Proof. If k is algebraically closed, for any λ ∈ k, x − λ is an irre-
ducible monic polynomial in k[X]. Since k is algebraically closed, all irreducible
monic polynomials are of this form. By Problem 1.5, k must be infinite.

1.7. Let k be a field, F ∈ k[X1, . . . , Xn], a1,. . . , an ∈ k.

(a) Show that

F =
∑

λ(i)(X1 − a1)
i1 . . . (Xn − an)

in , λ(i) ∈ k.

(b) If F (a1, . . . , an) = 0, show that F =
∑n
i=1(Xi − ai)Gi for some (not

unique) Gi in k[X1, . . . , Xn].
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Solution. (a) Proof. We proceed by induction on n. Suppose F ∈ k[X].
Let a ∈ k. By the Division Algorithm, F (X) = (X − a)G1(X) + r0,
where deg(G1) = deg(F ) − 1 and r0 ∈ k. Continuing, we get Gi =
(X − a)Gi+1 + ri, with deg(Gi) = deg(F )− i and ri ∈ k. Of course, Gd is
a constant rd. Splicing all these together gives

F (X) = rd(X − a)d + rd−1(X − a)d−1 + · · ·+ r0.

Now suppose F ∈ k[X1, . . . , Xn]. Considering F ∈ k[X1, . . . , Xn−1][Xn],
we may write

F =

d∑
i=0

rin(Xn − an)
in ,

with rin ∈ k[X1, . . . , Xn−1]. The result follows by mathematical induction.

(b) Proof. If F (a1, . . . , an) = 0, then in the expression

F =
∑
I

λ(i)(X1 − a1)
i1 . . . (Xn − an)

in

we must have
∑
j ij ≥ 1, for each multi-index I = (i1, . . . , in). Let

Λj = {I | ij ≥ 1 and i1, . . . , ij−1 = 0}.

Then each multi-index I belongs to exactly one of Λ1, . . . ,Λn. If I ∈ Λj ,
we can factor out (Xj − aj) and leave a polynomial. Then

F =
∑
I

λI(X1 − a1)
i1 . . . (Xn − an)

in

=

n∑
j=1

∑
I∈Λj

λI(X1 − a1)
i1 . . . (Xn − an)

in

=

n∑
j=1

(Xj − aj)
∑
I∈Λj

λI(X1 − a1)
i1 . . . (Xj − aj)

ij−1 . . . (Xn − an)
in

Now let Gj =
∑
i∈Λj

λI(X1−a1)i1 . . . (Xj−aj)ij−1 . . . (Xn−an)in , to get

F =

n∑
j=1

(Xj − aj)Gj(X1, . . . , Xn).
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1.2 Affine Space and Algebraic Sets

Problems

1.8. Show that the algebraic subsets of A1(k) are just the finite subsets, together
with A1(k) itself.

Solution. Proof. Let X = V (S) be an algebraic set. If S = {0} then X =
A1(k). If there is a nonzero F ∈ S, then X is contained in the zero set of the
polynomial F , and is therefore finite.

Conversely, given any finite set in A1(k), we can easily construct a polynomial
vanishing precisely on that set.

1.9. If k is a finite field, show that every subset of An(k) is algebraic.

Solution. Proof. Let k be a finite field. Since k is finite, so is An(k), and so
every subset of An(k) is also finite. Since the finite union of algebraic sets is also
algebraic, it suffices to show that {(a1, . . . , an)} ∈ An(k) is algebraic. However,
the set {(a1, . . . , an)} is the zero set of the ideal (X1−a1, X2−a2, . . . , Xn−an) ⊂
k[X1, . . . , Xn].

1.10. Give an example of a countable collection of algebraic sets whose union
is not algebraic.

Solution. Proof. Consider N ⊂ C. Since each point of C is an algebraic set,
N is a countable union of algebraic subsets of C. However N is not algebraic
since the only algebraic sets in C are the whole space and finite sets of points
by Problem 1.8.

1.11. Show that the following are algebraic sets:

(a) {(t, t2, t3) ∈ A3(k) | t ∈ k};

(b) {(cos(t), sin(t)) ∈ A2(R) | t ∈ R};

(c) the set of points in A2(R) whose polar coordinates (r, θ) satisfy the equa-
tion r = sin(θ).

Solution. (a) Proof. The set {(t, t2, t3) ∈ A3(k) | t ∈ k} is cut out by the
polynomials Y −X2, Z −X3.
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(b) Proof. The set {(cos(t), sin(t)) ∈ A2(R) | t ∈ R} is cut out by the polyno-
mial X2 + Y 2 − 1.

(c) Proof. The set of points in A2(R) whose polar coordinates (r, θ) satisfy the
equation r = sin(θ) also satisfies the equation r2 = r sin(θ). Converting
this to Cartesian coordinates, we have x2 + y2 = y, so this set is cut out
by the single polynomial X2 + Y 2 − Y .

1.12. Suppose C is an affine plane curve, and L is a line in A2(k), L ̸⊂ C.
Suppose C = V (F ), F ∈ k[X,Y ] a polynomial of degree n. Show that L ∩ C
is a finite set of no more than n points. (Hint: Suppose L = V (Y − (aX + b)),
and consider F (X, aX + b) ∈ k[X].)

Solution. Proof. Let C is an affine plane curve, and L is a line in A2(k),
L ̸⊂ C. Suppose C = V (F ), F ∈ k[X,Y ] a polynomial of degree n. For a line
L in A2(k), suppose L = V (Y − (aX + b)), which we can always do by a change
of coordinates if necessary. The x-coordinates of the points of intersection of
L and C are given by the polynomial F (X, aX + b) ∈ k[X]. Since L ̸⊂ C, the
polynomial F (X, aX + b) is not identically zero. By the Fundamental Theorem
of Algebra, this equation has at most n roots. Of course, once x is fixed, y is
fixed as well. Consequently, L ∩ C consists of at most n points.

1.13. Show that each of the following sets is not algebraic:

(a) {(x, y) ∈ A2(R) | y = sin(x)}

(b) {(z, w) ∈ A2(C) | |z|2 + |w|2 = 1}, where |x+ iy|2 = x2 + y2 for x, y ∈ R.

(c) {(cos(t), sin(t), t) ∈ A3(R) | t ∈ R}.

Solution. (a) Proof. Were the set {(x, y) ∈ A2(R) | y = sin(x)} an algebraic
set, then its intersection with the algebraic set cut out by {Y } would
also be an algebraic set. But this set is {(kπ, 0) : k ∈ Z}, which is a
countably infinite subset of A1(R) and therefore not an algebraic set by
Problem 1.8.

(b) Proof. Suppose the set {(z, w) ∈ A2(C) | |z|2+|w|2 = 1} is algebraic. Then
its intersection with the algebraic set V (w) = {(z, 0) ∈ A2(C)}. But this
intersection is the set {(z, 0) ∈ A2(C) | |z|2 = 1}, which is infinite. Since
V (w) = {(z, 0) ∈ A2(C)} is isomorphic to A1(C), the proper algebraic
subsets here are finite by Problem 1.8.
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(c) Proof. Were the set {(cos(t), sin(t), t) ∈ A3(R) | t ∈ R} an algebraic set,
then its intersection with the algebraic set cut out by {X − 1} would also
be an algebraic set. But this set is {(1, 0, 2kπ) : k ∈ Z} may be considered
as a countably infinite subset of A1(R) and therefore not an algebraic set
by Problem 1.8.

1.14. Let F be a nonconstant polynomial in k[X1, . . . , Xn], k algebraically
closed. Show that An(k) \ V (F ) is infinite if n ≥ 1, and V (F ) is infinite if
n ≥ 2. Conclude that the complement of any algebraic set is infinite. (Hint:
See Problem 1.4).

Solution. Proof. Suppose An(k) \ V (F ) is finite. Since every finite set is alge-
braic, we can find a polynomial G vanishing precisely on An(k) \ V (F ). Then
FG vanishes on all of An(k). If follows by Problem 1.4 that FG ≡ 0. Since
k[X1, . . . , Xn] is a domain, F ≡ 0 or G ≡ 0. But F ̸≡ 0 by hypothesis, and if
G ≡ 0, then V (F ) = ∅. But F is a non-constant polynomial, and since k is alge-
braically closed, F must have a root. This is a contradiction. So, An(k) \ V (F )
is infinite.

We prove V (F ) is infinite for n ≥ 2. Since F is nonconstant, F must contain
at least one variable. We suppose F contains X. Since n ≥ 2, there must be at
least one more variable. Call it Y (which may or may not appear in F ). Fix all
the remaining variables of F , if any, and treat F as a function of X and Y .

Suppose F does not contain Y . Then F is a nonconstant polynomial in X
alone. Since k is algebraically closed, F must have a root, x0. Then the set
{(x0, a) | a ∈ k} lies in V (F ). Since k is algebraically closed, this set is infinite.
The proof is analogous if F contains Y but not X and the proof is easier if F
contains both X and Y .

1.15. Let V ⊂ An(k), W ⊂ Am(k) be algebraic sets. Show that

V ×W = {(a1, . . . , an, b1, . . . , bm) | (a1, . . . , an) ∈ V, (b1, . . . , bm) ∈W}

is an algebraic set in An+m(k). It is called the product of V and W .

Solution. Proof. Let F1, . . . , Fs ∈ k[X1, . . . , Xn] define an algebraic set V , and
let G1, . . . ,Gt ∈ k[X1, . . . , Xn] define an algebraic set W . We consider all the
Fi’s and Gj ’s as elements of k[X1, . . . , Xn, Y1, . . . , Ym] and claim that V ×W is
the set of common zeros of

S = {F1, . . . Fs, G1, . . . , Gt}.

If (a1, . . . , an, b1, . . . , bm) ∈ V (S ), then Fi(a1, . . . , an) = 0 = Gj(b1, . . . , bm) for
all i, j, so (a1, . . . , an) ∈ V and (b1, . . . , bm) ∈W . The reverse inclusion is clear.
So V ×W is an algebraic set in An+m.
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1.3 The Ideal of a Set of Points

Problems

1.16. Let V , W be algebraic sets in An(k). Show that V = W if and only if
I(V ) = I(W ).

Solution. Proof. From Section 1.2, item (3) and Section 1.3, item (6), we know
that V ⊂ W if and only if I(W ) ⊂ I(V ). Reversing the roles of V and W and
putting these two inclusions together yields the result.

1.17. (a) Let V be an algebraic set in An(k), P ∈ An(k) a point not in V .
Show that there is a polynomial F ∈ k[X1, . . . Xn] such that F (Q) = 0 for
all Q ∈ V , but F (P ) = 1. (Hint: I(V ) ̸= I(V ∪ {P}).)

(b) Let P1,. . . , Pr be distinct points in An(k), not in an algebraic set V . Show
that there are polynomials F1, . . . , Fr ∈ I(V ) such that Fi(Pj) = 0 if i ̸= j,
and Fi(Pi) = 1. (Hint: Apply (a) to the union of V and all but one point.)

(c) With P1, . . . , Pr and V as in (b), and aij ∈ k for 1 ≤ i, j ≤ r, show that
there are Gi ∈ I(V ) with Gi(Pj) = aij for all i and j. (Hint: Consider∑
j aijFj .)

Solution. (a) Proof. Let V ⊂ An(k) be an algebraic set and P ∈ An(k),
P /∈ V . Then V ⊊ V ∪ {P}, so I(V ∪ {P}) ⊊ I(V ) by Problem 1.16.
Hence, there exists G ∈ I(V ) such that G /∈ I(V ∪ {P}). Since G ∈ I(V ),
G(Q) = 0 for all Q ∈ V . Since G /∈ I(V ∪{P}) and G vanishes on V , G(P )
cannot be zero. Let F = G/G(P ) ∈ k[X1, . . . , Xn]. Then F vanishes on
V and F (P ) = 1.

(b) Proof. Let P1,. . . , Pr be distinct points in An(k), not in an algebraic set
V . For each i, 1 ≤ i ≤ r, let Wi = V ∪ {P1, . . . , Pi−1, Pi+1, . . . Pr}. Since
Pi /∈Wi, by part (a) there exists Fi ∈ I(Wi) ⊆ I(V ) so that Fi(Pj) = 0 if
i ̸= j, and Fi(Pi) = 1.

(c) Proof. Let aij ∈ k for 1 ≤ i, j ≤ r. Let P1,. . . , Pr be distinct points in
An(k), not in an algebraic set V . By (b), we can find F1, . . . , Fr in I(V )
so that Fi(Pj) = 0 if i ̸= j, and Fi(Pi) = 1.

Let Gi =
∑
k aikFk. Then Gi(Pj) =

∑
k aikFk(Pj) =

∑
k aikδjk = aij .

1.18. Let I be an ideal in a ring R. If an ∈ I, bm ∈ I, show that (a+b)n+m ∈ I.
Show that Rad(I) is an ideal, in fact a radical ideal. Show that any prime ideal
is radical.
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Solution. Proof. Let I be an ideal in a ring R and suppose a, b ∈ Rad(I). By
definition of the radical, we have an, bm ∈ I for some natural numbers n,m.
Then (a+ b)n+m =

∑
i+j=n+m cija

ibj , where cij ∈ N. Now, if i < n and j < m,
then i + j < n +m, so we see that every term in this sum must have i ≥ n or
j ≥ m. If i ≥ n, then ai = ai−nan ∈ I and if j ≥ m, then bj = bj−mbm ∈ I. So
every term of the sum is in I, whereby (a+ b)n+m ∈ I. Hence a+ b ∈ Rad(I).

Likewise, if r ∈ R and a ∈ Rad(I), then an ∈ I for some n ∈ N. Then
(ra)n = rnan ∈ I, and it follows that ra ∈ Rad(I). So Rad(I) is an ideal in R.

Suppose an ∈ Rad(I). Then (an)m ∈ I for some m. But this says anm ∈ I,
so a ∈ Rad(I). So, Rad(I) is a radical ideal.

Let p be a prime ideal. Suppose a ∈ Rad(p). Then an ∈ p and since p is a
prime ideal, a ∈ p. So, p is a radical ideal.

1.19. Show that I = (X2 + 1) ⊂ R[X] is a radical (even a prime) ideal, but I
is not the ideal of any set in A1(R).

Solution. Proof. Consider I = (X2 + 1) ⊂ R[X]. Suppose FG ∈ I for some
F , G ∈ k[X,Y ]. Then X2 + 1 is a divisor of FG. Since X2 + 1 is irreducible in
R[X], X2 +1 is a divisor of F or X2 +1 is a divisor of G. This says F or G lies
in I. So, I is a prime ideal, and therefore a radical ideal.

Since X2 + 1 has no root in R, V (I) = ∅. Then I(V (I)) = I(∅) = R[X].
However, if I were the ideal of an algebraic set, then by item (9) in Section 1.3,
I(V (I)) = I. Since I ̸= R[X], I is not the ideal of an algebraic set.

1.20. Show that for any ideal I in k[X1, . . . , Xn], V (I) = V (Rad(I)), and
Rad(I) ⊂ I(V (I)).

Solution. Proof. Since I ⊂ Rad(I), we have V (Rad(I)) ⊂ V (I) by item (3) in
Section 1.2. Let P ∈ V (I) and let F ∈ Rad(I). Then Fn ∈ I for some n ∈ N,
so Fn(P ) = (F (P ))n = 0, since P ∈ V (I). Hence F (P ) = 0. Since F ∈ Rad(I)
is arbitrary, P ∈ V (Rad(I)). Since P ∈ V (I) is arbitrary, V (I) ⊂ V (Rad(I)).
Putting these two inclusions together, we have V (I) = V (Rad(I)).

Let F ∈ Rad(I). Then Fn ∈ I for some natural number n. Let P be
any point in V (I). Since Fn ∈ I and P ∈ V (I), Fn(P ) = 0. So, F (P ) = 0.
Since P is arbitrary, F ∈ I(V (I)) and since F ∈ Rad(I) is arbitrary, Rad(I) ⊂
I(V (I)).

1.21. Show that I = (X1 − a1, . . . , Xn − an) ⊂ k[X1, . . . , Xn], is a maximal
ideal, and that the natural homomorphism from k to k[X1, . . . Xn]/I is an iso-
morphism.

Solution. Proof. If we prove the second part, it follows that I is maximal since
k ∼= k[X1, . . . , Xn]/I is a field.

Define φ : k → k[X1, . . . , Xn]/I by φ(λ) = λ, where we use a bar to denote
the residue class. It’s clear that φ is a homomorphism. It is equally clear that
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φ is injective since every element of I has degree at least one. We show that φ
is surjective.

Let F be any polynomial in k[X1, . . . , Xn]. By Problem 1.7(a), we can write
F =

∑
(i) λ(i)(X1 − a1)

i1 . . . (Xn − an)
in . Let F ′ be the constant polynomial

λ(0). By Problem 1.7(b), F − F ′ ∈ I, so F = F ′. Since F ′ = λ(0) = φ(λ(0)), it

follows that F is in the image of φ. Since F ∈ k[X1, . . . , Xn] is arbitrary, φ is
surjective.

1.4 The Hilbert Basis Theorem

Problems

1.22. Let I be an ideal in a ring R, π : R→ R/I the natural homomorphism.

(a) Show that for every ideal J ′ of R/I, π−1(J ′) = J is an ideal of R containing
I, and for every ideal J of R containing I, π(J) = J ′ is an ideal of R/I.
This sets up a natural one-to-one correspondence between {ideals of R/I}
and {ideals of R which contain I}.

(b) Show that J ′ is a radical ideal if and only if J is radical. Similarly for
prime and maximal ideals.

(c) Show that J ′ is finitely generated if J is. Conclude that R/I is Noetherian
if R is Noetherian. Any ring of the form k[X1, . . . , Xn]/I is Noetherian.

Solution. (a) Proof. For π : R → R/I and J ′ ⊂ R/I an ideal, let J =
π−1(J ′). If a, b ∈ J , then π(a), π(b) ∈ J ′, so π(a+ b) = π(a) + π(b) ∈ J ′,
so a + b ∈ J . Similarly, ra ∈ J for r ∈ R, a ∈ J . So J is an ideal. It’s
clear that J ⊃ I.

Let J ′ be an ideal in R/I. Let J = π−1(J ′) ⊂ R. Since π is surjective,
π(π−1(J ′)) = J ′. Thus π sets up a natural one-to-one correspondence
between {ideals of R/I} and {ideals of R which contain I}.

(b) Proof. Suppose J ′ ⊂ R/I is radical and say F ∈ Rad(J). Then Fn ∈ J
whereby F

n ∈ J ′ for some natural number n, so F ∈ Rad(J ′) = J ′. Then
F ∈ J by definition of J . So J is radical. The reverse inclusion and the
proofs for prime and maximal ideals are similar.

(c) Proof. Suppose J is finitely generated. Say the set {x1, . . . , xn} generates
J . Then we claim the set {x1, . . . , xn} generates J ′, as is easily seen. It
follows that R/I is Noetherian whenever R is Noetherian.

It follows from this result and the Hilbert Basis Theorem that any ring of
the form k[X1, . . . , Xn]/I is Noetherian.

10
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1.5 Irreducible Components of an Algebraic Set

Problems

1.23. Give an example of a collection S of ideals in a Noetherian ring such
that no maximal member of S is a maximal ideal.

Solution. Let R = k[X,Y ] and let I = (X). Let S = {In|n ∈ N}. Then R is
a Noetherian ring, S is a collection of ideals, but no maximal member of S is
a maximal ideal—since S contains no maximal ideals.

1.24. Show that every proper ideal in a Noetherian ring is contained in a max-
imal ideal. (Hint: If I is the ideal, apply the lemma to {proper ideals which
contain I}.)

Solution. Let R be a Noetherian ring and let I be a proper ideal in R. Let S
be the collection of proper ideals containing I. The collection S is not empty
since I ∈ S . Let M be a maximal member of S . I claim that M is a maximal
ideal.

Suppose M is not a maximal ideal. Then there exists an ideal M ′ so that
M ⊊ M ′ ⊊ R. But then M ′ ∈ S , which contradicts the maximality of M in
S . So, M is a maximal ideal.

Since I and R are arbitrary, every proper ideal in a Noetherian ring is con-
tained in a maximal ideal.

1.25.

(a) Show that V (Y − X2) ⊂ A2(C) is irreducible; in fact, I(V (Y − X2)) =
(Y −X2).

(b) Decompose V (Y 4−X2, Y 4−X2Y 2+XY 2−X3) ⊂ A2(C) into irreducible
components.

Solution. (a) By Proposition 1, V (Y − X2) is irreducible if and only if
I(V (Y − X2)) is a prime ideal. Since Y − X2 is irreducible, (Y − X2)
is a prime ideal. So it suffices to prove the second statement: that
I(V (Y −X2)) = (Y −X2). It is clear that (Y −X2) ⊆ I(V (Y −X2)).

If G vanishes on V (Y − X2), then V (Y − X2) ∩ V (G) is infinite. By
Proposition 2 in Section 1.6, Y −X2 and G must have a common factor.
Since Y −X2 is irreducible, G ∈ (Y −X2). So, I(V (Y −X2)) = (Y −X2).
It now follows that V (Y −X2) is irreducible.

11
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(b) First, we have Y 4 −X2 = 0, so Y 2 −X = 0 or Y 2 +X = 0. Both these
polynomials are irreducible, so the irreducible components of V (Y 4−X2)
are V (Y 2 −X) and V (Y 2 +X)—two smooth conics.

We can factor the second polynomial as

Y 4 −X2Y 2 +XY 2 −X3 = (Y 2 +X)(Y −X)(Y +X). (1.1)

Comparing these, we see that the variety V (Y 2 +X) is contained in the
variety in question.

If a point of V (Y 4 −X2Y 2 +XY 2 −X3) is not in V (Y 2 +X), we must
have Y 2−X2 = 0, so that Y 2 = X2. Since the point is not in V (Y 2+X),
it must lie in V (Y 2 −X), so X = Y 2. Substituting this into the equation
Y 2 −X2 = 0, we have

X −X2 = X(1−X) = 0.

This gives X = 0 or X = 1. Since X = Y 2, X = 0 gives the point (0, 0),
which is already in the other component. Since X = Y 2, X = 1 gives the
points (1,±1).

So, we see that

V (Y 4 −X2, Y 4 −X2Y 2 +XY 2 −X3) = V (Y 2 +X) ∪ {(1,±1)}.

This is the union of an irreducible curve and two points.

1.26. Show that F = Y 2 +X2(X − 1)2 ∈ R[X,Y ] is an irreducible polynomial,
but that V (F ) is reducible.

Solution. The polynomial F = Y 2 + X2(X − 1)2 ∈ R[X,Y ] can be written
F = Y 2 + (X(X − 1))2, and over the complex numbers, this factors as

F = [Y + iX(X − 1)][Y − iX(X − 1)],

and each of these factors is irreducible over the complex numbers. Since C[X,Y ]
is a unique factorization domain and neither of these factors lies in R[X,Y ], F
is irreducible over R.

Since we are working over the real numbers, F = 0 if and only if Y = 0 and
X(X − 1) = 0. So, we see that V (F ) = {(0, 0), (1, 0)}, which is reducible.

1.27. Let V , W be algebraic sets in An(k), V ⊂W . Show that each irreducible
component of V is contained in some irreducible component of W .

Solution. Proof. Let V , W be algebraic sets in An(k), V ⊂W .
Let W =

⋃n
i=1 Ci be the decomposition of W into irreducible components.

12
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Let C be any irreducible component of V . Then

C =

n⋃
i=1

Ci ∩ C

Since C is irreducible, C = Ci ∩ C for some 1 ≤ i ≤ n. This says C ⊂ Ci. So,
any irreducible component of V is contained in some irreducible component of
W .

1.28. If V = V1∪· · ·∪Vr is the decomposition of an algebraic set into irreducible
components, show that Vi ̸⊂

⋃
j ̸=i Vj .

Solution. Proof. Let V = V1 ∪ · · · ∪ Vr be the decomposition of an algebraic
set into irreducible components.

Suppose Vi ⊂
⋃
j ̸=i Vj . Then

Vi =
⋃
j ̸=i

(Vi ∩ Vj)

Since Vi is irreducible, Vi = Vi ∩ Vj ⊂ Vj for some j ̸= i. But this contradicts
the fact that V = V1 ∪ · · · ∪ Vr is the decomposition.

1.29. Show that An(k) is irreducible if k is infinite.

Solution. Proof. Suppose F ∈ k[X1, . . . , Xn] vanishes on An(k). Then by
Problem 1.4, F ≡ 0. So I(An(k)) = {0}, which is a prime ideal in k[X1, . . . , Xn].
Hence An(k) is irreducible by Proposition 1.

1.6 Algebraic Subsets of the Plane

Problems

1.30. Let k = R.

(a) Show that I(V (X2 + Y 2 + 1)) = (1).

(b) Show that every algebraic subset of A2(R) is equal to V (F ) for some
F ∈ R[X,Y ].

This indicates why we usually require that k be algebraically closed.

13
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Solution. (a) Let k = R. Since X2 + Y 2 + 1 = 0 has no solution in A2(R),
V (X2 + Y 2 + 1) = ∅. Thus I(V (X2 + Y 2 + 1)) = I(∅) = R[X,Y ]. That
is, I(V (X2 + Y 2 + 1)) = (1).

(b) It is sufficient to show that irreducible algebraic subsets of A2(R) is equal
to V (F ) for some F ∈ R[X,Y ].

By Corollary 2 in Section 1.6, the irreducible algebraic subsets of A2(R)
are singleton points, irreducible plane curves, the empty set, and all of
A2(R).
Certainly, irreducible plane curves, the empty set, and all of A2(R) are of
the form V (F ) for some F ∈ R[X,Y ].

Let S = {(a, b)} be a set of consisting of a point in A2(R). Let F (X,Y ) =
(X − a)2 + (Y − b)2. Then

V (F ) = V
(
(X − a)2 + (Y − b)2

)
= {(a, b)}
= S.

This proves the result.

1.31. (a) Find the irreducible components of V (Y 2 − XY − X2Y + X3) in
A2(R), and also in A2(C).

(b) Do the same for V (Y 2 −X(X2 − 1)), and for V (X3 +X −X2Y − Y ).

Solution. (a) We factor

Y 2 −XY −X2Y +X3 = (Y −X)(Y −X2).

So, V (Y 2 − XY − X2Y + X3) is the union of a line Y = X and an
irreducible conic Y = X2 in either A2(R) or A2(C).

(b) Were the degree three polynomial Y 2 − X(X2 − 1) to factor, it would
have to factor into the product of a linear polynomial and a quadratic
polynomial. Then V (Y 2 − X(X2 − 1)) would contain a line, which is
doesn’t. So, Y 2 −X(X2 − 1) is irreducible and V (Y 2 −X(X2 − 1)) is an
irreducible cubic in either A2(R) or A2(C) by Corollary 1.

We factor
X3 +X −X2Y − Y = (X − Y )(X2 + 1).

So, V (Y 2 −XY −X2Y +X3) is the line Y = X in A2(R).
In A2(C), we have

X3 +X −X2Y − Y = (X − Y )(X2 + 1) = (X − Y )(X + i)(X − i)).

So, V (Y 2−XY −X2Y +X3) is the union of three lines, Y = X, X = ±i,
in A2(C).

14
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1.7 Hilbert’s Nullstellensatz

Problems

1.32. Show that both theorems and all the corollaries are false if k is not
algebraically closed.

Solution. If k = R, then I = (X2 +1) is a proper ideal in R[X], but V (I) = ∅.
This gives a counterexample to the Weak Nullstellensatz. Also, I(V (I)) =
I(∅) = R[X], which is not Rad(I) = I. This gives a counterexample to the
Nullstellensatz and Corollary 1, since I = (X2 + 1) is a radical ideal. This also
gives a counterexample to Corollary 3 since I(V (X2 + 1)) ̸= (X2 + 1).

The ideal I = (X2 + 1) is a maximal ideal in R[X], but V (I) = ∅ is not a
point. This also gives a counterexample to Corollary 2.

Let I = (X2 + Y 2) ⊂ R[X,Y ]. Then V (I) = {(0, 0)}. However, in the ring
R[X,Y ]/(X2 + Y 2), the set {Xn |n ∈ N} is an infinite linearly independent set
over R. This gives a counterexample to Corollary 4.

1.33. (a) Decompose V (X2 + Y 2 − 1, X2 −Z2 − 1) ⊂ A3(C) into irreducible
components.

(b) Let V = {(t, t2, t3) ∈ A3(C) | t ∈ C}. Find I(V ), and show that V is
irreducible.

Solution. I’m not sure these solutions are correct.

(a) For any point (x, y, z) ∈ V (X2 + Y 2 − 1, X2 − Z2 − 1), we must have
x2 + y2 − 1 = 0 and x2 − z2 − 1 = 0. Subtracting these two equations,
we have y2 + z2 = 0. So, the point must satisfy y = ±iz. The variety
V (X2 + Y 2 − 1, X2 − Z2 − 1) equals

V (X2 + Y 2 − 1, (Y + iZ)(Y − iZ))

= V (X2 + Y 2 − 1, Y + iZ) ∪ V (X2 + Y 2 − 1, Y − iZ)

Each of the polynomials Y ± iZ defines a plane in A3(C). Intersecting this
with the surface X2 + Y 2 − 1 yields a nondegenerate conic in the plane.
Hence, each of the components are irreducible.

(b) It’s clear that (Y −X2, Z−X3) ⊂ I(V ). Let F (X,Y, Z) ∈ I(V ). We con-
sider F (X,Y, Z) ∈ C(X,Y )[Z] and apply the Division Algorithm. There
exist Q1, R1 ∈ C(X,Y )[Z] so that

F (X,Y, Z) = (Z −X3)Q1(X,Y, Z) +R1

where the degree of R1 is zero in Z. Hence, R1 ∈ C(X,Y ).

15
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Since F is a polynomial, Q1 and R1 must also be polynomials, so R1 ∈
C[X,Y ].

We treat R1 and an element of C(X)[Y ]. By the Division Algorithm, there
exist Q2, R2 ∈ C(X)[Y ] so that

R1(X,Y ) = (Y −X2)Q2(X,Y ) +R2

where the degree of R2 is zero in Y . Hence, R2 ∈ C(X). Since R1 ∈
C[X,Y ] is a polynomial, Q2 and R2 must also be polynomials, so R2 ∈
C[X].

Now, we have

F (X,Y, Z) = (Z −X3)Q1(X,Y, Z) + (Y −X2)Q2(X,Y ) +R2(X).

Since this polynomial vanishes on the set {(t, t2, t3) | t ∈ C}, we see that
R2(t) = 0 for all t ∈ C. But this implies that R2 ≡ 0. So, we have

F (X,Y, Z) = (Z −X3)Q1(X,Y, Z) + (Y −X2)Q2(X,Y ),

so that F (X,Y, Z) ∈ I(Y −X2, Z −X3). This proves that I(V ) = (Y −
X2, Z −X3).

Now,
C[X,Y, Z]/(Y −X2, Z −X3) ∼= C[X],

which is an integral domain, so I(V ) = (Y −X2, Z −X3) is prime and V
is irreducible.

1.34. Let R be a UFD.

(a) Show that a monic polynomial of degree two or three in R[X] is irreducible
if and only if it has no roots in R.

(b) X2 − a ∈ R[X] is irreducible if and only if a is not a square in R.

Solution. Let R be a UFD.

(a) (⇐) Let F be a reducible monic polynomial of degree two or three R[X].
Since F is reducible, it has a factor. Since F has degree two or three, F
must have a linear factor. Since F is monic, this linear factor must be
monic. So, this F must have a factor of the form X − λ for λ ∈ R. Then
λ is a root of F .

(⇒) Let F be a monic polynomial of degree two or three R[X] and suppose
F has a root λ in R.

Considering F as being in K[X], where K is the field of fractions of R,
and applying the Division Algorithm, we can write

F (X) = (X − λ)q(X) + r

16
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where q(X) ∈ K[X] and r ∈ K. Evaluating this equation at X = λ and
noting that λ is a root of F , we have r = 0 so that F (X) = (X − λ)q(X).
So, F is reducible in K[X]. By Gauss’ Lemma, F is also reducible in
R[X].

(b) By part (a), X2 − a ∈ R[X] is irreducible if and only if it has no root
in R. However, any root of this polynomial is a square root of a. So,
X2 − a ∈ R[X] is irreducible if and only if a is not a square in R.

1.35. Show that V (Y 2 −X(X − 1)(X − λ)) ⊂ A2(k) is an irreducible curve for
any algebraically closed field k, and any λ ∈ k.

Solution. By the previous problem, the polynomial Y 2 −X(X − 1)(X − λ) in
k[X,Y ] = k[X][Y ] is irreducible since X(X − 1)(X −λ) is not a square in k[X].

1.36. Let I = (Y 2−X2, Y 2+X2) ⊂ C[X,Y ]. Find V (I) and dimC (C[X,Y ]/I).

Solution. It’s easy to see that I = (X2, Y 2), so V (I) = {(0, 0)}. The dimension
of C[X,Y ]/I over k is four, a basis being {1, X, Y,XY }.

1.37. Let K be any field, F ∈ K[X] a polynomial of degree n > 0. Show that

the residues 1, X, . . . , X
n−1

form a basis of K[X]/(F ) over K.

Solution. Proof. If F has degree n, then F (X) =
∑n

0 aiX
i with an ̸= 0. So

X
n
= −

n−1∑
i=0

(ai/an)X
i
,

whereby X
n
is in the span of 1, X, . . . ,X

n−1
over K in K[X]/(F ). An inductive

argument now shows this set spans K[X]/(F ) over K.

If 1, X, . . . ,X
n−1

are dependent, then
∑n−1
i=0 λiX

i
= 0, so F divides

∑n−1
i=0 λiX

i.

But this is impossible since deg(F ) = n > n − 1. So 1, X, . . . ,X
n−1

is a basis
for K[X]/(F ) over K.

1.38. Let R = k[X1, . . . , Xn], k algebraically closed, V = V (I). Show that there
is a natural one-to-one correspondence between algebraic subsets of V and rad-
ical ideals in k[X1, . . . , Xn]/I, and that irreducible algebraic sets (resp. points)
correspond to prime ideals (resp. maximal ideals). (See Problem 1.22)

Solution. Proof. By Problem 1.22, radical ideals in k[X1, . . . , Xn]/I are in one-
to-one correspondence with radical ideals in k[X1, . . . , Xn] containing I. By
Corollary 1 to the Nullstellensatz, there is a one-to-one correspondence between
radical ideals containing I and algebraic subsets of V (I). Further, by Problem
1.22, prime and maximal ideals correspond to irreducible varieties and points,
respectively.
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1.39. (a) Let R be a UFD, and let P = (t) be a principal, proper, prime
ideal. Show that there is no prime ideal Q such that 0 ⊂ Q ⊂ P , Q ̸= 0,
Q ̸= P .

(b) Let V = V (F ) be an irreducible hypersurface in An. Show that there is
no irreducible algebraic set W such that V ⊂W ⊂ An, W ̸= V , W ̸= An.

Solution. (a) Proof. Let R be a UFD and let P = (t) be a principal, proper,
prime ideal. If P = (0), there’s nothing to prove, so we assume t ̸= 0. Let
Q be a nonzero prime ideal contained in P . For a nonzero x ∈ Q, we must
have x = tnu for some u ∈ R and n ∈ N, with t ∤ u. Since Q is a prime
ideal, either t ∈ Q or u ∈ Q. Since t does not divide u, u is not in Q, so
t ∈ Q. This shows that Q = P .

(b) Let V = V (F ) be an irreducible hypersurface in An. By Corollary 3,
I(V ) = (F ) and since V (F ) is irreducible, this ideal is a prime ideal.
Suppose there is irreducible algebraic set W such that V ⊂ W ⊂ An.
Then we have 0 ⊂ I(W ) ⊂ I(V ) ⊂ k[X1, . . . , Xn]. By part (a), I(W ) = 0
or I(W ) = I(V ). That is, W = V or W = An.

1.40. Let I = (X2 − Y 3, Y 2 − Z3) ⊂ k[X,Y, Z]. Define α : k[X,Y, Z] → k[T ]
by α(X) = T 9, α(Y ) = T 6, α(Z) = T 4.

(a) Show that every element of k[X,Y, Z]/I is the residue of an element A+
XB + Y C +XYD, for some A,B,C,D ∈ k[Z].

(b) If F = A+XB+Y C +XYD, A,B,C,D ∈ k[Z], and α(F ) = 0, compare
like powers of T to conclude that F = 0.

(c) Show the Ker(α) = I, so I is prime, V (I) is irreducible, and I(V (I)) = I.

Solution. (a) Let

F (X,Y, Z) =
∑
ijk

aijkX
iY jZk.

be in k[X,Y, Z]. We group these terms into four groups following these
rules:

(i) Terms with i even and j even.

(ii) Terms with i odd and j even.

(iii) Terms with i even and j odd.

(iv) Terms with i odd and j odd.

For terms of type (i), we have a(2ℓ)(2m)kX
2ℓY 2mZk. Modulo I we can

rewrite these terms as

a(2ℓ)(2m)kX
2ℓY 2mZk = a(2ℓ)(2m)k(X

2)ℓ(Y 2)mZk

= a(2ℓ)(2m)k(Y
3)ℓ(Z3)mZk

= a(2ℓ)(2m)kY
3ℓZ3m+k.
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Now, if ℓ = 2p is even, say, we can write this as

a(4p)(2m)kY
6pZ3m+k = a(4p)(2m)k(Y

6)pZ3m+k

= a(4p)(2m)k(Z
9)pZ3m+k

= a(4p)(2m)kZ
9p+3m+k.

So, terms of this form can be expressed in terms solely in Z.

Now, if ℓ = 2p+ 1 is odd, say, we can write this as

a(4p+2)(2m)kY
6p+3Z3m+k = a(4p+2)(2m)kY · Y 6p+2Z3m+k

= a(4p+2)(2m)kY · (Y 2)3p+1Z3m+k

= a(4p+2)(2m)kY · (Z3)3p+1Z3m+k

= a(4p+2)(2m)kY Z
9p+3m+k+3.

So, terms of this form can be expressed Y times a power of Z.

For terms of type (ii), we have a(2ℓ+1)jkX
2ℓ+1Y 2mZk. Modulo I we can

rewrite these terms as

a(2ℓ+1)jkX
2ℓ+1Y 2mZk = a(2ℓ+1)jkX ·X2ℓY 2mZk

= a(2ℓ+1)jkX · (X2)ℓY 2mZk

= a(2ℓ+1)jkX · (Y 3)ℓY 2mZk

= a(2ℓ+1)jkXY
2m+3ℓZk

Now, if ℓ = 2p is even, say, we can write this as

a(4p+1)jkXY
2m+6pZk = a(4p+1)jkX(Y 2)m(Y 6)pZk

= a(4p+1)jkX(Z3)m(Z9)pZk

= a(4p+1)jkXZ
3m+9p+k.

So, terms of this form can be expressed X times a power of Z.

Now, if ℓ = 2p+ 1 is odd, say, we can write this as

a(2ℓ+1)jkXY
2m+6p+3Zk = a(2ℓ+1)jkX(Y 6)p(Y 2)m(Y 2)Y Zk

= a(2ℓ+1)jkX(Z9)p(Z3)m(Z3)Y Zk

= a(2ℓ+1)jkXY Z
9p+3m+3

So, terms of this form can be expressed XY times a power of Z.

For terms of type (iii), we have a(2ℓ)(2m+1)kX
2ℓY 2m+1Zk. Modulo I we
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can rewrite these terms as

a(2ℓ)(2m+1)kX
2ℓY 2m+1Zk = a(2ℓ)(2m+1)kY X

2ℓY 2mZk

= a(2ℓ)(2m+1)kY (X2)ℓ(Y 2)mZk

= a(2ℓ)(2m+1)kY (Y 3)ℓ(Z3)mZk

= a(2ℓ)(2m+1)kY (Y 3ℓ)Z3m+k

Now, if ℓ = 2p is even, say, we can write this as

a(2ℓ)(2m+1)kY (Y 3ℓ)Z3m+k = a(6p)(2m+1)kY (Y 6p)Z3m+k

= a(6p)(2m+1)kY (Y 6)pZ3m+k

= a(6p)(2m+1)kY (Z9)pZ3m+k

= a(6p)(2m+1)kY Z
9p+3m+k.

So, terms of this form can be expressed Y times a power of Z.

Now, if ℓ = 2p+ 1 is odd, say, we can write this as

a(2ℓ)(2m+1)kXY (Y 3ℓ)Z3m+k = a(4p+2)(2m+1)kXY (Y 6p+3)Z3m+k

= a(4p+2)(2m+1)kXY (Y 6)pY 3Z3m+k

= a(4p+2)(2m+1)kX(Y 6)pY 4Z3m+k

= a(4p+2)(2m+1)kX(Y 6)p(Y 2)2Z3m+k

= a(4p+2)(2m+1)kX(Z9)p(Z3)2Z3m+k

= a(4p+2)(2m+1)kXZ
9p+3m+k+6.

So, terms of this form can be expressed X times a power of Z.

For terms of type (iv), we have a(2ℓ+1)(2m+1)kX
2ℓ+1Y 2m+1Zk. Modulo I

we can rewrite these terms as

a(2ℓ+1)(2m+1)kX
2ℓ+1Y 2m+1Zk = a(2ℓ+1)(2m+1)kXYX

2ℓY 2mZk

= a(2ℓ+1)(2m+1)kXY (X2)ℓ(Y 2)mZk

= a(2ℓ+1)(2m+1)kXY (Y 3)ℓ(Z3)mZk

= a(2ℓ+1)(2m+1)kXY (Y 3ℓ)Z3m+k

Now, if ℓ = 2p is even, say, we can write this as

a(2ℓ)(2m+1)kXY (Y 3ℓ)Z3m+k = a(6p)(2m+1)kXY (Y 6p)Z3m+k

= a(6p)(2m+1)kXY (Y 6)pZ3m+k

= a(6p)(2m+1)kXY (Z9)pZ3m+k

= a(6p)(2m+1)kXY Z
9p+3m+k.
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So, terms of this form can be expressed XY times a power of Z.

Now, if ℓ = 2p+ 1 is odd, say, we can write this as

a(2ℓ)(2m+1)kXY (Y 3ℓ)Z3m+k = a(4p+2)(2m+1)kXY (Y 6p+3)Z3m+k

= a(4p+2)(2m+1)kXY (Y 6)pY 3Z3m+k

= a(4p+2)(2m+1)kX(Y 6)pY 4Z3m+k

= a(4p+2)(2m+1)kX(Y 6)p(Y 2)2Z3m+k

= a(4p+2)(2m+1)kX(Z9)p(Z3)2Z3m+k

= a(4p+2)(2m+1)kXZ
9p+3m+k+6.

So, terms of this form can be expressed X times a power of Z.

It now follows that every element of k[X,Y, Z]/I is the residue of an
element A+XB + Y C +XYD, for some A,B,C,D ∈ k[Z].

(b) Suppose F = A+XB+Y C +XYD, A,B,C,D ∈ k[Z] is in the kernel of
α. Then

0 = α(F ) = A(T 4) + T 9B(T 4) + T 6C(T 4)) + T 15D(T 4).

Looking only at the terms where the power of T is congruent to zero mod
four, we have A(T 4) = 0, so A = 0. Looking only at the terms where the
power of T is congruent to one mod four, we have T 9B(T 4) = 0, so B = 0.
Looking only at the terms where the power of T is congruent to two mod
four, we have T 6C(T 4) = 0, so C = 0. Looking only at the terms where
the power of T is congruent to three mod four, we have T 15D(T 4) = 0, so
D = 0. Hence, F = 0.

(c) Since α(X2−Y 3) = (T 9)2−(T 6)3 = 0 and α(Y 2−Z3) = (T 6)2−(T 4)3 = 0,
we see that I ⊂ kerα.

Suppose F ∈ kerα. Modulo I, F is congruent to A+XB + Y C +XYD.
We have

0 = α(F ) ≡ α(A+XB + Y C +XYD)

By part (b), A +XB + Y C +XYD = 0. But then F is congruent to 0
mod I, so F ∈ I. This proves that Ker(α) = I.

1.8 Modules; Finiteness Conditions

Problems

1.41. If S is module-finite over R, then S is ring-finite over R.
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Solution. Proof. If S =
∑
Rsi, then S = R[s1, . . . , sn], so S is ring finite over

R.

1.42. Show that S = R[X] (the ring of polynomials in one variable) is ring-finite
over R, but not module-finite.

Solution. Let S = R[X] (the ring of polynomials in one variable). The ring S
is ring-finite by definition. The elements {Xn |n = 0, 1, 2, . . . } is an infinite set
that is linearly independent over R, so S is not module finite.

1.43. If L is ring-finite over K (K, L fields) then L is a finitely generated field
extension of K.

Solution. Proof. Since L is ring-finite overK, there are elements ℓ1, . . . , ℓn ∈ L
so that L = K[ℓ1, . . . , ℓn]. Since L is a field, we must have L = K[ℓ1, . . . , ℓn] =
K(ℓ1, . . . , ℓn), so L is a finitely generated field extension of K.

1.44. Show that L = K(X) (the field of rational functions in one variable) is
a finitely generated field extension of K, but L is not ring-finite over K. (Hint:
If L were ring-finite over K, there would be an element b ∈ K[X] such that for
all z ∈ L, bnz ∈ K[X] for some n; but let z = 1/c, where c doesn’t divide b
(Problem 1.5).)

Solution. Proof. L = K(X) is a finitely generated field extension of K by
definition. If L is a ring-finite extension of K, there exist elements ℓ1, . . . , ℓn ∈ L
so that L = K[ℓ1, . . . , ℓn] = K(X). Suppose ℓi = fi/gi with fi, gi ∈ K[X].
Let b =

∏n
i=1 gi. Then for any z ∈ L, there is a natural number n so that

bnz ∈ K[X].
Now, choose z = 1/c where c ∈ K[X] is irreducible and c does not divide b

in K[X]. Then bnz /∈ K[X] for any n. This contradiction shows that L = K(X)
is not ring-finite over K.

1.45. Let R be a subring of S, S a subring of T .

(a) If S =
∑
Rvi, T =

∑
Swj , show that T =

∑
Rviwj .

(b) If S = R[v1, . . . , vn], T = S[w1, . . . , wm], show that

T = R[v1, . . . , vn, w1, . . . , wm].

(c) If R,S, T are fields, and S = R(v1, . . . , vn), T = S(w1, . . . , wm), show that
T = R(v1, . . . , vn, w1, . . . , wm).

So each of the three finiteness conditions is a transitive relation.

Solution. Proof. Let t ∈ T . Then t =
∑
siwi for some si ∈ S. For each i, si =∑

rijvj , for some rij ∈ R. Hence t =
∑
ij rijvjwi. This shows T =

∑
Rviwj .

The other two results are shown similarly.
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1.9 Integral Elements

Problems

1.46. Let R be a subring of S, S a subring of (a domain) T . If S is integral over
R, and T is integral over S, show that T is integral over R. (Hint: Let z ∈ T ,
zn + a1z

n−1 + · · ·+ an = 0, ai ∈ S. Then R[a1, . . . , an, z] is module-finite over
R.)

Solution. Proof. Let R be a subring of S, S a subring of (a domain) T , so that
S is integral over R and T is integral over S. Let z ∈ T . Then zn + a1z

n−1 +
· · ·+ an = 0 with a1, . . . , an ∈ S. Then, since S is integral over R, R[a1, . . . , an]
is module-finite over R. Since z is integral over R[a1, . . . , an], R[a1, . . . , an, z]
is module-finite over R[a1, . . . , an]. Hence, by Problem 1.45, R[a1, . . . , an, z] is
module-finite over R, so z is integral over R. Since z ∈ T is arbitrary, T is
integral over R.

1.47. Suppose (a domain) S is ring-finite over R. Show that S is module-finite
over R if and only if S is integral over R.

Solution. Proof. Let S be a domain which is ring-finite over R.

(⇒) Suppose S is module-finite over R and let z ∈ S. Then S is a subring
of itself which is module-finite over R, so z is integral over R, by Proposition 3.
Since z ∈ S is arbitrary, S is integral over R.

(⇐) Suppose S is integral over R. Since S is ring-finite over R by hypothesis,
suppose S = R[s1, . . . , sn], for some s1, . . . , sn ∈ S. Since S is integral over R,
each si is integral over R, so R[si] is module-finite over R. Hence we have a
chain

R ⊂ R[s1] ⊂ R[s1, s2] ⊂ · · · ⊂ R[s1, . . . , sn] = S,

with each element of the chain after the first module-finite over its predecessor.
By transitivity of module finiteness from Problem 1.45(a), S is module-finite
over R.

1.48. Let L be a field, k an algebraically closed subfield of L.

(a) Show that any element of L that is algebraic over k is already in k.

(b) An algebraically closed field has no module-finite field extensions except
itself.
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Solution. (a) Proof. Suppose z ∈ L is algebraic over k. So anz
n+· · ·+a0 = 0

for some ai ∈ k. Consider F (X) = anX
n + · · · + a0 in k[X]. Since k is

algebraically closed, F (X) factors into linear terms F (X) = ϵ
∏n
i=1(X −

λi), with ϵ, λi ∈ k. Since F (z) = 0, we see that z = λi for some i, so
z ∈ k.

(b) Proof. Suppose L is a module-finite field extension of k. By Problem 1.47,
every element of L is algebraic over k, hence, by (a), is in k. So L = k.

1.49. Let K be a field, L = K(X) the field of rational functions in one variable
over K.

(a) Show that any element of L which is integral over K[X] is already in
K[X]. (Hint: If zn + a1z

n−1 + · · · = 0, write z = F/G, F,G relatively
prime. Then Fn + a1F

n−1G+ · · · = 0, so G divides F .)

(b) Show that there is no nonzero element F ∈ K[X] such that for every z ∈ L,
Fnz is integral over K[X] for some n > 0. (Hint: See Problem 1.44.)

Solution. (a) Proof. Let z ∈ L be integral over K[X]. Write z = F/G with
F,G ∈ K[X] relatively prime. Then, if z satisfies the relation zn+a1z

n−1+
· · · + an = 0 for a1 . . . , an ∈ k[X], then Fn + a1F

n−1G + anG
n = 0. So

G must divide F . Since F and G are relatively prime by assumption, G
must be a unit in k[X]. It follows that z ∈ k[X].

(b) Proof. Suppose there is a nonzero F so that for every z ∈ L, Fnz is
integral over K[X] for some n > 0. Let z = 1/G, where G is irreducible
and G does not divide F . Then since Fn/G ∈ L is presumed integral over
k[X], it must be in k[X] by part (a). But since G is irreducible and does
not divide F , this is impossible.

1.50. Let K be a subfield of a field L.

(a) Show that the set of elements of L that are algebraic over K is a subfield
of L containing K. (Hint: If vn+a1v

n−1+ · · ·+an = 0, and an ̸= 0, then
v(vn−1 + . . . ) = −an.)

(b) Suppose L is module-finite over K, and K ⊂ R ⊂ L. Show that R is a
field.

Solution. (a) Proof. Let S = {ℓ ∈ L | ℓ is algebraic over K}. Certainly S ⊃
K. Let ℓ ∈ S, ℓ ̸= 0. Then

anℓ
n + · · ·+ a0 = 0,

where ai ∈ K, an ̸= 0. If we take this polynomial to be irreducible, then
we have a0 ̸= 0. Then

1 = ℓ

[
−an
a0

(
ℓn−1 +

an−1

an
ℓn−2 + · · ·+ a1

an

)]
.

Since S is a ring over K, we see ℓ ∈ S is invertible, so S is a field.
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(b) Proof. Let r ∈ R, r ̸= 0. Since R ⊂ L and L is module-finite over K, r is
integral over K. So there is a equation

rn + a1r
n−1 + · · ·+ an = 0

with an ̸= 0. Then

1 = r ·
[(

−1

an

)
(rn−1 + · · ·+ an−1)

]
,

so r is invertible. Hence R is a field.

1.10 Field Extensions

Problems

1.51. Let K be a field, F ∈ K[X] an irreducible monic polynomial of degree
n > 0.

(a) Show that L = K[X]/(F ) is a field, and if x is the residue of X in L, then
F (x) = 0.

(b) Suppose L′ is a field extension of K, y ∈ L′ such that F (y) = 0. Show
that the homomorphism from K[X] to L′ which takes X to y induces an
isomorphism of L with K(y).

(c) With L′, y as in (b), suppose G ∈ K[X] and G(y) = 0. Show that F
divides G.

(d) Show that F = (X − x)F1, F1 ∈ L[X].

Solution. Let K be a field, F ∈ K[X] an irreducible monic polynomial of
degree n > 0.

(a) Proof. F (x) is the residue of F (X) in L, but this is zero. Since F is
irreducible, (F ) is maximal, so L is a field.

(b) Proof. Let L′ ⊃ K be a field extension, y ∈ L′ with F (y) = 0. There is a
homomorphism K[X] → K[y] ⊂ L′ taking X to y extending the inclusion
K ↪→ L′. Since F (y) = 0, this homomorphism factors through L. So, we
have φ : L → K[y]. The kernel of φ is a prime ideal in L, a field, so it
must be the zero ideal. Also, since F (y) = 0 with F ∈ K[X], y is algebraic
over K, K[y] = K(y). Thus φ : L→ K(y) is an isomorphism.

(c) Proof. Suppose y ∈ L′ induces φ : L→ L′. Say G(y) = 0 with G ∈ K[X].
Then the image of G(X) in L′ is zero, and we know this map is injective,
so G(X) = 0 in L, whereby F divides G.
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(d) Proof. Let x be the residue of X in L = K[X]/(F ). Then we know that
F (x) = 0 in L. By the Factor Theorem, since x is a root of F (in L), X−x
is a factor of F (in L[X]). So there exists F1 ∈ L[X] with F = (X −x)F1,
F1 ∈ L[X].

1.52. Let K be a field, F ∈ K[X]. Show that there is a field L containing K
such that F =

∏n
i=1(X−xi) ∈ L[X]. (Hint: Use Problem 1.51(d) and induction

on the degree.) L is called a splitting field of F .

Solution. Proof. We may assume F is irreducible in K[X] and of degree at
least two. Let L = K[X]/(F ). By Problem 51(a), L is an extension field of
K, F (x) = 0, and by Problem 51(d), F = (X − x)F1 with F1 ∈ L[x]. Since
degF1 < degF , induction on the degree completes the proof.

1.53. Suppose K is a field of characteristic zero, F an irreducible monic poly-
nomial in K[X] of degree n > 0. Let L be a splitting field of F , so F =∏n
i=1(X − xi), xi ∈ L. Show that the xi are distinct. (Hint: Apply Problem

1.51(c) to G = FX ; if (X − x)2 divides F , then G(x) = 0.)

Solution. Proof. Let G =
∂F

∂X
. If F has multiple roots, then F and G share

a root, say y. Then G(y) = 0, and by Problem 51(c), F divides G. But
degG < degF , so this is impossible.

1.54. Let R be a domain with quotient field K, and let L be a finite algebraic
extension of K.

(a) For any v ∈ L, show that there is a nonzero a ∈ R such that av is integral
over R.

(b) Show that there is a basis v1, . . . , vn for L over K (as a vector space) such
that each vi is integral over R.

Solution. Let R be a domain with quotient field K, and let L be a finite
algebraic extension of K.

(a) Proof. Let v be in L. Then v is algebraic over K, so a0v
n+a1v

n−1+ · · ·+
an = 0, with ai ∈ K. Let z ∈ R be the product of all the denominators in
the ai’s. Let a = an−1

0 zn ∈ R. We have

a0v
n + a1v

n−1 + · · ·+ an = 0

a(a0v
n + a1v

n−1 + · · ·+ an) = 0

an−1
0 zna0v

n + an−1
0 zna1v

n−1 + · · ·+ an−1
0 znan−1v + an−1

0 znan = 0

(a0zv)
n + a1z(a0zv)

n−1 + · · ·+ an−2
0 an−1z

n−1(a0zv) + an−1
0 znan = 0

We see that y = a0zv satisfies the equation yn + b1y
n−1 + · · · + bn = 0,

where bi ∈ R for all i. So it is integral over R.
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(b) Proof. Let w1, . . . , wn be a basis for L over K (as a vector space). Since
L is finite dimensional over K, each wi is algebraic over K. By Prob-
lem 54(a), there exist ai so that aiwi is integral over R. Let vi = aiwi.
Then v1, . . . , vn is a basis for L over K with vi integral over R for all i.
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Chapter 2

Affine Varieties

2.1 Coordinate Rings

Problems

2.1. Show that the map which associates to each F ∈ k[X1, . . . , Xn] a polyno-
mial function in F (V, k) is a ring homomorphism whose kernel is I(V ).

Solution. Proof. Let V be a variety. Define a map φ taking F ∈ k[X1, . . . , Xn]
to a polynomial function by restriction to V :

φ : k[X1, . . . , Xn] → Γ(V )

φ(F ) 7→ F |V .

For F , G ∈ k[X1, . . . , Xn], (F +G)V = F |V +G|V and (FG)V = F |VG|V . So,
φ is a ring homomorphism. Since every regular function is the restriction of a
polynomial defined on all of An, this mapping is surjective. The kernel of this
mapping is all polynomials whose restriction to V is identically zero, i.e. I(V ).
So, Γ(V ) ∼= k[X1, . . . , Xn]/I(V ).

2.2. Let V ⊂ An be a variety. A subvariety of V is a variety W ⊂ An which is
contained in V . Show that there is a natural one-to-one correspondence between
algebraic subsets (resp. subvarieties, resp. points) of V and radical ideals (resp.
prime ideals, resp. maximal ideals) of Γ(V ). (See Problems 1.22, 1.38).

Solution. Proof. Let V ⊂ An be a variety with ideal I(V ). It is a fundamental
fact of ring theory that ideals in k[X1, . . . , Xn] containing I(V ) are in one-to-one
correspondence with ideals in Γ(V ) = k[X1, . . . , Xn]/I(V ), and radical ideals
(resp. prime ideals, maximal ideals) correspond to radical ideals (resp. prime
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ideals, maximal ideals). Hence, there is a one-to-one correspondence between
radical ideals (resp. prime ideals, maximal ideals) in k[X1, . . . , Xn] containing
I(V ) and radical ideals (resp. prime ideals, maximal ideals) in Γ(V ). But by
Chapter 1, Section 3, there is one-to-one correspondence between algebraic sub-
sets (resp. varieties, points) of V and radical (resp. prime ideals, maximal ideals)
ideals in k[X1, . . . , Xn] containing I(V ).

Hence, there is a one-to-one correspondence of radical ideals in Γ(V ) and
algebraic subsets of V , a one-to-one correspondence of prime ideals in Γ(V ) and
subvarieties of V , and a one-to-one correspondence of maximal ideals in Γ(V )
and points in of V .

2.3. Let W be a subvariety of a variety V , and let IV (W ) be the ideal of Γ(V )
corresponding to W .

(a) Show that every polynomial function on V restricts to a polynomial func-
tion on W .

(b) Show that the map from Γ(V ) to Γ(W ) defined in part (a) is a surjec-
tive homomorphism with kernel IV (W ), so that Γ(W ) is isomorphic to
Γ(V )/IV (W ).

Solution. Let W be a subvariety of a variety V , and let IV (W ) be the ideal of
Γ(V ) corresponding to W .

(a) Proof. Let f ∈ Γ(V ). Then f , as an equivalence class of polynomials, is
represented by a polynomial F ∈ k[X1, . . . , Xn]. Then F |W is a regular
function on W by definition. So, f restricted to W is a regular function
on W .

(b) Proof. Let φ : Γ(V ) → Γ(W ) be the restriction map in part (a). It’s easy
to see that φ is a ring homomorphism.

First, let f ∈ Γ(W ). Then f , as an equivalence class of polynomials, is
represented by a polynomial F ∈ k[X1, . . . , Xn]. The polynomial F , when
restricted to V , gives a regular function on V which restricts to f . This
shows φ is surjective.

Let f ∈ Γ(V ) be in the kernel of φ. Then f , as an equivalence class of
polynomials, is represented by a polynomial F ∈ k[X1, . . . , Xn]. Since f
lies in the kernel of φ, F |W is zero. This says f |W ≡ 0, so f ∈ IV (W ).
The reverse inclusion is similar. So, Ker(φ) = IV (W ).

By the first isomorphism theorem, Γ(W ) is isomorphic to Γ(V )/IV (W ).

2.4. Let V ⊂ An be a nonempty a variety. Show that the following are equiva-
lent:
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(i) V is a point;

(ii) Γ(V ) = k;

(iii) dimk (Γ(V )) <∞.

Solution. Proof. (i)⇒(ii):
Suppose V is a point (a1, . . . , an). Then I(V ) = (x1 − a1, . . . , xn − an) and

Γ(V ) = k[X1, . . . , Xn]/I(V ) = k by the Nullstellensatz.

(ii)⇒(iii):
Suppose Γ(V ) = k. Then dimk (Γ(V )) = dimk (k) = 1.

(iii)⇒(i): Suppose dimk (Γ(V )) < ∞. Since dimk (Γ(V )) < ∞, k(V ), the
quotient field of Γ(V ), is also finite dimensional over k. Hence k(V ) is algebraic
over k. Since k is algebraically closed, this means k(V ) is isomorphic to k.
Hence, for each xi there is ai ∈ k such that xi ≡ ai mod I(V ). Since (x1 −
a1, . . . , xn − an) is a maximal ideal, we have I(V ) = (x1 − a1, . . . , xn − an), so
that V is the point (a1, . . . , an).

2.5. Let F be an irreducible polynomial in k[X,Y ], and suppose F is monic in Y :
F = Y n + a1(X)Y n−1 + . . . , with n > 0. Let V = V (F ) ⊂ A2. Show that
the natural homomorphism from k[X] to Γ(V ) = k[X,Y ]/(F ) is one-to-one,
so that k[X] may be regarded as a subring of Γ(V ); show that the residues

1, Y , . . . , Y
n−1

generate Γ(V ) over k[X] as a module.

Solution. Proof. Let F be an irreducible polynomial in k[X,Y ], and suppose
F is monic in Y : F = Y n+a1(X)Y n−1+ . . . , with n > 0. Let V = V (F ) ⊂ A2.

Define φ : k[X] → Γ(V ) = k[X,Y ]/(F ) by taking a polynomial in k[X] to
its equivalence class of the polynomial in Γ(V ). Suppose φ(p) = 0. Then F
divides p. Since Y n, n > 0, appears in F and p ∈ k[X], this is only possible if
p = 0. So the map φ is injective. This means we may consider k[X] as a subring
of Γ(V ).

We note that in Γ(V ) = k[X,Y ]/(F )

0 = F = Y
n
+ a1(X)Y

n−1
+ · · ·+ an−1(X)Y + an(X)

so Y
n
is dependent on 1, Y , . . . , Y

n−1
over k[X]. By induction, Y

m
is dependent

on 1, Y , . . . , Y
n−1

over k[X] for all m ≥ n. This shows Γ(V ) is generated by

1, Y , . . . , Y
n−1

over k[X].
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2.2 Polynomial Maps

Problems

2.6. Let φ : V → W , ψ : W → Z. Show that ψ̃ ◦ φ = φ̃ ◦ ψ̃. Show that the
composition of polynomial maps is a polynomial map.

Solution. Proof. Let φ : V →W , ψ :W → Z be polynomial maps of varieties.
Then φ induces φ̃ : Γ(W ) → Γ(V ), ψ induces ψ̃ : Γ(Z) → Γ(W ), and ψ ◦ φ
induces ψ̃ ◦ φ : Γ(Z) → Γ(V ).

Let f ∈ Γ(Z) and let F be any polynomial representing f . Then

ψ̃ ◦ φ(f) = F ◦ ψ ◦ φ|V
= φ̃(F ◦ ψ)|V
= φ̃(ψ̃(F ))|V
= φ̃ ◦ ψ̃(f).

Hence ψ̃ ◦ φ = φ̃ ◦ ψ̃.

2.7. If φ : V → W is a polynomial map, and X is an algebraic subset of W ,
show that φ−1(X) is an algebraic subset of V . If φ−1(X) is irreducible, and X
is contained in the image of φ, show that X is irreducible. This gives a useful
test for irreducibility.

Solution. Proof. Let φ : V → W is a polynomial map, and X is an algebraic
subset of W .

Suppose X = V (F1, . . . , Fn) for F1, . . . , Fn ∈ k[X1, . . . , Xn]. Suppose φ is
given by polynomials T1, . . . , Tm ∈ k[X1, . . . , Xn].

The point P = (P1, . . . , Pn) is in φ−1(X) if and only if φ(P1, . . . , Pn) is in
X. This happens if and only if (T1(P1, . . . , Pn), . . . , Tm(P1, . . . , Pn)) is in X.
This happens if and only if Fi(T1(P1, . . . , Pn), . . . , Tm(P1, . . . , Pn) = 0 for all
1 ≤ i ≤ n. This happens if and only if Fi(T1, . . . , Tm) is zero on (P1, . . . , Pn)
for all 1 ≤ i ≤ n. But this says φ−1(X) is cut out by

F1(T1, . . . , Tm), . . . , Fn(T1, . . . , Tm).

Since Fi and Tj are polynomials for all i, j, φ−1(X) is an algebraic set.
Suppose X is contained in the image of φ and φ−1(X) is irreducible. Then

I = (F1(T1, . . . , Tm), . . . , Fn(T1, . . . , Tm)) is a prime ideal in Γ(V ), where we
purposefully identify the polynomials Fi(T1, . . . , Tm) with the regular functions
they define on V . Since the inverse image of a prime ideal under a homo-
morphism is also a prime ideal, J = φ̃−1(I) is likewise a prime ideal. But
φ̃−1(I) = (F1, . . . , Fn), so that V (J) = X. This shows X is irreducible.
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2.8. (a) Show that {(t, t2, t3) ∈ A3(k) | t ∈ k} is an affine variety.

(b) Show that V (XZ−Y 2, Y Z−X3, Z2−X2Y ) ⊂ A3(C) is a variety. (Hint:
Y 3 −X4, Z3 −X5, Z4 − Y 5 ∈ I(V ). Find a polynomial map from A1(C)
onto V .)

Solution. (a) Proof. Let φ : A1(k) → A3(k) be defined by φ(t) = (t, t2, t3).
The image of this map is the set V in question. Since φ−1(V ) = A1(k),
which is irreducible, V is irreducible by the result of the last problem.

(b) Proof. Let φ : A1(k) → A3(k) by φ(t) = (t12, t16, t20). We’ll show that
the image of φ is V (XZ − Y 2, Y Z −X3, Z2 −X2Y ).

For P = φ(t) = (t12, t16, t20), we have

XZ − Y 2 = t12 · t20 − (t16)2 = 0

Y Z −X3 = t16 · t20 − (t12)3 = 0

Z2 −X2Y = (t20)2 − (t12)2 · t16 = 0.

So, the image of φ is contained in V (XZ − Y 2, Y Z −X3, Z2 −X2Y ).

On the other hand, suppose P = (a, b, c) ∈ V (XZ − Y 2, Y Z −X3, Z2 −
X2Y ). Then

ac = b2 (2.1)

bc = a3 (2.2)

c2 = a2b. (2.3)

Solving (2.1) and (2.2) for c and doing some algebra, we get a4 = b3.
Solving (2.2) and (2.3) for b and doing some algebra, we get a5 = c3.
Now, let a = t12, then P = (t12, t16, t20) = φ(t). This shows V (XZ −
Y 2, Y Z −X3, Z2 −X2Y ) is contained in the image of φ.

Since φ is a polynomial map onto V (XZ − Y 2, Y Z −X3, Z2 −X2Y ) and
A1(k) is irreducible, V (XZ − Y 2, Y Z −X3, Z2 −X2Y ) is irreducible by
the result of the last problem.

2.9. Let φ : V →W be a polynomial map of affine varieties, V ′ ⊂ V , W ′ ⊂W
subvarieties. Suppose φ(V ′) ⊂W ′.

(a) Show that φ̃(IW (W ′)) ⊂ IV (V
′) (See Problem 2.3).

(b) Show that the restriction of φ gives a polynomial map from V ′ to W ′.

Solution. Let φ : V → W be a polynomial map of affine varieties, V ′ ⊂ V ,
W ′ ⊂W subvarieties. Suppose φ(V ′) ⊂W ′.
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(a) Proof. By Problem 2.3, the regular map φ : V →W restricted to V ′ is also
a polynomial map, which we also call φ. So, we have φ : V ′ → W . Since
φ(V ′) ⊂W ′ and φ remains a polynomial map, we have that φ : V ′ →W ′,
whereby φ̃ : Γ(W ′) → Γ(V ′). By Problem 2.3, Γ(V ′) ∼= Γ(V )/IV (V

′) and
Γ(W ′) ∼= Γ(W )/IW (W ′). So,

φ̃ : Γ(W ′) ∼= Γ(W )/IW (W ′) → Γ(V ′) ∼= Γ(V )/IV (V
′),

we must have φ̃(IW (W ′)) ⊂ IV (V
′)

(b) Proof. We showed this in part (a).

2.10. Show that the projection map pr : An → Ar, n ≥ r, defined by

pr(a1, . . . , an) = (a1, . . . , ar)

is a polynomial map.

Solution. Proof. In the projection map pr : An → Ar, n ≥ r, defined by

pr(a1, . . . , an) = (a1, . . . , ar)

every coefficient function is a polynomial in a1, . . . , an. So, pr is a polynomial
map.

2.11. Let f ∈ Γ(V ), V a variety ⊂ An. Define

G(f) = {(a1, . . . , an, an+1) ∈ An+1 | (a1, . . . , an) ∈ V and an+1 = f(a1, . . . , an)},

the graph of f . Show thatG(f) is an affine variety, and that the map (a1, . . . , an) →
(a1, . . . , an, f(a1, . . . , an)) defines an isomorphism of V with G(f). (Projection
gives the inverse).

Solution. Proof. Let f ∈ Γ(V ), V a variety ⊂ An. Define

G(f) = {(a1, . . . , an, an+1) ∈ An+1 | (a1, . . . , an) ∈ V and an+1 = f(a1, . . . , an)},

the graph of f .
Suppose V is the zero set of the functions F1, . . . , Fm in k[X1, . . . , Xn].
Since f is in Γ(V ), f is the residue of some F in k[X1, . . . , Xn]. The graph

G(f) is the zero locus of the set

{F1, . . . , Fm, Xn+1 − F (X1, . . . , Xn)},

so G(f) is an algebraic set.
Define a map φ : V → G(f) by (a1, . . . , an) → (a1, . . . , an, f(a1, . . . , an)).

Since the coordinate functions are regular functions, this map is regular. By
Problem 2.7, since V is a variety and φ is surjective, G(f) is irreducible. So, G(f)
is a variety. The inverse map to φ is the projection map pr(a1, . . . , an, an+1) =
(a1, . . . , an). So, G(f) is isomorphic to V .
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2.12. (a) Let φ : A1 → V = V (Y 2 −X3) ⊂ A2 be defined by φ(t) = (t2, t3).
Show that although φ is a one-to-one, onto polynomial map, φ is not an
isomorphism. (Hint: φ̃(Γ(V )) = k[T 2, T 3] ⊂ k[T ] = Γ(A1).)

(b) Let φ : A1 → V = V (Y 2−X2(X+1)) be defined by φ(t) = (t2−1, t(t2−1)).
Show that φ is one-to-one and onto, except that φ(±1) = (0, 0).

Solution. Let φ : A1 → V = V (Y 2 −X3) ⊂ A2 be defined by φ(t) = (t2, t3).

(a) Proof. Suppose φ(t) = φ(s). Then t2 = s2 and t3 = s3. These imply that
t = s, so φ is injective.

Let P = (a, b) be on V (Y 2 − X3). If a = 0, the φ(0) = (0, 0) = P . If
a ̸= 0, let t = b/a. Then t2 = b2/a2 = a3/a2 = a, since a3 = b2. Then,
ϕ(t) = (t2, t3) = (a, b) = P . So, φ is surjective.

However, φ̃(Γ(V )) = k[T 2, T 3] ⊂ k[T ]. The polynomial T is integral over
k[T 2, T 3], but doesn’t lie in k[T 2, T 3], so k[T 2, T 3] is not integrally closed
in k(T ). But k[T ] is integrally closed in k(T ), so k[T 2, T 3] is properly
contained in k[T ]. So, φ is not an isomorphism.

(b) Proof. Let φ : A1 → V = V (Y 2 − X2(X + 1)) be defined by φ(t) =
(t2 − 1, t(t2 − 1)). Define ψ : V → A1 by ψ(X,Y ) = Y/X. The maps φ
and ψ are inverse regular maps on A1 \{±1} and V \{(0, 0)}, respectively.
Consequently, φ is one-to-one and onto this set. It’s easy to check that
φ(±1) = (0, 0).

2.13. Let V = V (X2−Y 3, Y 2−Z3) ⊂ A3 as in Problem 1.40, α : Γ(V ) → k[T ]
induced by the homomorphism α of that problem.

(a) What is the polynomial map f from A1 to V such that f̃ = α?

(b) Show that f is one-to-one and onto, but not an isomorphism.

Solution. Let I = (X2 − Y 3, Y 2 − Z3) ⊂ k[X,Y, Z]. Define α : k[X,Y, Z] →
k[T ] by α(X) = T 9, α(Y ) = T 6, α(Z) = T 4. Since the ideal (X2−Y 3, Y 2−Z3)
is contained in the kernel of α, α induces α : Γ(V ) → k[T ].

(a) Proof. The polynomial map f : A1 → V is given by f(t) = (t9, t6, t4).
Then

f̃ : Γ(V ) → Γ(A1) ∼= k[t]

is given by f̃(g)(t) = g(t9, t6, t4). Then

f̃(g)(t) = g(f(t)) = g(t9, t6, t4)

= g(α(X), α(Y ), α(Z)) = α(g(X,Y, Z)) = α(g)(t).

So, f̃ = α.
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(b) Proof. Suppose f : A1 → V is given by f(t) = (t9, t6, t4). Then if X ̸= 0,
Y ̸= 0, or Z ̸= 0, then all three are nonzero and

t = XZ/Y 2 = Y Z/X = X/Z2, (2.4)

so f is one-to-one provided X ̸= 0. On the other hand, If X = 0, then
X = Y = Z = 0, and then t = 0, so f is injective.

We have f(0) = (0, 0, 0). Otherwise, X, Y , and Z are not zero. In this
case, we let t = XZ/Y 2. By Equations 2.4, f(t) = (X,Y, Z). This shows
f is surjective.

The image of α in k[T ] is k[T 4, T 6, T 9]. The element T is integral over
k[T 4, T 6, T 9], but does not lie in it, so k[T 4, T 6, T 9] is not integrally closed
in k(T ). Since k[T ] is integrally closed in k(T ), it follows that f is not an
isomorphism.

2.3 Coordinate Changes

Problems

2.14. A set V ⊂ An(k) is called a linear subvariety of An(k) if V = V (F1, . . . , Fr)
for some polynomials Fi of degree 1.

(a) Show that if T is an affine change of coordinates on An(k), then V T is
also a linear subvariety of An(k).

(b) If V ̸= ∅, show that there is an affine change of coordinates T of An such
that V T = V (Xm+1, . . . , Xn). (Hint: Use induction on r). So V is a
variety.

(c) Show that the m which appears in part (b) is independent of the choice
of T . It is called the dimension of V . Then V is then isomorphic (as a
variety) to Am(k). (Hint: Suppose there were an affine change of coordi-
nates T such that V (Xm+1, . . . , Xn)

T = V (Xs+1, . . . , Xn), m < s; show
that Tm+1, . . . , Tn would be dependent.)

Solution. (a) Proof. Let V = V (F1, . . . , Fr) be a linear subvariety in An(k),
so that F1, . . . , Fr are linear polynomials. Say Fi =

∑n
j=1 aijxj + bi.

Let T be an affine change of coordinates on An(k). Say T (x⃗) = Mx⃗ + c⃗,
where M ∈ GLn(k) and c⃗ ∈ An(k). Then we have

T (x⃗) =

T1(x⃗)...
Tn(x⃗)
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where

Tℓ(x1, . . . , xn) =

n∑
k=1

mℓkxk + cℓ,

for 1 ≤ j ≤ n. Then V T is the zero set of the polynomials FT1 , . . . , FTr ,
which we compute:

FTi (x⃗) = Fi(T (x⃗))

=

n∑
ℓ=1

aiℓTℓ(x⃗) + bi

=
n∑
ℓ=1

aiℓ

(
n∑
k=1

mℓkxk + cℓ

)
+ bi

=

(
n∑
k=1

n∑
ℓ=1

aiℓmℓkxk

)
+

(
n∑
ℓ=1

aiℓcℓ

)
+ bi

which is a linear polynomial. So, V T is a linear subvariety of An(k).

(b) Proof. Let V ⊂ An(k) be a nonempty linear subvariety of An(k) given by
V = V (F1, . . . , Fm) for some polynomials Fi of degree 1. Without loss of
generality, we may assume that m is minimal so that V = V (F1, . . . , Fm).
This means the linear functions F1, . . . , Fm are linearly independent.

Define a change of coordinates by

T (Xj) =

{
Xj for 1 ≤ j ≤ m

Fj−m(X1, . . . , Xn) for m+ 1 ≤ j ≤ n

Then V T = V (Xm+1, . . . , Xn)

(c) Proof. By the choice of m as minimal so that V = V (F1, . . . , Fm), this
makes m unique.

2.15. Let P = (a1, . . . , an), Q = (b1, . . . , bn) be distinct points of An. The line
through P and Q is defined to be {(a1 + t(b1 − a1), . . . , an+ t(bn− an)) | t ∈ k}.

(a) Show that if L is the line through P and Q, and T is an affine change of
coordinates, then T (L) is the line through T (P ) and T (Q).

(b) Show that a line is a linear subvariety of dimension 1, and that a linear
subvariety of dimension 1 is the line through any two of its points.

(c) Show that, in A2, a line is the same thing as a hyperplane.
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(d) Let P, P ′ ∈ A2, L1, L2 two distinct lines through P , L′
1, L

′
2 distinct lines

through P ′. Show that there is an affine change of coordinates T of A2

such that T (P ) = P ′ and T (Li) = L′
i, i = 1, 2.

Solution. Let P = (a1, . . . , an), Q = (b1, . . . , bn) be distinct points of An. The
line through P andQ is defined to be {(a1+t(b1−a1), . . . , an+t(bn−an)) | t ∈ k}.

(a) Proof. Let T be an affine change of coordinates on An(k). Say T (x⃗) =
Mx⃗+ c⃗, where M ∈ GLn(k) and c⃗ ∈ An(k). Then we have

T (x⃗) =

T1(x⃗)...
Tn(x⃗)


where

Tℓ(x1, . . . , xn) =

n∑
k=1

mℓkxk + cℓ,

for 1 ≤ j ≤ n. Then the image of the line under T has component
functions

Tℓ(x1, . . . , xn) =

n∑
k=1

mℓk(ak + t(bk − ak)) + cℓ,

=

n∑
k=1

mℓkak + t

n∑
k=1

mℓk(bk − ak) + cℓ,

=

(
n∑
k=1

mℓkak + cℓ

)
+ t

[(
n∑
k=1

mℓkbk + cℓ

)
−

(
n∑
k=1

mℓkak + cℓ

)]
,

= T (a) + t [T (b)− T (a)] .

This is the line through T (a) and T (b).

(b) Proof. Mark, start here and finish this problem.

Suppose P = (a1, . . . , an), Q = (b1, . . . , bn) are distinct points of An. The
line through P and Q is given by {(a1+t(b1−a1), . . . , an+t(bn−an)) | t ∈
k}.
Define T : An(k) → An(k) by

(c) Proof. In A2(k), a line through P and Q is defined to be

{(a1 + t(b1 − a1), a2 + t(b2 − a2)) | t ∈ k}.

It’s easily checked that this set is the variety given by the linear equation

(b2 − a2)X − (b1 − a1)Y = a1b2 − a2b1.
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So, every line is a hyperplane in A2(k).

Conversely, suppose we take a hyperplane AX + BY = C in A2(k). If
A ̸= 0 and B ̸= 0, this is the line between (0, C/B) and (C/A, 0). If
A = 0, then B ̸= 0 and this is the line between (0, C/B) and (1, C/B). If
B = 0, then A ̸= 0 and this is the line between (C/A, 0) and (C/A, 1).

(d) Proof. Let P, P ′ ∈ A2, L1, L2 two distinct lines through P , L′
1, L

′
2 distinct

lines through P ′.

Let T1 be the translation of A2 taking P to (0, 0). Let M be the matrix
taking the vector T (v⃗Li

) to the vector T (v⃗L′
i
). Let T2 be the translation

of A2 taking (0, 0) to P ′.

We note that Ti is the identity on each vector in A2 since all it does is
translate the vector, hence changing neither its magnitude nor direction.

Then the change of coordinates T = T2 ◦M ◦ T1 take P to P ′ and takes
L1, L2 to L′

1, L
′
2, respectively.

Mark, check this.

2.16. Let k = C. Give An(C) = Cn the usual topology (obtained by identifying
C with R2, and hence Cn with R2n). Recall that a topological space X is path-
connected if for any P,Q ∈ X, there is a continuous function γ : [0, 1] → X such
that γ(0) = P , γ(1) = Q.

(a) Show that C \ S is path-connected for any finite set S.

(b) Let V be an algebraic set in An(C). Show that An(C) \ V is path-
connected. (Hint: If P,Q ∈ An(C) \ V , let L be the line through P
and Q. Then L ∩ V is finite, and L is isomorphic to A1(C).)

Solution. (a) Proof. Let S = {P1, . . . Pk} be a finite set in C. For any point
P ∈ S, let δ = 1

2 min1≤i<j≤k{d(Pi, Pj)}.
Let Q1, Q2 be distinct points in C \ S and construct the line segment ℓ
between Q1 and Q2. If no point of S lies on ℓ, we’re done, since ℓ ⊂ C\S.
If some Pi ∈ S lies on ℓ, draw the circle Ci of radius δ around Pi. Alter
the path of the segment of ℓ through the diameter di of Ci to go around
the arc of the circle Ci from one end of the diameter to the other. Then
continue along ℓ. By the choice of δ, no point of S lies on this arc. The
new adjusted path from Q1 to Q2 lies in C \ S.
So, C \ S is locally path-connected.
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(b) Proof. Let V be an algebraic set in An(C). Let P,Q ∈ An(C) \ V and
let L be the line through P and Q. Then L is isomorphic to A1(C) and
since L ∩ V is an algebraic set in L, L ∩ V must be finite. By part (a),
A1(C) \L ∩ V is path-connected. It follows that L \ V is path-connected,
so there is a path from P to Q lying in An(C) \ V . That is, An(C) \ V is
path-connected.

2.4 Rational Functions and Local Rings

Problems

2.17. Let V = V (Y 2 − X2(X + 1)) ⊂ A2, and X,Y the residues of X,Y in
Γ(V ). Let z = Y /X ∈ k(V ). Find the pole sets of z and of z2.

Solution. Proof. Since Y 2−X2(X+1) is in the ideal of V , Y
2−X2

(X+1) = 0,
so

Y

X
=
X(X + 1)

Y

in k(V ). So, z may be represented as Y /X whenever X ̸= 0 and z may be
represented as X(X + 1)/Y whenever Y ̸= 0. So, the pole set of z is the single
point (0, 0).

Also, z2 = Y
2
/X

2
and

Y
2

X
2 = X + 1.

Since X + 1 ∈ Γ(V ) is defined everywhere, the pole set of z2 is empty.

2.18. Let OP (V ) be the local ring of a variety V at a point P . Show that there
is a natural one-to-one correspondence between the prime ideals in OP (V ) and
the subvarieties of V which pass through P . (Hint: If I is prime in OP (V ),
I ∩ Γ(V ) is prime in Γ(V ), and I is generated by I ∩ Γ(V )); use Problem 2.2.)

Solution. Proof. Let mP ⊂ Γ(V ) be the ideal of regular functions vanishing at
P . Then OP (V ) is isomorphic to the localization of Γ(V ) at mP . However, the
prime ideals in the localization of Γ(V ) at mP are in one-to-one correspondence
with prime ideals in Γ(V ) contained in mP . But these prime ideals are in one
to one correspondence with subvarieties of V containing P .
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2.19. Let f be a rational function on a variety V . Let

U = {P ∈ V | f is defined at P}.

Then f defines a function from U to k. Show that this function determines f
uniquely. So a rational function may be considered as a type of function, but
only on the complement of an algebraic subset of V , not on V itself.

Solution. Proof. If P ∈ U , write f = a/b for a, b ∈ Γ(V ) with b(P ) ̸= 0.

Define f̃(P ) = a(P )/b(P ). If f = a′/b′ with a′, b′ ∈ Γ(V ) with b′(P ) ̸= 0,
then a/b = a′/b′ wherever both these functions are defined. In particular,

a(P )/b(P ) = a′(P )/b′(P ), so f̃ is well-defined for every P ∈ U where b(P ) ̸= 0
and b′(P ) ̸= 0

Suppose f and f ′ are rational functions on V with the same domain of
definition U so that f̃ = f̃ ′. Write f = a/b and f ′ = a′/b′ where a, b, a′, b′ ∈
Γ(V ). Let O be the subset of V where bb′ ̸= 0. Then O ⊂ U and since f̃ = f̃ ′,
we must have that a/b = a′/b′ on O. So ab′−a′b = 0 on O. Now, bb′ vanishes on
V \O by the definition of O, so bb′(ab′−a′b) is identically zero on V . Since b and
b′ are not identically zero on V and V is irreducible, we conclude that ab′ − a′b
is identically zero on V . Hence f = f ′. This shows that the regular function
defined on the domain of definition by a rational function actually determines
the rational function.

2.20. In the example given in this section, show that it is impossible to write
f = a/b, where a, b ∈ Γ(V ), and b(P ) ̸= 0 for every P where f is defined. Show
that the pole set of f is exactly {(x, y, z, w) | y = 0 and w = 0}.

Solution. Proof. Let V = V (XW−Y Z) ⊂ A4(k). Γ(V ) = k[X,Y, Z,W ]/(XW−
Y Z). Let X,Y , Z,W be the residues of X,Y, Z,W in Γ(V ). Then X/Y =
Z/W = f ∈ k(V ) is defined at P = (x, y, z, w) ∈ V if y ̸= 0 or w ̸= 0.

Suppose that f = a/b where a, b ∈ Γ(V ) and b is nowhere zero on the domain
of definition U of f . Suppose b is represented by the polynomial B(x, y, z, w).
Setting y = 0 and w = 0, we get the algebraic set {(x, 0, z, 0) | B(x, 0, z, 0) = 0}.
By Problem 1.14, this set is infinite. But this is the set where the zero locus of
B meets the points where f is undefined. This is a contradiction.

Mark, check this. No, this isn’t right.

2.21. Let φ : V →W be a polynomial map of affine varieties, φ̃ : Γ(W ) → Γ(V )
the induced map on coordinate rings. Suppose P ∈ V , φ(P ) = Q. Show that
φ̃ extends uniquely to a ring homomorphism (also written φ̃) from OQ(W ) to
OP (V ). (Note that φ̃ may not extend to all of k(W ).) Show that φ̃(mQ(W )) ⊂
mP (V ).
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Solution. Proof. Recall that φ̃ : Γ(W ) → Γ(V ) is defined by taking a regular
function f ∈ Γ(W ) and sending it to φ̃(f) = f ◦ φ. We recall the natural ring
homomorphism

ψ : Γ(V ) → OP (V )

given by ψ(f) = f/1. Composing, we having a ring homomorphism

ω : Γ(W )
φ̃−→ Γ(V )

ψ−→ OP (V ).

Suppose that f ∈ Γ(W ) does not vanish at Q. Then under this composition of
maps, f goes to φ̃(f)/1 = (f ◦ φ)/1 and at P we have that

[(f ◦ φ)/1](P ) = (f ◦ φ)(P )/1 = f(Q)/1 ̸= 0.

Thus, every element which is not in mQ ⊂ Γ(W ) maps to a unit in OP (V ) under
ω. This means we can define a homomorphism

ψ̃ : OQ(W ) → OP (V )

making the following diagram commute:

Γ(W )
φ̃- Γ(V )

OQ(W )

φ

? ψ̃- OP (V )

ψ

?

by ψ̃(f/g) = φ̃(f)φ̃(g)−1. It is easily seen that this is the only way to define ψ̃

as a ring homomorphism so that the diagram commutes, so ψ̃ is unique.
Note that if f/g ∈ mQ(W ), the maximal ideal of OQ(W ), then f vanishes

at Q. But then φ̃(f) = f ◦ φ vanishes at P , so ψ̃(mQ(W )) ⊂ mP (V ).

2.22. Let T : An → An be an affine change of coordinates, T (P ) = Q. Show

that T̃ : OQ(An) → OP (An) is an isomorphism. Show that T̃ induces an
isomorphism from OQ(V ) to OP (V T ) if P ∈ V T , for V a subvariety of An.

Solution. Proof. If T : An → An is an affine change of coordinates, let S :
An → An be the inverse affine change of coordinates, i.e. S = T−1. Let
φ̃P : Γ(An) → OP (An) be the natural ring homomorphism from above. Then
we have the following commutative diagram:

Γ(An)
T̃- Γ(An)

S̃- Γ(An)

OQ(An)

φ̃Q

? T̃Q- OP (An)

φ̃P

? S̃P- OQ(An)

φ̃Q

?
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Since the top horizontal sequence of maps is the identity, so is the bottom
horizontal sequence of maps. Hence T̃ induces an isomorphism of the local rings
OP (An) and OQ(An).

Similarly, if V ⊂ An is a variety, then T : V T → V , and exactly the same
argument shows that T̃ induces an isomorphism of the local rings OQ(V ) and
OP (V T ).

2.5 Discrete Valuation Rings

Problems

2.23. Show that the order function on K is independent of the choice of uni-
formizing parameter.

Solution. Proof. Suppose that t and t′ are uniformizing parameters for R, and
let z ∈ K. If we write z = utn, we note that

ord (z) = ord (utn) = ord (u) + ord (tn) = 0 + n ord (t) = n,

so it suffices to show that ord (t) = ord (t′). Since t is a uniformizing parameter
for R and t′ ∈ m, we can write t′ = utn for some n ∈ N. Similarly, since t′ is a
uniformizing parameter for R and t ∈ m, we can write t = vt′m for some m ∈ N.
Then

t = vt′m = v(utn)m = vumtnm,

and hence nm = 1. This forces n = m = 1, since n,m ∈ N. So, ord (t) = ord (t′),
and we’re done.

2.24. Let V = A1, Γ(V ) = k[X], K = k(V ) = k(X).

(a) For each a ∈ k = V , show that Oa(V ) is a DVR with uniformizing param-
eter t = X − a.

(b) Show that O∞ = {F/G ∈ k(X) | degG ≥ degF} is also a DVR, with
uniformizing parameter t = 1/X.

Solution. (a) Proof. Let f = F (X)/G(X) ∈ k(X), f ̸= 0. Using long
division, we may write uniquely F (X) =

∑n
0 ai(X − a)i and G(X) =∑n

0 bi(X − a)i. If an and bm are the smallest nonzero coefficients in each
of these polynomials, we may write uniquely

F (X) =

n∑
0

ai(X − a)i = P (X)(X − a)n

G(X) =

n∑
0

bi(X − a)i = Q(X)(X − a)m
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where P (a) ̸= 0 and Q(a) ̸= 0. Hence f = (P/Q)(X − a)n−m, and P/Q
is a unit in Oa(V ). Since X − a ∈ Γ(V ) = k[X] is irreducible, we see that
Oa(V ) is a DVR with uniformizing parameter X − a.

(b) Proof. Let f = F/G ∈ O∞. Suppose that degF = n and degG = m with
m ≥ n. Then we can uniquely write

F

G
=
FXm−n

G

1

Xm−n

=
FXm−n

G
tm−n

Since degFXm−n = degF +m− n = m = degG, FXm−n/G is a unit in
O∞(V ). Since t = 1/X is irreducible in O∞(V ), O∞(V ) is a DVR with
uniformizing parameter t = 1/X.

2.25. Let p ∈ Z be a prime number. Show that {r ∈ Q | r = a/b, a, b ∈ Z, p
doesn’t divide b} is a DVR with quotient field Q.

Solution. Proof. Let p ∈ Z be a prime number. Let Z(p) = {r ∈ Q | r =
a/b, a, b ∈ Z, p doesn’t divide b}. Let m = (p), the principal ideal in Z(p)

generated by p. If r ∈ Z(p), r ̸= 0. We can write r = a/b with a, b ∈ Z, p doesn’t
divide b, and (a, b) = 1. By the Fundamental Theorem of Arithmetic, a = upn

where n ∈ N ∪ {0}, u ∈ Z, p ∤ u. Then r = u
b p
n. Then u

b is a unit in Z(p), p
is irreducible, and m is the set of non-units in Z(p). This shows Z(p) is a DVR.
It’s easy to see the quotient field of Z(p) is Q.

2.26. Let R be a DVR with quotient field K; let m be the maximal ideal of R.

(a) Show that if z ∈ K, z /∈ R, then z−1 ∈ m.

(b) Suppose R ⊂ S ⊂ K, and S is also a DVR. Suppose the maximal ideal of
S contains m. Show that S = R.

Solution. (a) Proof. Let z ∈ K \R. Let t be a uniformizing parameter for R
and write z = utn for some unit u ∈ R and some n ∈ Z. Note that if n ≥ 0
then z ∈ R, which contradicts the assumption that z /∈ R. Hence n < 0.
Let m = −n > 0. Then z−1 = u−1tm and since m > 0, z−1 ∈ m.

(b) Proof. Let z ∈ S ⊂ K. We may assume that z ̸= 0 since 0 ∈ R. By the
result of part (a), since R is a DVR, either z ∈ R or z−1 ∈ R. If z ∈ R,
we’re done, so assume that z−1 ∈ R and z /∈ R. It follows then from part
(a) that z−1 ∈ m ⊂ mS , where m is the maximal ideal in R and mS is the
maximal ideal in S. But then 1 = zz−1 ∈ mS , which is absurd, since mS
is a maximal ideal in S. Hence, we must have that z ∈ R, so R = S.
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2.27. Show that the DVR’s of Problem 2.24 are the only DVR’s with quotient
field k(X) that contain k. Show that those of Problem 2.25 are the only DVR’s
with quotient field Q.

Solution. Proof. Let R be a DVR containing k with quotient field k(X).
Let m = (t) be its maximal ideal where t is a uniformizing parameter.
By Problem 2.26, if x /∈ R, then x−1 ∈ m ⊂ R. Hence x−1 = utn for some

n ∈ N. However, x−1 is irreducible, so this forces m = (x−1).
Otherwise, x ∈ R, so that k[X] ⊂ R. Since t ∈ R must irreducible, t = x−a

for some a ∈ k, up to a unit multiple.
Hence, the only DVR’s containing k with quotient field k(X) are the ones

in Problem 2.24.

Let R be a DVR with quotient field Q. We note that Z ⊂ R.
Let m = (t) be its maximal ideal where t is a uniformizing parameter. Write

t = a/b where a, b ∈ Z, with a, b relatively prime. Since b ∈ Z ⊂ R, bt = a ∈ m.
This forces b to be a unit and m = (a). Since a must be irreducible, a = p for
some prime number.

Hence, the only DVR’s with quotient field Q have are the ones in Prob-
lem 2.25.

2.28. An order function on a field K is a function φ from K onto Z ∪ {∞},
satisfying:

(a) φ(a) = ∞ if and only if a = 0.

(b) φ(ab) = φ(a) + φ(b).

(c) φ(a+ b) ≥ min{φ(a), φ(b)}.

Show that R = {z ∈ K |φ(z) ≥ 0} is a DVR with maximal ideal m = {z |φ(z) >
0}, and quotient field K. Conversely, show that if R is a DVR with quotient
field K, then the function ord : K → Z∪{∞} is an order function on K. Giving
a DVR with quotient field K is the same thing as defining an order function on
K.

Solution. Proof. (⇒) Suppose that φ : K → Z∪{∞} is an order function onK.
Let R = {z ∈ K |φ(z) ≥ 0}. Let a, b ∈ R. Then φ(a+b) ≥ min{φ(a), φ(b)} ≥ 0
so a+ b ∈ R. Similarly, φ(ab) = φ(a) + φ(b) ≥ 0, so ab ∈ R. Also,

φ(1) = φ(1 · 1) = φ(1) + φ(1),

and it follows that φ(1) = 0, so that 1 ∈ R. It is trivial to see that 0 ∈ R.
Notice that if z ∈ K, z ̸= 0, then

0 = φ(1) = φ(zz−1) = φ(z) + φ(z−1), (∗)
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so that φ(z−1) = −φ(z). This implies that φ(−1) = 0. Then, φ(a − b) =
φ(a+(−b)) ≥ min{φ(a), φ(−b)}, but φ(−b) = φ(−1 · b) = φ(−1)+φ(b) = φ(b),
so φ(a− b) ≥ min{φ(a), φ(b)} ≥ 0, so a− b ∈ R. This is sufficient to show that
R is a commutative ring with identity.

Suppose that z ∈ R, z ̸= 0. Then from equation (∗), we have z−1 ∈ R if and
only if φ(z) = 0, so the set m = {z |φ(z) > 0} consists of all nonunits in R. If
a, b ∈ m then

φ(a− b) = φ(a+ (−b)) ≥ min{φ(a), φ(−b)} = min{φ(a), φ(b)} > 0,

so a− b ∈ m. Also, if r ∈ R, then

φ(ar) = φ(a) + φ(r) > 0,

so ar ∈ m. It follows that m is an ideal in R. Hence R is a DVR with maximal
ideal m. Now, the quotient field of R is contained in the field K. Since φ is
onto, choose t ∈ K satisfy φ(t) = 1. Now, if z ∈ K with φ(z) = −n < 0, then
z = ztn/tn, and ztn and tn are both in R, with tn ̸= 0. It follows that K is the
quotient field of R.

(⇐) Suppose that R is a DVR with quotient field K. Let t be a uniformizing
parameter for R. Define φ(0) = ∞. If z ∈ K, z ̸= 0, write z = utn, where u is
a unit in R and n ∈ Z. Define φ(z) = n. We show that φ : K → Z ∪ {∞} is an
order function on K.

First, it is clear that φ(a) = ∞ if and only if a = 0. Let a, b ∈ K. Write
a = utn and b = vtm for some units u, v ∈ R, and integers n and m, where we
assume n ≥ m. Then a+ b = utn + vtm = tm(utn−m + v), and (utn−m + v) is
a unit in R. Certainly (utn−m + v) is in R since n ≥ m, and if (utn−m + v) is
not a unit in R, then (utn−m + v) ∈ m. But then it follows that v ∈ m, which
is impossible. So, we see that φ(a+ b) = m = min{φ(a), φ(b)}. Simlarly, ab =
(utn)(vtm) = (uv)tn+m, and uv is a unit in R, so φ(ab) = n+m = φ(a)+φ(b).
Thus, φ is an order function on K.

2.29. Let R be a DVR with quotient field K, ord the order function on K.

(a) If ord (a) < ord (b), show that ord (a+ b) = ord (a).

(b) If a1, . . . , an ∈ K, and for some i, ord (ai) < ord (aj) for all j ̸= i, then
a1 + · · ·+ an ̸= 0.

Solution. (a) Proof. By the inequality, a ̸= 0, and if b is zero, the result is
clear, so we may assume that a, b ̸= 0. Choose a uniformizing parameter
t for R, and write a = utn and b = vtm for u, v units in R and n, m ∈ Z,
with n < m. Then a+b = utn+vtm = tn(u+vtm−n). Now, u+vtm−n ∈ R
and if u+ vtm−n ∈ m, then u ∈ m, since m− n > 0. This contradicts the
fact that u is a unit in R. We conclude that ord (a+ b) = n = ord (a).
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(b) Proof. Without loss of generality, we assume that ord (a1) < ord (aj) for
all j > 1. Note that this implies that a1 ̸= 0. We prove by induction that
ord (a1 + · · ·+ ai) = ord (a1) for all 1 ≤ i ≤ n. If i = 1, the statement is
trivially true. If i = 2, the statement ord (a1 + a2) = ord (a1) follows from
part (a). Suppose the statement is true for i = k < n. Let a = a1+· · ·+ak.
Then ord (a) = ord (a1), by the induction hypothesis. Letting b = ak+1

we see that ord (a) < ord (b), so that by part (a), ord (a+ b) = ord (a).
But this says that ord (a1 + · · ·+ ak+1) = ord (a1). This concludes the
induction. Hence, ord (a1 + · · ·+ an) = ord (a1). But since a1 ̸= 0, we
conclude that ord (a1 + · · ·+ an) is finite, so a1 + · · ·+ an cannot be zero.

2.30. Let R be a DVR with maximal ideal m, and quotient field K, and sup-
pose a field k is a subring of R, and that the composition k → R → R/m is
an isomorphism of k with R/m (as for example in Problem 2.24). Verify the
following assertions:

(a) For any z ∈ R, there is a unique λ ∈ k such that z − λ ∈ m.

(b) Let t be a uniformizing parameter for R, z ∈ R. Then for any n ≥ 0 there
are unique λ0, λ1, . . . , λn ∈ k and zn ∈ R such that z = λ0 + λ1t+ λ2t

2 +
· · ·+ λnt

n + znt
n+1.

Solution. (a) Proof. Let z ∈ R and let z be the residue of z in R/m. Since
the composition k → R→ R/m is an isomorphism, there is a unique λ ∈ k
so that the image of λ in R/m is z. Hence, there is a unique λ ∈ k so that
z − λ ∈ m, as desired.

(b) Proof. Let t be a uniformizing parameter and let z ∈ R. We proceed by
induction on n. By part (a), there is a unique λ0 ∈ k so that z − λ0 ∈ m.
Since m is a principal ideal generated by t, we can write z − λ0 = z0t
for some z0 ∈ R. The uniqueness of z0 follows from the fact that R is a
domain. This proves the statement for n = 0. Assume the statement is
true for n = l. Then we can write

z = λ0 + λ1t+ · · ·+ λlt
l + zlt

l+1,

where λ0, λ1, . . . , λl ∈ k and zl ∈ R are unique. By part (a), we can find
a unique λl+1 ∈ k so that zl − λl+1 ∈ m. Write zl − λl+1 = zl+1t. It then
follows just as before that zl+1 is unique, and

z =λ0 + λ1t+ · · ·+ λlt
l + zlt

l+1

λ0 + λ1t+ · · ·+ λlt
l + (λl+1 + zl+1t)t

l+1

λ0 + λ1t+ · · ·+ λl+1t
l+1 + zl+1t

l+2

This shows that the statement is true for n = l + 1, and so concludes the
induction.
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2.31. Let k be a field. The ring of formal power series over k, written k[[X]], is
defined to be {

∑∞
i=0 aiX

i | ai ∈ k}. (As with polynomials, a rigorous definition
is best given in terms of sequence (a0, a1, . . . ) of elements of k; here we allow
an infinite number of nonzero terms.) Define the sum

∑
aiX

i +
∑
biX

i =∑
(ai + bi)X

i, and the product by
(∑

aiX
i
) (∑

biX
i
)
=
∑
ciX

i, where ci =∑
j+k=i ajbk. Show that k[[X]] is a ring containing k[X] as a subring. Show that

k[[X]] is a DVR with uniformizing parameter X. Its quotient field is denoted
k((X)).

Solution. Proof. The proof that k[[X]] is a ring with k[X] as a subring is left
to the reader. We show that k[[X]] is a DVR with uniformizing parameter X.

Let m = {
∑∞

0 aiX
i ∈ k[[X]] | a0 = 0}. We have to show that m is an ideal

and contains all the nonunits of k[[X]]. If a =
∑∞

0 aiX
i and b =

∑∞
0 biX

i are
in m, then a−b =

∑∞
0 (ai−bi)Xi. Since a0 = b0 = 0, we see that a0−b0 = 0, so

a− b ∈ m. This shows that m is subgroup of k[[X]]. Suppose that r =
∑∞

0 riX
i

is in k[[X]]. Then

ra =

( ∞∑
0

riX
i

)( ∞∑
0

aiX
i

)
=

∞∑
0

ciX
i,

where ci =
∑
j+k=i ajrk. So, c0 = a0r0 = 0, since a0 = 0. This shows that m is

an ideal.
Now we show that a =

∑∞
0 aiX

i is a unit k[[X]] if and only if a0 ̸= 0. This
will show that m consists precisely of all the nonunits in k[[X]], and that will
conclude the proof, since m is certainly a principal ideal in k[[X]] generated by
X, as is easily seen.

Suppose that a =
∑∞

0 aiX
i has a0 = 0. Then if b =

∑∞
0 biX

i, then
(ab)0 = a0b0 = 0, so there cannot exist a b ∈ k[[X]] with ab = 1. Hence a is a
nonunit.

Now suppose that a =
∑∞

0 aiX
i has a0 ̸= 0. We’ll construct the inverse of

a, b =
∑∞

0 biX
i by choosing b0, b1, . . . inductively. Let 1 =

∑∞
0 ciX

i, where
ci =

∑
j+k=i ajbk, denote the product of a and b. As noted above, we must have

c0 = a0b0 = 1, so choose b0 = a−1
0 . Now, 0 = c1 = a1b0+a0b1 = (a1/a0)+a0b1,

so choose b1 = −a1/a20. Suppose that we have chosen b0, b1, . . . , bn so that
c0 = 1 and ci = 0 if 1 ≤ i ≤ n. Then

0 = cn+1 =
∑

j+k=n+1

ajbk

= a0bn+1 + a1bn + · · ·+ an+1b0.

Thus, we choose bn+1 = −(a1bn+· · ·+an+1b0)/a0. This concludes the induction
and shows that we can construct an element b ∈ k[[X]] so that ab = 1. Hence a
is a unit.

2.32. Let R be a DVR satisfying the conditions of Problem 2.30. Any z ∈
R then determines a power series

∑
λiX

i, if λ0, λ1, . . . are determined as in
Problem 2.30(b).
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(a) Show that the map z →
∑
λiX

i is a one-to-one ring homomorphism of
R into k[[X]]. We often write z =

∑
λit

i, and call this the power series
expansion of z in terms of t.

(b) Show that the homomorphism extends to a homomorphism of K into
k((X)), and that the order function on k((X)) restricts to that on K.

(c) Let a = 0 in Problem 2.24, t = X. Find the power series expansions of
z = (1−X)−1 and of (1−X)(1 +X2)−1.

Solution. (a) Proof. From Problem 2.30, we’ve already shown that any z ∈
R determines a power series

∑
λiX

i, with λ0, λ1, . . . in k. This gives a
map φ : R → k[[X]]. If z ∈ m ⊂ R, then λ0 = 0, so φ(z) ∈ m ⊂ k[[X]].
Conversely, if z /∈ m ⊂ R, then λ0 ̸= 0, so φ(z) /∈ m ⊂ k[[X]]. From our
previous work, it is easy to see that ord (z) = n if z = utn, with u a unit
in R. But then φ(z) = φ(utn) = φ(u)φ(t)n = φ(u)Xn, where φ(u) is a
unit in k[[X]]. It follows that the order function on R is induced by the
order function on k[[X]]. Note that the kernel of φ consists of those z for
which λi = 0 for all i, which says that tn divides z for all n. It follows
that the order of z is infinite, so z = 0. Hence φ is injective.

(b) Proof. (a)

z =
1

1−X
= 1 +X +X2 +X3 + · · ·+Xn + . . . .

(b)

z =
1−X

1 +X2
= (1−X)

∞∑
0

(−1)nX2n

=

∞∑
0

(−1)nX2n −
∞∑
0

(−1)nX2n+1

= 1−X −X2 +X3 +X4 −X5 −X6 +X7 +X8 − . . .

2.6 Forms

Problems

2.33. Factor Y 3 − 2XY 2 + 2X2Y +X3 into linear factors in C[X,Y ].
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Solution. Let r1, r2, r3 be the three roots of 1− 2X + 2X2 +X3. Then

1− 2X + 2X2 +X3 = (X − r1)(X − r2)(X − r3).

But then

Y 3 − 2XY 2 + 2X2Y +X3 = (X − r1Y )(X − r2Y )(X − r3Y ).

2.34. Suppose F,G ∈ k[X1, . . . , Xn] are forms of degree r, r + 1 respectively,
with no common factors (k a field). Show that F +G is irreducible.

Solution. Proof. Let F,G ∈ k[X1, . . . , Xn] are forms of degree r, r + 1 respec-
tively, with no common factors.

Suppose F +G = HK, where H,K ∈ k[X1, . . . , Xn]. Write H = H0 +H1 +
· · ·+Hk and G = G0 +G1 + · · ·+Gℓ, where Hi, Gi are forms of degree i with
Hk ̸= 0 and Gℓ ̸= 0.

Looking at the terms of degree r + 1 on both sides, we see that G = HkGℓ,
which implies that k + ℓ = r + 1. So, ℓ = r − k + 1.

Now look at the terms of degree r on both sides, we see that

HkGr−k +Hk−1Gr−k+1 = F.

We know that Hk ̸= 0 and Gr−k+1 ̸= 0. This forces one of Gr−k and Hk−1 to
be zero. Otherwise the product contains homogeneous terms of degree r − 1,
which is contradiction. Suppose Hk−1 = 0.

Now look at the terms of degree r − 1 on both sides, we see that

HkGr−k−1 +Hk−1Gr−k +Hk−2Gr−k+1 = HkGr−k−1 +Hk−2Gr−k+1 = 0

We know that Hk ̸= 0 and Gr−k+1 ̸= 0. This forces one of Gr−k−1 and Hk−2

to be zero. Otherwise the product contains homogeneous terms of degree r− 3,
which is contradiction. If Gr−k−1 ̸= 0, then the product has nonzero homoge-
neous termHkGr−k−1 of degree r−1, which is a contradiction. HenceHk−2 = 0.

Continuing inductively, we see that Hk−1 = Hk−2 = · · · = H0 = 0. Hence,
H = Hk.

ThenGmust equalGr−k+1+Gr−k, so that F = Gr−kHk andG = Gr−k+1Hk.
This contradicts the hypothesis that F and G have no common factor.

Hence, F +G is irreducible.

2.35. (a) Show that there are d + 1 monomials of degree d in R[X,Y ], and
1+2+ · · ·+(d+1) = (d+1)(d+2)/2 monomials of degree d in R[X,Y, Z].

(b) Let V (d, n) = {forms of degree d in k[X1, . . . Xn]}, k a field. Show that
V (d, n) is a vector space over k, and that the monomials of degree d form a
basis. Show that dim (V (d, 1)) = 1; dim (V (d, 2)) = d+1; dim (V (d, 3)) =
(d+ 1)(d+ 2)/2.
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(c) Let L1, L2, . . . and M1,M2, . . . be sequences of nonzero linear forms in
k[X,Y ], and assume no Li = λMj , λ ∈ k. LetAij = L1L2 . . . LiM1M2 · · ·Mj ,
i, j ≥ 0 (A00 = 1). Show that {Aij | i+ j = d} forms a basis for V (d, 2).

Solution. (a) Proof. Every monomial of degree d in R[X,Y ] has the form
XjY d−j for 0 ≤ j ≤ d. There are d + 1 choices of j, so there are d + 1
monomials of degree d in R[X,Y ].

Every monomial of degree d in R[X,Y, Z] has the form M jZd−j for
0 ≤ j ≤ d, where M j is a form of degree j in R[X,Y ]. The number
of choices of M j is j + 1, so the number of monomials of degree d in
R[X,Y, Z] is

d∑
0

(j + 1) =

d+1∑
1

j =
(d+ 1)(d+ 2)

2
.

(b) This is silly.

(c) Proof.

2.36. With the above notation, show that dim (V (d, n)) =

(
d+ n− 1

n− 1

)
, the

binomial coefficient.

Solution. Proof. Take d+n−1 boxes and remove n−1 of them. This gives you
d boxes grouped into n groups (possibly containing zero boxes). Those numbers
of boxes in each of those groups, i1,. . . , in, represent the exponents of x1, . . . ,
xn. Then you have monomials xi11 · · ·xinn , which is all the monomials of degree
d. (Proof due to J. Harris.)

2.7 Direct Products of Rings

Problems

2.37. What are the additive and multiplicative identities in
∏
Ri? Is the map

from Ri to
∏
Rj taking ai to (0, . . . , ai, . . . , 0) a ring homomorphism?

Solution. The additive identity is (0, . . . , 0). The multiplicative identity is
(1, . . . , 1). The map taking Ri to

∏
Rj is not a ring homomorphism since it

does not take the multiplicative identity of Ri to the multiplicative identity of∏
Rj .
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2.38. Show that if k ⊂ Ri, and each Ri is finite-dimensional over k, show that
dim (

∏n
1 Ri) =

∑n
1 dim (Ri).

Solution. Proof. The case n = 1 being trivial. For n = 2, we have an exact
sequence of vector spaces and linear maps

0 → R1
f→ R1 ×R2

g→ R2 → 0.

given by f(x) = (x, 0) and g(x, y) = y.
Then dimk (R1)− dimk (R1 ×R2) + dimk (R2) = 0, so that

dimk (R1 ×R2) = dimk (R1) + dimk (R2) .

The result follows by induction.

2.8 Operations with Ideals

Problems

2.39. Prove the following relations among ideals Ii, J , in a ring R:

(a) (I1 + I2)J = I1J + I2J .

(b) (I1 · · · IN )n = In1 · · · InN .

Solution. (a) Proof. First, I1, I2 ⊂ I1 + I2, so I1J, I2J ⊂ (I1 + I2)J . Hence
I1J + I2J ⊂ (I1 + I2)J . On the other hand, it’s clear that (I1 + I2)J ⊂
I1J + I2J . Hence (I1 + I2)J = I1J + I2J .

(b) Proof. This follows from the fact that R is a commutative ring.

2.40. (a) Suppose I, J are comaximal ideals in R. Show that I + J2 = R.
Show that Im and Jn are comaximal for all m,n.

(b) Suppose I1, . . . , IN are ideals in R, and Ii and Ji =
⋂
j ̸=i Ij are comaximal

for all i. Show that In1 ∩ · · · ∩ InN = (I1 · · · IN )n = (I1 ∩ · · · ∩ IN )n for all
n.

Solution. (a) Proof. Suppose I and J are comaximal ideals in R. Then there
exist elements x ∈ I, y ∈ J so that x+ y = 1. Then

y2 = (1− x)2 = 1− 2x+ x2 ≡ 1 mod I
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So, I + J2 = 1.

yn = (1− x)n =

n∑
k=0

(−x)n−k = 1 +

n−1∑
k=0

(−x)n−k ≡ 1 mod I

So, I + Jn = 1.

Now, reversing the roles of I and J and replacing J by Jn, we get Im+Jn =
1 for all m,n.

(b) Proof. This is proved in A-M.

2.41. Let I, J be ideals in a ring R. Suppose I is finitely generated and I ⊂
Rad(J). Show that In ⊂ J for some n.

Solution. Proof. This is proved in A-M.

2.42. (a) Let I ⊂ J be ideals in a ring R. Show that there is a natural ring
homomorphism from R/I onto R/J .

(b) Let I be an ideal in a ring R, R a subring of a ring S. Show that there is
a natural ring homomorphism from R/I to S/IS.

Solution. Proof. Let I ⊂ J be ideals in a ring R.

We have the natural surjective quotient map R
q→ R/J . Since I ⊂ J ,

this homomorphism factors through the quotient to give a surjective ho-
momorphism R/I → R/J .

(a) Proof. Let I be an ideal in a ring R, R a subring of a ring S. We have a

composition of homomorphisms give by R ↪→ S
q→ S/IS. The ideal I ⊂ R

maps to zero in S/IS, so this maps factors through the quotient R/I to
give a homomorphism R/I → S/IS.

2.43. Let P = (0, . . . , 0) ∈ An, O = OP (An), m = mP (An). Let I ⊂
k[X1, . . . , Xn] be the ideal generated by X1, . . . , Xn. Show that IO = m, so
IrO = mr for all r.

Solution. Proof. Let P = (0, . . . , 0) ∈ An, O = OP (An), m = mP (An). Let
I ⊂ k[X1, . . . , Xn] be the ideal generated by X1, . . . , Xn.

Thenm consists of those rational functions F/G ∈ O where F,G ∈ k[X1, . . . , Xn],
F (P ) = 0 and G(P ) ̸= 0. By Problem 1.7, we can write

F (X1, . . . , Xn) =
∑

XiFi
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for some Fi ∈ k[X1, . . . , Xn]. Then we have

F

G
=

∑
XiFi
G

=
∑

Xi
Fi
G
,

showing this rational function lies in IO.
In the other direction, each element of IO can be written as∑

Xi
Fi
Gi
,

where Fi, Gi ∈ k[X1, . . . , Xn], with Gi(P ) ̸= 0 for all i. Since each of the
summands vanishes at P , the sum lies in m.

This shows IO = m. It now follows by Problem ? that IrO = mr.

2.44. Let V be a variety in An, I = I(V ) ⊂ k[X1, . . . , Xn], P ∈ V , and let
J be an ideal of k[X1, . . . , Xn] which contains I. Let J ′ be the image of J in
Γ(V ). Show that there is a natural homomorphism φ from OP (An)/JOP (An) to
OP (V )/J ′OP (V ), and that φ is an isomorphism. In particular, OP (An)/IOP (An)
is isomorphic to OP (V ).

Solution. Proof. Suppose V is a variety in An, I = I(V ) ⊂ k[X1, . . . , Xn],
P ∈ V , and suppose J is an ideal of k[X1, . . . , Xn] which contains I. Let J ′ be
the image of J in Γ(V ).

We have the natural quotient map k[X1, . . . , Xn] → k[X1, . . . , Xn]/I ∼=
Γ(V ). Since both k[X1, . . . , Xn] and Γ(V ) are integral domains, this map ex-
tends uniquely to a ring homomorphism on the quotient fields:

k(An) = k(X1, . . . , Xn) → O(V ).

If we limit this homomorphism to the subring OP (An) ⊂ k(An) and limit the
codomain to its image in k(An), we get

OP (An) → OP (V ).

Notice that this map is surjective by definition.
We compose this with the natural quotient map to get

OP (An) → OP (V )
q→ OP (V )/J ′OP (V ).

Since J is contained in the kernel of this homomorphism, this homomorphism
factors uniquely through the quotient ring:

φ : OP (An)/JOP (An) → OP (V )/J ′OP (V ).

Since the quotient map is surjective, φ is surjective.
Mark, check the following paragraph.
Let r represent an element x ∈ OP (An)/JOP (An) that maps to zero under

φ. Then r ∈ J ′OP (V ). This implies that r ∈ JOP (An), so x = 0. Hence, φ is
injective.
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2.45. Show that ideals I, J ⊂ k[X1, . . . , Xn] (k algebraically closed) are comax-
imal if and only if V (I) ∩ V (J) = ∅.

Solution. Proof. (⇒) Suppose I, J are comaximal. Then I + J = (1). If
P ∈ V (I) ∩ V (J), then every element of I and every element of J vanishes
at P . But then every element of I + J vanishes at P , so 1 vanishes at P , a
contradiction.

(⇐) Suppose V (I)∩V (J) = ∅. Then V (I+J) = V (I∪J) = V (I)∩V (J) = ∅.
By the Weak Nullstellensatz, I + J = (1), so I and J are comaximal.

2.46. Let I = (X,Y ) ⊂ k[X,Y ]. Show that dimk (k[X,Y ]/In) = 1+2+· · ·+n =
n(n+1)

2 .

Solution. Proof. The vector space k[X,Y ]/In is generated by monomials in X
and Y of degree at most n− 1. The number of these is the number monomials
of the form XiY j1n−i−j−1, that is, the number of monomials of degree exactly
n− 1 in three variables. By Problem 2.36, this number is

(
n−1+3−1

3−1

)
=
(
n+1
2

)
=

n(n+1)
2 .

2.9 Ideals With a Finite Number of Zeros

Problem

2.47. Suppose R is a ring containing k, and R is finite dimensional over k.
Show that R is isomorphic to a direct product of local rings.

Solution. Proof. Suppose R is a ring containing k, and R is finite dimensional
over k. Let x1, . . . , xn be a basis for R over k. Since R is finite dimensional over
k, each xi is integral over k. Hence, k[x1, . . . , xn] is integral over k and there
is a surjective morphism φ : k[x1, . . . , xn] → R. If we let I be the kernel of φ,
then R is isomorphic to k[x1, . . . , xn]/I.

Since R is isomorphic to k[x1, . . . , xn]/I and is finite dimensional over k, R
is an Artin ring. (See A-M, Theorem 6.10.) By the structure theorem for Artin
rings, R is uniquely (up to isomorphism) a finite direct product of Artin local
rings. (See A-M, Theorem 8.7.)
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2.10 Quotient Modules and Exact Sequences

Problems

2.48. Verify that for any R-module homomorphism φ : M → M ′, Ker(φ) and
Im(φ) are submodules of M and M ′, respectively. Show that

0 → Ker(φ) →M
φ−→ Imφ −→ 0

is exact.

Solution. Proof. This is one of the fundamental exact sequences for modules.

2.49. (a) Let N be a submodule of M , π : M → M/N the natural homo-
morphism. Suppose φ : M → M ′ is a homomorphism of R-modules, and
φ(N) = 0. Show that there is a unique homomorphism φ : M/N → M ′

such that φ ◦ π = φ.

(b) If N and P are submodules of a module M , with P ⊂ N , then there are
natural homomorphisms from M/P onto M/N and from N/P into M/P .
Show that the resulting sequence

0 → N/P →M/P →M/N → 0

is exact (“Second Noether Isomorphism Theorem”).

(c) Let U ⊂ W ⊂ V be vector spaces, with V/U finite-dimensional. Then
dim (V/U) = dim (V/W ) + dim (W/U) .

(d) If J ⊂ I are ideals in a ring R, there is a natural exact sequence of R-
modules:

0 → I/J → R/J → R/I → 0.

(e) If O is a local ring with maximal ideal m, there is a natural exact sequence
of O-modules:

0 → mn/mn+1 → O/mn+1 → O/mn → 0.

Solution. (a) Proof. Define φ : M/N → M ′ by φ(m + N) = φ(m). Since
φ(N) = 0, this map is well-defined. From this definition, we have φ◦π = φ
and this is the only way to define such φ.

(b) Proof. This is one of the fundamental isomorphism theorems for modules.
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(c) Proof. We have an exact sequence of finite dimensional vector spaces

0 →W/U → V/U → V/W → 0.

It follows that dim (V/U) = dim (V/W ) + dim (W/U) .

(d) Proof. This is one of the fundamental isomorphism theorems for modules.

(e) Proof. We have mn+1 ⊂ mn ⊂ O. Then by part (d), we have

0 → mn/mn+1 → O/mn+1 → O/mn → 0.

2.50. LetR be a DVR satisfying the conditions of Problem 2.30. Thenmn/mn+1

is an R-module, and so also a k-module, since k ⊂ R.

(a) Show that dimk

(
mn/mn+1

)
= 1 for all n ≥ 0.

(b) Show that dimk (R/m
n) = n for all n > 0.

(c) Let z ∈ R. Show that ord (z) = n if (z) = mn, and hence that ord (z) =
dimk (R/(z)).

Solution. (a) Proof. Suppose t is a uniformizing parameter of R. Then m =
(t) and mn = (tn). Then mn/mn+1 is generated by tn, so it has dimension
1.

(b) Proof. The vector space R/mn has basis {1, t, t2, . . . , tn−1}. The dimen-
sion of this space is n.

(c) Proof. If ord (z) = n, then z = utn where u ∈ R is a unit. But then
(z) = (tn) = (t)n = mn. By part (b), ord (z) = dimk (R/(z)).

2.51. Let 0 → V1 → · · · → Vn → 0 be an exact sequence of finite-dimensional
vector spaces. Show that

∑
(−1)i dim (Vi) = 0.

Solution. Proof. This is proved in A-M.

2.52. LetN,P be submodules of a moduleM . Show that the subgroupN+P =
{n + p |n ∈ N, p ∈ P} is a submodule of M . Show that there is a natural R-
module isomorphism of N/N ∩ P onto N + P/P (“First Noether Isomorphism
Theorem”).

Solution. Proof. This is one of the fundamental isomorphism theorems for
modules.
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2.53. Let V be a vector space, W a subspace, T : V → V a one-to-one lin-
ear map such that T (W ) ⊂ W , and assume V/W and W/T (W ) are finite-
dimensional.

(a) Show that T induces an isomorphism of V/W with T (V )/T (W )

(b) Construct an isomorphism between T (V )/(W∩T (V )) and (W+T (V ))/W ,
and an isomorphism between W/(W ∩ T (V )) and (W + T (V ))/T (V ).

(c) Use Problem 2.49(c) to show that dim (V/(W + T (V ))) = dim ((W ∩ T (V ))/T (W )) .

(d) Conclude finally that dim (V/T (V )) = dim (W/T (W )).

Solution. Let V be a vector space, W a subspace, T : V → V a one-to-one
linear map such that T (W ) ⊂ W , and assume V/W and W/T (W ) are finite-
dimensional.

(a) Proof. Define φ : V/W → T (V )/T (W ) by φ(v + W ) = T (v) + T (W ).
Suppose v+W = v′+W . Then v−v′ ∈W , so T (v)−T (v′) = T (v−v′) ∈
T (W ), so T (v) + T (W ) = T (v′) + T (W ). Thus, φ is well-defined.

For v1, v2 ∈ V and λ, µ ∈ k, we have

φ(λv1 + µv2) = T (λv1 + µv2) + T (W )

= (λT (v1) + µT (v2)) + T (W )

= λ(T (v1) + T (W )) + µ(T (v2) + T (W ))

= λφ(v1) + µφ(v2).

Thus φ is a linear map of vector spaces.

The map φ is surjective by construction.

Suppose φ(v +W ) = 0. Then φ(v) = T (v) ∈ T (W ). Since T is injective,
v ∈W , so v +W =W . So, φ is injective.

(b) Proof. Consider the composition of morphisms

T (V ) →W + T (V ) → (W + T (V ))/W.

This map is surjective and the kernel of this morphism consists of W ∩
T (V ). Hence

T (V )/W ∩ T (V ) ∼= (W + T (V ))/W

Consider the composition of morphisms

W →W + T (V ) → (W + T (V ))/T (V ).

This map is surjective and the kernel of the composition is W ∩ T (V ). So

W/W ∩ T (V ) ∼= (W + T (V ))/T (V ).
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(c) Proof. By part (a), dim (V/W ) = dim (T (V )/T (W )).

We have W ⊂ W + T (V ) ⊂ V . Since V/W is finite dimensional, by
Problem 2.49(c),

dim (V/W ) = dim (V/(W + T (V ))) + dim ((W + T (V ))/W ) .

We have W ∩ T (V ) ⊂ W + T (V ) ⊂ V . Since V/W is finite dimensional,
by Problem 2.49(c),

dim (V/W ∩ T (V )) = dim (V/(W + T (V )))+dim ((W + T (V ))/W ∩ T (V )) .

(d) Proof. We have an inclusion of vector spaces T (W ) ⊂W ⊂ V , which gives
us an exact sequence of vector spaces

0 →W/T (W ) → V/T (W ) → V/W → 0 (2.5)

Since V/W and W/T (W ) are finite dimensional, so is V/T (W ), and we
have

dim (V/T (W )) = dim (V/W ) + dim (W/T (W )) (2.6)

We have an inclusion of vector spaces T (W ) ⊂ T (V ) ⊂ V , which gives us
an exact sequence of vector spaces

0 → T (V )/T (W ) → V/T (W ) → V/T (V ) → 0 (2.7)

We showed V/T (W ) is finite dimensional by exact sequence (2.5). This
together with exact sequence (2.7) shows that T (V )/T (W ) and V/T (V )
are also finite dimensional. We then have

dim (V/T (W )) = dim (V/T (V )) + dim (T (V )/T (W )) . (2.8)

We know from part (a) that V/W in isomorphic to T (V )/T (W ), so

dim (V/W ) = dim (T (V )/T (W )) . (2.9)

Substituting (2.9) into (2.8), we have

dim (V/T (W )) = dim (V/T (V )) + dim (V/W ) . (2.10)

Comparing equations (2.6) and (2.10), we have that

dim (V/T (V )) = dim (W/T (W ))

as desired.

Mark, think about this again and use (b) and (c) to prove (d).
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2.11 Free Modules

Problems

2.54. What does M being free on m1, . . . ,mn say in terms of the elements of
M?

Solution. Let X = {m1, . . . ,mn}. Then the free module on m1, . . . ,mn is

MX = {φ : X → R}

If φ(mi) = ri, there is a correspondence between elements of MX and elements
of M of the form

∑
rimi. The module M is free on X if M =MX .

So, M is free on m1, . . . ,mn means

M =
{∑

rimi | ri ∈ R
}
.

2.55. Let F = Xn + a1X
n−1 + · · ·+ an be a monic polynomial in R[X]. Show

that R[X]/(F ) is a free R-module with basis 1, X, . . . ,X
n−1

, where X is the
residue of X.

Solution. Proof. I’ve proved this somewhere before.

2.56. Show that a subset X of a module M generates M if and only if the
homomorphism MX →M is onto. Every module is isomorphic to a quotient of
a free module.

Solution. Proof. (⇒) Suppose a subset X of a module M generates M . Let
m ∈ M . Then there exist ri ∈ R so that m =

∑
rixi for some finite subset

{xi} ⊂ X. Let φ ∈MX be given by

φ(x) =

{
ri if x = xi

0 otherwise

The natural homomorphism MX →M takes φ to m. So, the natural morphism
is surjective.

(⇐) Let X ⊂M and suppose the natural morphism MX →M is surjective.
Then for m ∈M , there exists φ ∈MX so that φ maps onto m under the natural
morphism. But then m =

∑
x∈X φ(x)x. So, X generated M .
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Chapter 3

Local Properties of Plane
Curves

3.1 Multiple Points and Tangent Lines

Problems

3.1. Prove that in the above example P = (0, 0) is the only multiple point on
the curves C,D,E, and F .

Solution. (C) Y 2 − X3. We have FY = 2Y and FX = −3X2. We see
FX = FY = 0 only at the point (0, 0), so (0, 0) is the only singular point.

(D) Y 2 − X3 − X2. We have FY = 2Y and FX = −3X2 − 2X. We see
FX = FY = 0 only at the points (0, 0) and (−2/3, 0). However, the latter
point is not on the curve, so (0, 0) is the only singular point.

(E) (X2 +Y 2)2 +3X2Y −Y 3. We have FY = 4Y (X2 +Y 2)+ 3X2 − 3Y 2 and
FX = 4X(X2+Y 2)+6XY . Setting these equal to zero and solving using
MAPLE, the only singular point is (0, 0).

(F) (X2 + Y 2)3 − 4X2Y 2. We have FY = 6Y (X2 + Y 2) − 8X2Y and FX =
6X(X2 + Y 2) − 8XY 2. Setting these equal to zero and solving using
MAPLE, the only singular point is (0, 0).

3.2. Find the multiple points, and the tangent lines at the multiple points, for
each of the following curves:

(a) Y 3 − Y 2 +X3 −X2 + 3XY 2 + 3X2Y + 2XY
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(b) X4 + Y 4 −X2Y 2

(c) X3 + Y 3 − 3X2 − 3Y 2 + 3XY + 1

(d) Y 2 + (X2 − 5)(4X4 − 20X2 + 25)

Sketch the part of the curve in part (d) that is contained in A2(R) ⊂ A2(C).

Solution. (a) Taking the two partial derivatives FX and FY , as well as F
equal to zero, we get the only singular point is (0, 0). The tangent lines
are given by the lowest power terms of F : 2XY −Y 2 −X2 = −(X −Y )2.
So this curve has a double tangent line X − Y = 0.

(b) Taking the two partial derivatives FX and FY , as well as F equal to zero,
we get the only singular point is (0, 0). The tangent lines are given by the
lowest power terms of F : X4 + Y 4 − X2Y 2 = 0. So this curve has four

tangent lines at Y = ±
√

1
2 ±

√
3
2 i X.

(c) Taking the two partial derivatives FX and FY , as well as F equal to zero,
we get the only singular point is (1, 1). Making the change of variables
X = U+1, Y = V +1, we get the polynomial FT (U, V ) = U3+V 3+3UV ,
which has a singularity of multiplicity 2 at (0, 0). The tangent lines are
given by the lowest power terms of F : 3UV = 0. So the curve FT has
tangent lines at (0, 0) given by U = 0 and V = 0. So the curve F has
tangent lines at (1, 1) given by X = 1 and Y = 1.

(d) Taking the two partial derivatives FX and FY , as well as F equal to zero,
we get the two singular points: (±

√
5/2, 0).

Let u = x ±
√

5/2 and making this substitution into F , we get each of
these points is an ordinary double point.

3.3. If a curve F of degree n has a point P of multiplicity n, show that F
consists of n lines through P (not necessarily distinct).

Solution. Proof. Without loss of generality, we may assume P = (0, 0). Since
F has degree n and (0, 0) has multiplicity n, we have F (X,Y ) = Fn(X,Y ) =∑
aiX

iY n−i. Since every form in two variables can be factored into linear
factors, we have F is a product of n linear factors. So, its zero set is n (not
necessarily distinct) lines.
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3.4. Let P be a double point on a curve F . Show that P is a node if and only
if FXY (P )

2 ̸= FXX(P )FY Y (P ).

Solution. Proof. Without loss of generality, we may assume P = (0, 0). Since
F has a double point at P , F has the form aX2 + bXY + cY 2 plus higher order
terms. We note that FXX(0, 0) = 2a, FXY (0, 0) = b and FY Y (0, 0) = 2c.

The curve F has a node at P if and only if aX2+bXY +cY 2 is not a perfect
square. Thinking of F has a function of X with coefficients in k(Y ), we see
that aX2 + bXY + cY 2 is not a perfect square if and only if its discriminant is
not zero. That is, (bY )2 − 4(a)(cY 2) = (b2 − 4ac)Y 2 ̸= 0. So, the point P is a
node if and only if b2 − 4ac = F 2

XY − 4( 12FXX)( 12FY Y ) = F 2
XY − FXXFY Y is

not equal to zero.

3.5. (char(k) = 0). Show that mP (F ) is the smallest integer m such that for

some i + j = m,
∂mF

∂Xi∂Y j
(P ) ̸= 0. Find an explicit description for the leading

form for F at P in terms of these derivatives.

Solution. The leading form for F is

Fm(X,Y ) =

m∑
i=0

∂mF/∂Xi∂Y m−i

i!(m− i)!
(X,Y ).

From this, we see that mP (F ) is the smallest integer m such that for some

i+ j = m,
∂mF

∂Xi∂Y j
(P ) ̸= 0.

3.6. Irreducible curves with given tangent lines Li of multiplicity ri may be
constructed as follows: if

∑
ri = m, let F =

∏
Lrii + Fm+1, where Fm+1 is

chosen to make F irreducible (See Problem 34 of Chapter 2.)

Solution. Proof. This follows immediately from Problem 34 of Chapter 2.

3.7. (a) Show that the real part of the curve E of the example is the set of
points in A2(R) whose polar coordinates (r, θ) satisfy the equation r =
− sin(3θ). Find the polar equations for the curve F .

(b) If n is an odd integer ≥ 1, show that the equation r = sin(nθ) defines
the real part of a curve of degree n + 1 with an ordinary n-tuple point
at (0, 0). (Use the fact that sin(nθ) = Im(einθ) to get the equation; note
that rotation by 2π/n is a linear transformation which takes the curve
into itself.)

(c) Analyze the singularities which arise by looking at r2 = sin2(nθ), n even.
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(d) Show that the curves constructed in (b) and (c) are all irreducible in
A2(C). (Hint: Make the polynomials homogeneous with respect to a
variable Z, and use Section 6 of Chapter 2.)

Solution. (a) Proof. We first compute sin(3θ):

sin(3θ) = sin(2θ + θ)

= sin(2θ) cos θ + sin θ cos(2θ)

= 2 sin θ cos θ · cos θ + sin θ · (cos2 θ − sin2 θ)

= 2 sin θ cos2 θ + sin θ cos2 θ − sin3 θ

= 3 sin θ cos2 θ − sin3 θ.

We view the polynomial (X2+Y 2)2+3X2Y −Y 3 as lying in R[X,Y ] and
convert it to polar coordinates. We get

(X2 + Y 2)2 + 3X2Y − Y 3 = (r2)2 + 3(r cos θ)2 · r sin θ − (r sin θ)3

= r4 + 3r3 cos2 θ sin θ − r3 sin3 θ,

which has the same zero set as r + 3 cos2 θ sin θ − sin3 θ = r + sin(3θ).

(b) Proof. We convert the curve r = sin(nθ) to rectangular coordinates.

r = sin(nθ)

=
1

2i
(einθ − e−inθ)

=
1

2i
((eiθ)n − (e−iθ)n)

rn+1 = rn · 1

2i
((eiθ)n − (e−iθ)n)

(r2)(n+1)/2 =
1

2i
((reiθ)n − (re−iθ)n)

(x2 + y2)(n+1)/2 =
1

2i
((x+ iy)n − (x− iy)n).

We see that this is a polynomial of degree n+1 and, since the lowest order
term centered at (0, 0) has degree n, (0, 0) is an n-tuple multiple point.
Since rotation by 2π/n rotates the curve onto itself, this rotation takes
a tangent line to another tangent line. Since n is odd, none of these n
rotations carries a tangent line back onto itself except the last one. Indeed,
after j rotations, the curve has turned 2πj/n radians. A tangent line is
carried onto itself if this is a multiple of π. If 2πj/n = kπ, then 2j = kn.
Since n is odd, this forces k to be even, so the n rotations of the tangent
line are distinct. This implies the curve has n distinct tangent lines, so
(0, 0) is an ordinary n-tuple point.
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(c) Proof. We convert r2 = sin2(nθ), n even, into rectangular coordinates.

r2 = sin2(nθ)

=

[
1

2i
(einθ − e−inθ)

]2
= −1

4

(
e2inθ − 2 + e−2inθ

)
= −1

4

(
(eiθ)2n − 2 + (e−iθ)2n

)
r2n+2 = −1

4
· r2n

(
(eiθ)2n − 2 + (e−iθ)2n

)
r2n+2 = −1

4

(
(reiθ)2n − 2(r2)n + (re−iθ)2n

)
(x2 + y2)n+1 = −1

4

(
(x+ iy)2n − 2(x2 + y2)n + (x− iy)2n

)
.

We see that this is a polynomial of degree 2n+2 and, since the lowest order
term centered at (0, 0) has degree 2n, (0, 0) is an 2n-tuple multiple point.
Since rotation by π/n rotates the curve onto itself, this rotation takes a
tangent line to another tangent line. After n rotations, each tangent line
has rotated π radians, so it returns to itself. This implies the curve has n
distinct tangent lines, so (0, 0) is an non-ordinary 2n-tuple point.

(d) Proof. Following the hint, we make the two equations from parts (b)
and (c) homogeneous:

(X2 + Y 2)(n+1)/2 =
1

2i
Z((X + iY )n − (X − iY )n)

(X2 + Y 2)n+1 = −1

4
Z2
(
(X + iY )2n − 2(X2 + Y 2)n + (X − iY )2n

)
Mark, finish this.
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3.8. Let T : A2 → A2 be a polynomial map, T (Q) = P .

(a) Show that mQ(F
T ) ≥ mP (F ).

(b) Let T = (T1, T2), and define JQT = (∂Ti/∂Xj(Q)) to be the Jacobian
matrix of T at Q. Show that mQ(F

T ) = mP (F ) if JQT is invertible.

(c) Show that the converse of (b) is false: Let T = (X2, Y ), F = Y − X2,
P = Q = (0, 0).

Solution. Let T : A2 → A2 be a polynomial map, T (Q) = P . Without loss of
generality, we can assume P = Q = (0, 0).

(a) Proof. Let F = Fm + Fm+1 + · · · + Fd be the defining equation for the
curve containing P . Suppose T : A2 → A2 is given by T (X,Y ) =
(T1(X,Y ), T2(X,Y )), where T1 and T2 are polynomials. Then FT =
Fm ◦T +Fm+1 ◦T + · · ·+Fd ◦T . The smallest power of this polynomial is
the smallest power of the composition of Fm and T . Since T (Q) = P , T1
and T2 have degree at least one, so the smallest degree monomial in FT

has degree at least m. So, mQ(F
T ) ≥ mP (F ).

(b) Proof. Mark, I don’t think this proof is correct.

Let JQT = (∂Ti/∂Xj(Q)) to be the Jacobian matrix of T at Q. By the
Chain Rule, we have

[
∂Fm◦T
∂X1

∂Fm◦T
∂X2

]
(Q) =

[
∂Fm

∂T1
(P ) ∂Fm

∂T2
(P )
] ∂T1

∂X1
(Q) ∂T1

∂X2
(Q)

∂T2

∂X1
(Q) ∂T2

∂X2
(Q)


If JQT is invertible, then the matrix[

∂Fm◦T
∂X1

∂Fm◦T
∂X2

]
(Q)

and the matrix [
∂Fm

∂X1

∂Fm

∂X2

]
(P )

have the same rank. This forces mQ(F
T ) = mP (F ).

(c) Proof. Let T = (X2, Y ), F = Y −X2, P = Q = (0, 0). Then FT (X,Y ) =
F (X2, Y ) = Y −X4.

We compute [
∂Ti

∂Xj

]
=

[
2X 0
0 1

]
,

which is singular at (0, 0). However, both curves are nonsingular at (0, 0),
so mQ(F

T ) = mP (F ) = 1.
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3.9. Let F ∈ k[X1, . . . , Xn] define a hypersurface V (F ) ⊂ An. Let P ∈ An.

(a) Define the multiplicity mP (F ) of F at P .

(b) If mP (F ) = 1, define the tangent hyperplane to F at P .

(c) Examine F = X2 +Y 2 −Z2, P = (0, 0, 0). Is it possible to define tangent
hyperplanes at multiple points?

Solution. (a) Let F ∈ k[X1, . . . , Xn] define a hypersurface V (F ) ⊂ An. Let
P = (a1, . . . , an) ∈ An. Write

F (X1, . . . , Xn) =
∑
J

cJ
∏
i

(Xi − ai)
ji .

where J ranges over all n-tuples (j1, . . . , jn) and only finitely many of the
cJ ’s are nonzero. The multiplicity of F at P is the degree of the smallest
nonzero form in this expression.

(b) Proof. Suppose mP (F ) = 1. Then the constant term is zero and the
degree one form is not. For J ’s corresponding to degree one, we just have
jk = 1 for exactly one k and ji = 0 for i ̸= k. So, the lowest degree
nonzero form in the expansion of F has the form∑

k

ck(Xk − ak).

Setting this equal to zero gives the equation of the tangent hyperplane to
the hypersurface V (F ) at P .

(c) Proof. Probably not since the form of lowest degree in three (or more)
variables usually doesn’t factor into linear factors.

3.10. Show that an irreducible plane curve has only a finite number of multiple
points. Is this true for hypersurfaces?

Solution. Proof. Let an irreducible plane curve be defined by F (X,Y ) = 0.
Then F is irreducible and I(V (F )) = (F ). If V (F ) has infinitely many multiple
points, then V (F ) and V (FX) have infinitely many points of intersection. By
Proposition 2 of Section 6 of Chapter 1, F and FX must have a common factor,
and since F is irreducible, F must divide FX . Since the degree of F in X is
larger than the degree of FX in X, this is not possible.1 So, there are only
finitely many points where F and FX are both zero. It follows that V (F ) has
only finitely many multiple points.

In A3(k), the hypersurface defined by the polynomial X2 − Y 2 is the union
of two planes meeting in a line, so this hypersurface has a line of singular points.

1It is possible for F to divides FX if FX ≡ 0. However, if FX ≡ 0, then k has characteristic
p and F is a polynomial in Xp. But then F is not irreducible.
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3.11. Let V ⊂ An be an affine variety, P ∈ V . The tangent space TP (V ) is de-
fined to be {(v1, . . . , vn) ∈ An | for all G ∈ I(V ),

∑
GXi(P )vi = 0}. If V = V (F )

is a hypersurface, F irreducible, show that TP (V ) = {(v1, . . . , vn) |
∑
FXi

(P )vi =
0}. How does the dimension of TP (V ) relate to the multiplicity of F at P?

Solution. Proof. Let V = V (F ) be a hypersurface with F irreducible. Fix
P ∈ V . First, we have I(V ) = (F ) by Corollary 3 to the Nullstellensatz. Let
G ∈ I(V ). Then G = FH. Then

GXi = FXiH + FHXi

GXi(P ) = FXi(P )H(P ) + F (P )HXi(P )

= FXi(P )H(P )∑
GXi

(P )vi = 0 ⇔ H(P )
∑

FXi
(P )vi = 0.

Certainly it’s possible for H(P ) to be zero, but there certainly exist H so that
H(P ) is not zero. Hence,∑

GXi
(P )vi = 0 ⇔

∑
FXi

(P )vi = 0

So, we see the tangent space TP (V ) is given by

{(v1, . . . , vn) ∈ An |
∑

FXi
(P )vi = 0}.

From this, if P is a simple point of V , then TP (V ) is a hyperplane in An, so
dim (TP (V )) = n− 1. On the other hand, if P is a singular point of V , then the
form of degree 1 in F vanishes, so FXi(P ) = 0 for all 1 ≤ i ≤ n. In this case,
TP (V ) is all of An, so dim (TP (V )) = n.

3.2 Multiplicities and Local Rings

Problems

3.12. A simple point P on a curve F is called a flex if ordFP (L) ≥ 3,where L is
the tangent to F at P . The flex is called ordinary if ordP (L) = 3, a higher flex
otherwise.

(a) Let F = Y −Xn. For which n does F have a flex at P = (0, 0), and what
kind of flex?

(b) Suppose P = (0, 0), L = Y is the tangent line, F = Y + aX2 + · · · . Show
that P is a flex on F if and only if a = 0. Give a simple criterion for
calculating ordFP (Y ), and therefore for determining if P is a higher flex.
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Solution. (a) Proof. For F = Y −Xn with n ≥ 2, the tangent line is Y = 0.
Since P = (0, 0) is a smooth point, we can choose any line through P not
tangent to V (F ) at P as the uniformizing parameter. We choose X. Then
ordFP (L) = n. So, P is an ordinary flex if n = 3 and a higher flex if n ≥ 4.

(b) Proof. Suppose P = (0, 0), L = Y is the tangent line, F = Y +aX2+ · · · .
Since ∂F/∂Y = 1 ̸= 0, the Implicit Function Theorem means X is a local
parameter. The quadratic term here is aX2 + bXY + cY 2. Since L = Y
is tangent to the curve, the order of contact of this line with the curve
is at least two, so the valuation of Y is at least two. It follows that the
valuation of XY is at least three and the valuation of Y 2 is at least four.
Hence, P = (0, 0) is flex if and only if a = 0.

3.13. With the notation of Theorem 2 in Chapter 3, and m = mP (F ), show
that dimk

(
mn/mn+1

)
= n+ 1 for 0 ≤ n < mP (F ). In particular, P is a simple

point if and only if dimk

(
m/m2

)
= 1; otherwise dimk

(
m/m2

)
= 2.

Solution. Proof. If 0 ≤ n < mP (F ), then F ∈ In+1 ⊆ In, so

O/mn ∼= OP (F )/I
nOP (F ) ∼= OP (A2)/(In, F )OP (A2) ∼= k[X,Y ]/(In, F ) ∼= k[X,Y ]/(In)

and this vector space over k has dimension n(n+ 1)/2.
Using the exact sequence

0 → mn/mn+1 → O/mn+1 → O/mn,

we see that

dim
(
mn/mn+1

)
= dim

(
O/mn+1

)
− dim (O/mn)

=
(n+ 2)(n+ 1)

2
− n(n+ 1)

2
= n+ 1.

3.14. Let V = V (X2 − Y 3, Y 2 − Z3) ⊂ A3, P = (0, 0, 0), m = mP (V ). Show
that dimk

(
m/m2

)
= 3. (See Problem 40 in Chapter 1.)

Solution. Proof. By Problem 40(a) in Chapter 1, every element of Γ(V ) can
be written as the residue of A+XB+Y C+XYD where A,B,C,D ∈ k[Z].

Mark, finish this one.

3.15. (a) Let O = OP (A2) for some P ∈ A2, m = mP (A2). Calculate χ(n) =
dimk (O/mn).
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(b) Let O = OP (Ar(k)). Show that χ(n) is a polynomial of degree r in n,
with leading coefficient 1/r!. (See Problem 2.36.)

Solution. (a) Proof. From the work for Theorem 2, we have

O/mn ∼= k[X,Y ]/In

so

χ(n) = dimk (O/m
n) = dimk (k[X,Y ]/In) =

n(n+ 1)

2
=

1

2
n2 +

1

2
n.

(b) Proof. From the work for Theorem 2,

χ(n) = dimk (O/m
n) = dimk (k[X1, . . . , Xr]/I

n)

=

(
n+ r − 1

r

)
=

(n+ r − 1)(n+ r − 2) · · · (n+ 1)n

r!
.

From this we see that χ(n) is a polynomial in n of degree r with leading
coefficient 1/r!.

3.16. Let F ∈ k[X1, . . . , Xr] define a hypersurface in Ar. Write F = Fm +
Fm+1+ . . . , and let m = mP (F ) where P = (0, . . . , 0). Suppose F is irreducible,
and let O = OP (V (F )), m its maximal ideal. Show that χ(n) = dimk (O/mn)
is a polynomial of degree r − 1 for sufficiently large n, and that the leading
coefficient of χ is mP (F )/(r − 1)!.

Can you find a definition for the multiplicity of a local ring which makes
sense in all the cases you know?

Solution. Proof. From the proof of Theorem 2, we have an analogous result

O/mn ∼= k[X1, . . . , Xr]/(I
n, F ).

Using the analogous exact sequence to the one used in the proof of Theorem 2,

0 → k[X1, . . . , Xr]/I
n−m ψ→ k[X1, . . . , Xr]/I

n ϕ→ k[X1, . . . , Xr]/(I
n, F ) → 0,

we see that

χ(n) = dimk (k[X1, . . . , Xr]/(I
n, F ))

= dimk (k[X1, . . . , Xr]/I
n)− dimk

(
k[X1, . . . , Xr]/I

n−m)
=

(
n+ r − 1

r

)
−
(
n−m+ r − 1

r

)
.
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In this expression, the nr cancels. The next term is the nr−1 term, so this is a
polynomial of degree r − 1 in n. The coefficient of nr−1 is

1 + 2 + · · ·+ (r − 1)

r!
− m+ (m+ 1) + (m+ 2) + · · ·+ (m+ r − 1)

r!

=
1 + 2 + · · ·+ (r − 1)

r!
− −rm+ (1 + 2 + (r − 1))

r!

=
rm

r!

=
m

(r − 1)!
,

proving the result.

3.3 Intersection Numbers

Problems

3.17. Find the intersection numbers of various pairs of curves from the examples
of Section 3.1, at the point P = (0, 0).

Solution. A: Y −X2 B: Y 2 −X3 +X C: Y 2 −X3 D: Y 2 −X3 −X2

(a) A ∩B at P (0, 0)

I(P,A ∩B) = dimk

(
OP (A2)/(A,B)

)
= dimk

(
OP (A2)/(Y −X2, Y 2 −X3 +X)

)
.

The curves A and B are nonsingular and meet transversely at (0, 0). So,
I(A ∩B,P ) = mF (P )mG(P ) = 1.

(b) A ∩ C at P (0, 0)

I(P,A ∩ C) = dimk

(
OP (A2)/(A,B)

)
= dimk

(
OP (A2)/(Y −X2, Y 2 −X3)

)
The curve C is singular at (0, 0) and the two curves share the tangent Y .
We’ll replace C by E = C − Y A = X2(Y −X). Then

I(A ∩ C,P ) = I(A ∩ E,P ) = 2I(A ∩X,P ) + I(A ∩ (Y −X), P ) = 3.

(c) A ∩ C at Q(1, 1)

I(Q,A ∩ C) = dimk

(
OQ(A2)/(A,B)

)
= dimk

(
OQ(A2)/(Y −X2, Y 2 −X3)

)
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(d) C ∩D at P (0, 0)

I(P,C ∩D) = dimk

(
OP (A2)/(A,B)

)
= dimk

(
OP (A2)/(Y 2 −X3, Y 2 −X3 −X2)

)

3.18. Give a proof of Property 8 which use only Properties 1–7.

Solution. Proof.

3.19. A line L is tangent to a curve F at a point P if and only if
I(P, F ∩ L) > mP (F ).

Solution. Proof.

I(P, F ∩ L) = dimk

(
OP (A2)/(F,L)

)

3.20. If P is a simple point on F , then I(P, F ∩ (G + H)) ≥ min(I(P, F ∩
G), I(P, F ∩ H)). Give an example to show that this may be false if P is not
simple on F .

Solution. Proof. Suppose I(P, F ∩G) = m and I(P, F ∩H) = n. Then

I(P, F ∩G)) = dimk

(
OP (A2)/(F,G)

)
= m

and

I(P, F ∩H) = dimk

(
OP (A2)/(F,H)

)
= n

I(P, F ∩ (G+H)) = dimk

(
OP (A2)/(F,G+H)

)

3.21. Let F be an affine plane curve. Let L be a line which is not a component
of F . Suppose L = {(a+ tb, c+ td) | t ∈ k}. Define G(T ) = F (a+ Tb, c+ Td).
Factor G(T ) = ϵ

∏
(T − λi)

ei , λi distinct. Show that there is a natural one-to-
one correspondence between the λi and the points Pi ∈ L∩F . Show that under
this correspondence, I(Pi, L ∩ F ) = ei. In particular,

∑
I(P,L ∩ F ) ≤ deg(F ).
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Solution. Proof.

3.22. Suppose P is a double point on a curve F , and suppose F has only one
tangent L at P .

(a) Show that I(P, F ∩ L) ≥ 3. The curve F is said to have a(n ordinary)
cusp at P if I(P, F ∩ L) = 3.

(b) Suppose P = (0, 0), and L = Y . Show that P is a cusp if and only if
FXXX(P ) ̸= 0. Give some examples.

(c) Show that if P is a cusp on F , then F has only one component passing
through P .

Solution. Suppose P is a double point on a curve F , and suppose F has only
one tangent L at P .

(a) Proof. We compute

I(P, F ∩ L)) = dimk

(
OP (A2)/(F,L)

)
=

(b) Proof. Suppose P = (0, 0), and L = Y . We compute

I(P, F ∩ Y )) = dimk

(
OP (A2)/(F, Y )

)
=

(c) Proof. Suppose P = (0, 0), L = Y , and P is a cusp on F . Assume more
than one component of F passes through P . We compute

I(P, F ∩ L)) = dimk

(
OP (A2)/(F,L)

)
=

3.23. A point P on a curve F is called a hypercusp if mP (F ) > 1, F has only
one tangent line L at P , and I(P,L ∩ F ) = mP (F ) + 1. Generalize the results
of the preceding problem to this case.

Solution. A point P on a curve F is called a hypercusp if mP (F ) > 1, F has
only one tangent line L at P , and I(P,L ∩ F ) = mP (F ) + 1.

Proof.
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3.24. The object of this problem is to find a property of the local ring OP (F )
that determines whether or not P is an ordinary multiple point on F .

Let F be an irreducible plane curve, P = (0, 0), m = mP (F ) > 1. Let
m = mP (F ). For G ∈ k[X,Y ], denote its residue in Γ(F ) by g; and for g ∈ m,
denote its residue in m/m2 by g.

(a) Show that the map from {forms of degree 1 in k[X,Y ]} to m/m2 taking
aX+bY to ax+ by is an isomorphism of vector spaces (See Problem 3.13).

(b) Suppose P is an ordinary multiple point, with tangents L1, . . . , Lm. Show
that I(P, F ∩ Li) > m and ℓi ̸= λℓj for all i ̸= j, all λ ∈ k.

(c) Suppose there are G1, . . . , Gm ∈ k[X,Y ] such that I(P, F ∩Gi) > m and
gi ̸= λgj for all i ̸= j, and all λ ∈ k. Show that P is an ordinary multiple

point on F . (Hint: Write Gi = Li+ higher terms. ℓi = gi ̸= 0, and Li
is the tangent to Gi, so Li is tangent to F by Property ?? of intersection
numbers. Thus F has m tangents at P .)

(d) Show that P is an ordinary multiple point on F if and only if there are
g1, . . . , gm ∈ m such that gi ̸= λgj for all i ̸= j, λ ∈ k, and dim (OP (F )/(gi)) >
m.

Solution. (a) Proof.

(b) Proof.

(c) Proof.

(d) Proof.
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Projective Varieties

4.1 Projective Space

Problems

4.1. What points in P2 do not belong to two of the three sets U1, U2, U3?

Solution. Proof. The complement of the union of U1 and U2 is the inter-
section the complements. The complement of U1 is {[0 : Y : Z] : Y,Z ∈
k, one not zero} and the complement of U2 is {[X : 0 : Z] : X,Z ∈ k, one not zero}.
The intersection of these two complements is {[0 : 0 : Z] : X ∈ k, Z ̸= 0} = {[0 :
0 : 1]}. The other two are similar.

4.2. Let F ∈ k[X1, . . . , Xn+1] (k infinite). Write F =
∑
Fi, Fi a form of de-

gree i. Let P ∈ Pn(k), and suppose F (x1, . . . , xn+1) = 0 for every choice of ho-
mogeneous coordinates (x1, . . . , xn+1) for P . Show that each Fi(x1, . . . , xn+1) =
0 for all homogeneous coordinates for P . (Hint: ConsiderG(λ) = F (λx1, . . . , λxn+1) =∑
λiFi(x1, . . . , xn+1) for fixed (x1, . . . , xn+1).)

Solution. Proof. Let F ∈ k[X1, . . . , Xn+1] (k infinite). Write F =
∑
Fi, Fi a

form of degree i. Let P ∈ Pn(k), and suppose F (x1, . . . , xn+1) = 0 for every
choice of homogeneous coordinates (x1, . . . , xn+1) for P .

ConsiderG(λ) = F (λx1, . . . , λxn+1) =
∑
λiFi(x1, . . . , xn+1) for fixed (x1, . . . , xn+1).

This a polynomial in λ with infinitely many roots, so the polynomial is iden-
tically zero. This says that Fi(x1, . . . , xn+1) = 0 for all i. Since (x1, . . . , xn+1)
are arbitrary homogeneous coordinates, Fi(x1, . . . , xn+1) = 0 for all i and for
all homogeneous coordinates (x1, . . . , xn+1) for P .
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4.3. (a) Show that the definitions of this section carry over without change
to the case where k is an arbitrary field.

(b) If k0 is a subfield of k, show that Pn(k0) may be identified with a subset
of Pn(k).

Solution. (a) Proof. I don’t understand the question since k is an arbitrary
field to start with.

(b) Proof. Let k0 be a subfield of k. Then

Pn(k0) = {[x0 : · · · : xn] |xi ∈ k0, one nonzero}

Since k0 ⊂ k, the above set is a subset of

Pn(k) = {[x0 : · · · : xn] |xi ∈ k, one nonzero}

4.2 Projective Algebraic Sets

Problems

4.4. Let I be a homogeneous ideal in k[X1, . . . , Xn+1]. Show that I is prime if
and only if the following condition is satisfied: for any forms F,G ∈ k[X1, . . . , Xn+1],
if FG ∈ I, then F ∈ I or G ∈ I.

Solution. Proof. Let I be a homogeneous ideal in k[X1, . . . , Xn+1].

(⇐) Suppose I is a homogeneous prime ideal. Suppose F , G are forms in
k[X1, . . . , Xn+1] and FG ∈ I. Since I is prime, either F or G is in I.

(⇒) Suppose for any forms F,G ∈ k[X1, . . . , Xn+1], if FG ∈ I, then F ∈ I
or G ∈ I.

Suppose P , Q ∈ k[X1, . . . , Xn+1] with PQ ∈ I. Write P = Pi+ · · ·+Pd and
Q = Qj + · · ·+Qe be P and Q written as a sum of forms with Pi, Qj ̸= 0.

Assume neither P nor Q lies in I. Let i ≤ k ≤ d be the largest integer with
Pk not in I. Let j ≤ ℓ ≤ e be the smallest integer with Qℓ not in I. Then the
form of degree k + ℓ in PQ is

PkQℓ + Pk+1Qℓ−1 + Pk+2Qℓ−2 + · · ·

Since PQ ∈ I and I is homogeneous, this element is in I, and by the choice
of k and ℓ, PkQℓ ∈ I. By hypothesis then, Pk or Qℓ is in I. This contradicts
the choice of k and ℓ. So, either P or Q lies in I. That is, I is a prime ideal.
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4.5. If I is a homogeneous ideal, show that Rad(I) is also homogeneous.

Solution. Proof. Let I be a homogeneous ideal. Suppose P ∈ Rad(I). Write
P = P0 + · · ·+Pd as a sum of forms. Since P ∈ Rad(I), Pn ∈ I for some i ∈ Z.
The highest powered form of Pn is Pnd and since I is homogeneous, Pnd ∈ I.
But then Pd ∈ Rad(I). Subtracting Pd from P , we have P −Pd ∈ Rad(I). The
result follows by induction.

4.6. State and prove the projective analogues of properties (1)–(10) of Chap-
ter 1, Sections 2 and 3.

(1) If I is the homogeneous ideal in k[X1, . . . , Xn+1] generated by S, then
V (S) = V (I); so every algebraic set is equal to V (I) for some ideal I.

(2) If {Iα} is any collection of homogeneous ideals, then V (
⋃
α Iα) =

⋂
α V (Iα);

so the intersection of any collection of algebraic sets is an algebraic set.

(3) If I ⊂ J , then V (I) ⊃ V (J).

(4) V (FG) = V (F ) ∪ V (G) for any polynomials F , G.

V (I) ∪ V (J) = V ({FG |F ∈ I,G ∈ J});

so any finite union of algebraic sets is an algebraic set.

(5) V (0) = An(k); V (1) = ∅; V (X1 − a1, . . . , Xn − an) = {(a1, . . . , an)} for
ai ∈ k. So any finite subset of An(k) is an algebraic set.

(6) If X ⊂ Y then I(X) ⊃ I(Y ).

(7) I(∅) = k[X1, . . . , Xn]. I(An(k)) = (0) if k is an infinite field.
I({(a1, . . . , an)}) = (X1 − a1, . . . , Xn − an) for a1, . . . , an ∈ k.

(8) I(V (S)) ⊃ S for any set S of polynomials; V (I(X)) ⊃ X for any set X of
points.

(9) V (I(V (S))) = V (S) for any set S of polynomials, and I(V (I(X))) = I(X)
for any set X of points. So if V is an algebraic set, V = V (I(V )), and if
I is the ideal of an algebraic set, I = I(V (I)).

Solution. Proof. (1) Since S ⊂ I, we have V (I) ⊂ V (S). However, every
element of I is a linear combination of elements of S, so if every element
of S vanishes at P , so does every element of I.

(2) If {Iα} is any collection of homogeneous ideals, then Iα ⊂
⋃
α Iα for all α,

so V (
⋃
α Iα) ⊂

⋂
α V (Iα).

If P ∈ V (Iα) for all α, then every element of Iα vanishes at P for every
α. But this says that P ∈ V (

⋃
α Iα). Hence,

⋂
α V (Iα) ⊂ V (

⋃
α Iα).

So, V (
⋃
α Iα) =

⋂
α V (Iα).
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(3) Suppose I ⊂ J and P ∈ V (J). Since P ∈ V (J), every element of J
vanishes at P . However, I ⊂ J , so every element of I vanishes at P . But
this says P ∈ V (I). Hence, V (J) ⊂ V (I).

(4) Let F,G ∈ k[x1, . . . , xn+1]. For P ∈ V (FG), the product F (P )G(P ) = 0.
Hence, either F (P ) = 0 or G(P ) = 0, so that P ∈ V (F ) or P ∈ V (G).
Thus, we see that V (FG) ⊂ V (F ) ∪ V (G).

Suppose P ∈ V (F ) ∪ V (G). Then F (P ) = 0 or G(P ) = 0, hence
F (P )G(P ) = 0, and P ∈ V (FG). Thus, we see that V (F ) ∪ V (G) ⊂
V (FG). Hence V (FG) = V (F ) ∪ V (G).

Let I, J be homogeneous ideals in k[x1, . . . , xn+1]. First, IJ ⊂ I and
IJ ⊂ J , so IJ ⊂ I ∩ J . Hence

V (I ∩ J) = V (I) ∪ V (J) ⊂ V (IJ).

Let P ∈ V (IJ). If P ∈ V (I), we are done, so assume P ̸∈ V (I). Then
there exists F ∈ I so that F (P ) ̸= 0. But since P ∈ V (IJ), it follows
that F (P )G(P ) = 0 for all G ∈ J , and since F (P ) ̸= 0, we must have
that G(P ) = 0 for all G ∈ J , whereby P ∈ V (J). Thus, we see that
P ∈ V (IJ) ⊂ V (I) ∪ V (J). It follows that V (IJ) = V (I) ∪ V (J).

So, any intersection of algebraic sets is an algebraic set and any finite
union of algebraic sets is an algebraic set.

(5) (5) is clear.

(6) Suppose P ∈ X ⊂ Y and F ∈ I(Y ). Since P ∈ Y , F (P ) = 0, and this
is true for all F ∈ I(Y ). Hence, F vanishes on X, so F ∈ I(X). Hence,
I(Y ) ⊂ I(X).

4.7. Show that each irreducible component of a cone is also a cone.

Solution. Proof.

4.8. Let V = P1, Γh(V ) = k[X,Y ]. Let t = X/Y ∈ k(V ), and show that
k(V ) = k(t). Show that there is a natural one-to-one correspondence between
the points of P1 and the DVR’s with quotient field k(V ) which contain k (See
Problem 2.2.27); which DVR corresponds to the point at infinity?

Solution. Proof. Define a homomorphism h : k(V ) → k(t) as follows. For
f = P/Q ∈ k(V ) with degP = degQ = d, divide the numerator and denomi-
nator by Xd and replace Y/X by t. This gives a homomorphism. The inverse
homomorphism is given by taking q(t) ∈ k(t), substituting Y/X for t and mul-
tiplying the numerator and denominator by a high enough power of X to clear
all denominators in the complex fraction. This shows k(V ) = k(t).
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From Problem 2.27, we know all the DVRs in k(t) are Oa(V ) with uni-
formizing parameter t = X − a for a ∈ k and O∞ with uniformizing parameter
t = 1/X. The one-to-one correspondence is given as follows. For [a : 1] ∈ P1,
assign the DVR Oa(V ). Then assign the remain point of P1, [1 : 0], the DVR
O∞.

4.9. Let I be a homogeneous ideal in k[X1, . . . , Xn+1], and

Γ = k[X1, . . . , Xn+1]/I.

Show that the forms of degree d in Γ form a finite-dimensional vector space over
k.

Solution. Proof. The set of monomials of degree d in n + 1 variables forms a

finite dimensional vector space over k with basis Xi1
1 X

i2
2 · · ·Xin

n X
d−

∑
j ij

n+1 . This

vector space has dimension

(
n+ d

d

)
. The natural quotient homomorphism

k[X1, . . . , Xn+1] → k[X1, . . . , Xn+1]/I = Γ.

shows that Γ is a vector space over k of dimension at most

(
n+ d

d

)
.

4.10. Let R = k[X,Y, Z], F ∈ R an irreducible form of degree n, V = V (F ) ⊂
P2, Γ = Γh(V ).

(a) Construct an exact sequence 0 → R
ψ→ R

φ→ Γ → 0, where ψ is multipli-
cation by F .

(b) Show that

dimk {forms of degree d in Γ} = dn− 1

2
n(n− 3)

if d > n.

Solution. Let R = k[X,Y, Z], F ∈ R an irreducible form of degree n, V =
V (F ) ⊂ P2, Γ = Γh(V ).

(a) Proof. Define ψ : R → R by ψ(G) = FG and let φ : R → Γ to be
the natural quotient map. It’s easy to see that both ψ and φ are ring
homomorphisms. Since R is an integral domain and F ̸= 0, ψ is injective.
The map φ is surjective since every quotient map is surjective. Since the
image of ψ is contained in the ideal (F ), Imψ ⊂ Ker(φ). If ϕ(G) = 0,
then G ∈ (F ), so that there exists H ∈ R such that G = FH. Then
G = ψ(H). Thus, Ker(ϕ) ⊂ Imψ. This shows that Ker(ϕ) = Imψ, so

that the sequence 0 → R
ψ→ R

φ→ Γ → 0, is exact.
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(b) Proof. Let Γd denote the forms of degree d in Γ. Then the exact sequence

from part (a), yields 0 → Rd−n
ψ→ Rd

φ→ Γd → 0, where Rm are the forms

of degree m in R. Now, the dimension of Rm is

(
m+ 2

2

)
. So

dim (Γd) = dim (Rd)− dim (Rd−n) =

(
d+ 2

2

)
−
(
d− n+ 2

2

)
= dn− 1

2
n(n− 3).

4.11. A set V ⊂ Pn(k) is called a linear subvariety of Pn(k) if V = V (H1, . . . ,Hr),
where each Hi is a form of degree 1.

(a) Show that if T is a projective change of coordinates, then V T = T−1(V )
is also a linear subvariety.

(b) Show that there is a projective change of coordinates T of Pn such that
V T = V (Xm+2, . . . , Xn+1), so V is a variety.

(c) Show that the m which appears in part (b) is independent of the choice
of T . It is called the dimension of V (m = −1 if V = ∅).

Solution. If V is an algebraic set in Pn, then T−1(V ) is also an algebraic set
in Pn; we write V T for T−1(V ). If V = V (F1, . . . , Fr), and T = (T1, . . . , Tn+1),
Ti forms of degree 1, then V T = V (FT1 , . . . , F

T
r ), where FTi = Fi(T1, . . . , Tn+1).

(a) Proof. Let V ⊂ Pn(k) is be a linear subvariety of Pn(k) given by
V = V (H1, . . . ,Hr), where each Hi is a form of degree 1. Let T :
Pn → Pn be a projective change of coordinates. Then T is given by
T = (T1, . . . , Tn+1) where Ti are forms of degree 1. Then V T = T−1V is
given by (HT

1 , . . . ,H
T
n+1). Since the composition of two forms of degree 1

is a form of degree 1, V T is a linear subvariety.

(b) Proof.

(c) Proof.

4.12. Let H1, . . . ,Hm be hyperplanes in Pn, m ≤ n. Show that H1 ∩H2 ∩ · · · ∩
Hm ̸= ∅.

Solution. Proof. A hyperplane in Pn corresponds to a n-dimensional vector
space in An+1 by considering homogeneous coordinates as affine coordinates.
But the intersection of m ≤ n, n-dimensional vector spaces in An+1 has dimen-
sion at least 1, so the H1 ∩H2 ∩ · · · ∩Hm ̸= ∅.
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4.13. Let P = [a1 : · · · : an+1], Q = [b1 : · · · : bn+1] be distinct points of Pn.
The line L through P and Q is defined by

L = {[λa1 + µb1 : · · · : λan+1 + µbn+1] |λ, µ ∈ k, λ ̸= 0 or µ ̸= 0}

Prove the projective analogue of Problem 2.15.

Solution. Proof.

4.14. Let P1, P2, P3 (resp. Q1, Q2, Q3) be three points in P2 not lying on a
line. Show that there is a projective change of coordinates T : P2 → P2 such
that T (Pi) = Qi, i = 1, 2, 3. Extend this to n + 1 points in Pn, not lying in a
hyperplane.

Solution. Proof.

4.15. Show that any two distinct lines in P2 intersect in one point.

Solution. Proof.

4.16. Let L1, L2, L3 (resp. M1, M2, M3) be lines in P2(k) that do not all
pass through a point. Show that there is a projective change of coordinates
T : P2 → P2 such that T (Li) = Mi. (Hint: Let Pi = Lj ∩ Lk, Qi = Mj ∩Mk,
i, j, k distinct, and apply Problem 4.14.)

Solution. Proof.

4.17. Let z be a rational function on a projective variety V . Show that the
pole set of z is an algebraic subset of V .

Solution. Proof.

4.18. Let H = V (
∑
aiXi) be a hyperplane in Pn. Note that (a1, . . . , an+1) is

determined by H up to a constant.

(a) Show that assigning [a1 : · · · : an+1] ∈ Pn to H sets up a natural one-to-
one correspondence between {hyperplanes in Pn} and Pn. If P ∈ Pn, let
P ∗ be the corresponding hyperplane; if H is a hyperplane, H∗ denotes the
corresponding point.

(b) Show that P ∗∗ = P and H∗∗ = H. Show that P ∈ H if and only if
H∗ ∈ P ∗.

This is the well-know duality of projective space.

Solution. (a) Proof.

(b) Proof.
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4.3 Affine and Projective Varieties

Problems

4.19. If I = (F ) is the ideal of an affine hypersurface, show that I∗ = (F ∗).

Solution. Proof.

4.20. Let V = V (Y −X2, Z −X3) ⊂ A3. Prove:

(a) I(V ) = (Y −X2, Z −X3).

(b) ZW −XY ∈ I(V )∗ ⊂ k[X,Y, Z,W ], but ZW −XY ̸∈ ((Y −X2)∗, (Z −
X3)∗). So if I(V ) = (F1, . . . , Fr), it does not follow that I(V )∗ = (F ∗

1 , . . . , F
∗
r ).

Solution. (a) Proof.

(b) Proof.

4.21. Show that if V ⊂ W ⊂ Pn are varieties, and V is a hypersurface, then
W = V or W = Pn (See Problem 1.1.39).

Solution. Proof.

4.22. Suppose V is a variety in Pn and V ⊃ H∞. Show that V = Pn or
V = H∞. If V = Pn, V∗ = An, while if V = H∞, V∗ = ∅.

Solution. Proof.

4.23. Find all subvarieties in P1 and in P2.

4.24. Let P = [0 : 1 : 0] ∈ P2(k). Show that the lines through P consist of the
following:

(a) The “vertical” lines Lλ = V (X − λZ) = {[λ : t : 1] | t ∈ k} ∪ {P}.

(b) The line at infinity L∞ = V (Z) = ({[x : y : 0] |x, y ∈ k}.

Solution. (a) Proof.

(b) Proof.

4.25. Let P = [x : y : z] ∈ P2.

(a) Show that {(a, b, c) ∈ A3 | ax+ by + cz = 0} is a hyperplane in A3.

(b) Show that for any finite set of points in P2, there is a line not passing
through any of them.

Solution. (a) Proof.

(b) Proof.
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4.4 Multiprojective Space

Problems

4.26. (a) Define maps φi,j : An+m → Ui × Uj ⊂ Pn × Pm. Using φn+1,m+1,
define the “biprojective closure” of an algebraic set in An+m. Prove an
analogue of Proposition ?? of Section 4.3.

(b) Generalize part (a) to maps

φ : An1 × · · · × Anr × Am → Pn1 × · · · × Pnr × Am.

Show that this sets up a correspondence between {nonempty affine vari-
eties in An1+···+m} and {varieties in Pn1 × · · · ×Pnr ×Am which intersect
Un1+1×· · ·×Am}. Show that this correspondence preserves function fields
and local rings.

Solution. (a) Proof.

(b) Proof.

4.27. Show that the pole set of a rational function on a variety in any multispace
is an algebraic subset.

Solution. Proof.

4.28. For simplicity of notation, in this problem we let X0, . . . , Xn be coordi-
nates for Pn, Y0, . . . , Ym coordinates for Pm, and T00, T01, . . . , T0m, T10, . . . , Tnm
coordinates for PN , where N = (n+ 1)(m+ 1)− 1 = n+m+ nm.

Define S : Pn × Pm → PN as follows:

S([x0 : · · · : xn], [y0 : · · · : ym]) = [x0y0 : x0y1 : · · · : xnym)].

S is called the Segre imbedding of Pn × Pm in Pn+m+nm.

(a) Show that S is a well-defined, one-to-one mapping.

(b) Show that if W is an algebraic subset of PN , then S−1(W ) is an algebraic
subset of Pn × Pm.

(c) Let V = V ({TijTkℓ − TiℓTkj | i, k = 0, . . . , n; j, ℓ = 0, . . . ,m} ⊂ PN . Show
that S(Pn×Pm) = V . In fact, S(Ui×Uj) = V ∩Uij , where Uij = {[t] | tij ̸=
0}.

(d) Show that V is a variety.
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Solution. (a) Proof.

(b) Proof.

(c) Proof.

(d) Proof.
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Chapter 5

Projective Plane Curves

5.1 Definitions

Problems

5.1. Let F be a projective plane curve. Show that a point P is a multiple point
of F if and only if F (P ) = FX(P ) = FY (P ) = FZ(P ) = 0.

Solution. Proof.

5.2. Show that the following curves are irreducible; find their multiple point,
and the multiplicities and tangents at the multiple points.

(a) XY 4 + Y Z4 +XZ4.

(b) X2Y 3 +X2Z3 + Y 2Z3.

(c) Y 2Z −X(X − Z)(X − λZ), λ ∈ k.

(d) Xn + Y n + Zn, n > 0.

Solution. (a) Proof.

(b) Proof.

(c) Proof.

(d) Proof.

5.3. Find all the points of intersection of the following pairs of curves, and the
intersection numbers at these points:
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(a) Y 2Z −X(X − 2Z)(X + Z) and Y 2 +X2 − 2XZ.

(b) (X2 + Y 2)Z +X3 + Y 3 and X3 + Y 3 − 2XY Z.

(c) Y 5 −X(Y 2 −XZ)2 and Y 4 + Y 3Z −X2Z2.

(d) (X2 + Y 2)2 + 3X2Y Z − Y 3Z and (X2 + Y 2)3 − 4X2Y 2Z2.

Solution. (a) Proof.

(b) Proof.

(c) Proof.

(d) Proof.

5.4. Let P be a simple point on F . Show that the tangent line to F at P is
FX(P )X + FY (P )Y + FZ(P )Z = 0.

Solution. Proof.

5.5. Let P = [0 : 1 : 0], F a curve of degree n, F =
∑
Fi(X,Z)Y

n−i, Fi a form
of degree i. Show that mP (F ) is the smallest m such that Fm ̸= 0, and the
factors of Fm determine the tangents to F at P .

Solution. Proof.

5.6. For any F , P ∈ F , show that mP (FX) ≥ mP (F )− 1.

Solution. Proof.

5.7. Show that two plane curves with no common components intersect in a
finite number of points.

Solution. Proof.

5.8. Let F be an irreducible curve.

(a) Show that FX , FY , or FZ ̸= 0.

(b) Show that F has only a finite number of multiple points.

Solution. (a) Proof.

(b) Proof.
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5.9. (a) Let F be an irreducible conic, P = [0 : 1 : 0] a simple point on F ,
and Z = 0 the tangent line to F at P . Show that F = aY Z − bX2 −
cXZ − dZ2, a, b ̸= 0. Find a projective change of coordinates T so that
FT = Y Z − X2 − c′XZ − d′Z2. Find T ′ so that (FT )T

′
= Y Z − X2.

(T ′ = (X,Y + c′X + d′Z,Z)).

(b) Show that, up to projective equivalence, there is only one irreducible conic.
Any irreducible conic is nonsingular.

Solution. (a) Proof.

(b) Proof.

5.10. Let F be an irreducible cubic: P = [0 : 0 : 1] a cusp on F , Y = 0 the
tangent line to F at P . Show that F = aY 2Z − bX3 − cX2Y − dXY 2 − eY 3.
Find projective changes of coordinates (i) to make a = b = 1 (ii) to make c = 0
(change X to X − c

3Y ) (iii) to make d = e = 0 (Z to Z + dX + eY ).
Up to projective equivalence, there is only one irreducible cubic with a cusp:

Y 2Z = X3. It has no other singularities.

Solution. Proof.

5.11. Up to projective equivalence, there is only one irreducible cubic with a
node: XY Z = X3 + Y 3. It has no other singularities.

Solution. Proof.

5.12. (a) Assume [0 : 1 : 0] /∈ F , F a curve of degree n. Show that∑
P I(P, F ∩X) = n.

(b) Show that if F is a curve of degree n, L a line not contained in F , then∑
I(P, F ∩ L) = n.

Solution. (a) Proof.

(b) Proof.

5.13. Prove that an irreducible cubic is either nonsingular or has at most one
double point (a node or a cusp). (Hint: Use Problem 5.12, where L is a line
through two multiple points; or use Problems 5.10 and 5.11.)

Solution. Proof.
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5.14. Let P1, . . . , Pn ∈ P2. Show that there are an infinite number of lines
passing through P1, but not through P2, . . . , Pn. If P1 is a simple point on F ,
we may take these lines transversal to F at P1.

Solution. Proof.

5.15. Let C be an irreducible projective plane curve, P1, . . . , Pn simple points
on C, m1, . . . ,mn integers. Show that there is a z ∈ k(C) with ordCPi

(z) = mi

for i = 1, . . . n. (Hint: Take lines Li as in Problem 5.14 for Pi, and a line L0

not through any Pj , and let z =
∏
Lmi
i L

−
∑
mi

0 .)

Solution. Proof.

5.16. Let F be an irreducible curve in P2. Suppose I(P, F ∩ Z) = 1, and
P ̸= [1 : 0 : 0]. Show that FX(P ) ̸= 0. (Hint: If not, use Euler’s Theorem to
show that FY (P ) = 0; but Z is not tangent to F at P .)

Solution. Proof.

5.2 Linear Systems of Curves

Problems

5.17. Let P1, P2, P3, P4 ∈ P2. Let V be the linear system of conics passing
through these points. Show that dim (V ) = 2 if P1, . . . , P4 lie on a line, and
dim (V ) = 1 otherwise.

Solution. Proof.

5.18. Show that there is only one conic passing through the five points [0 : 0 : 1],
[0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 1], and [1 : 2 : 3]; show that is is nonsingular.

Solution. Proof.

5.19. Consider the nine points [0 : 0 : 1], [0 : 1 : 1], [1 : 0 : 1], [1 : 1 : 1],
[0 : 2 : 1], [2 : 0 : 1], [1 : 2 : 1], [2 : 1 : 1], and [2 : 2 : 1] ∈ P2 (Sketch). Show that
there are an infinite number of cubics passing through these points.

Solution. Proof.
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5.3 Bézout’s Theorem

Problems

5.20. Check your answers of Problem 5.3 with Bézout’s Theorem.

Solution. Proof.

5.21. Show that every nonsingular projective plane curve is irreducible. Is this
true for affine curves?

Solution. Proof.

5.22. Let F be an irreducible curve of degree n. Assume FX ̸= 0. Apply
Corollary ?? to F and FX , and conclude that

∑
mP (F )(mP (F )−1) ≤ n(n−1).

In particular, F has at most 1
2n(n−1) multiple points. (See Problems 5.6, 5.8.)

Solution. Proof.

5.23. A problem about flexes (See Problem 3.12): Let F be a projective plane
curve of degree n, and assume F contains no lines.

Let Fi = FXi and Fij = FXiXj , forms of degree n− 1 and n− 2 respectively.
We can form a 3×3 matrix with the entry in the (i, j)th place being Fij . Let H
be the determinant of this matrix, a form of degree 3(n − 2). This H is called
the Hessian of F . The following theorem shows the relationship between flexes
and the Hessian.

Theorem. (char (k) = 0)

(1) P ∈ H ∩ F if and only if P is either a flex or a multiple point of F .

(2) I(P,H ∩ F ) = 1 if and only if P is an ordinary flex.

Proof. (Outline)

(a) Let T be a projective change of coordinates. Then the Hessian of FT =
(det(T ))2(HT ). So we can assume P = [0 : 0 : 1]; write f(X,Y ) =
F (X,Y, 1) and h(X,Y ) = H(X,Y, 1).

(b) (n− 1)Fj =
∑
iXiFij (Use Euler’s Theorem).

(c) I(P, f ∩ h) = I(P, f ∩ g) where g = f2y fxx + f2xfyy − 2fxfyfxy (Hint:
Perform row and column operations on the matrix for h. Add x times the
first row plus y times the second row to the third row, then apply part
(b). Do the same with the columns. Then calculate the determinant.)
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(d) If P is a multiple point on F then I(P, f ∩ g) > 1.

(e) Suppose P is a simple point, Y = 0 is the tangent line to F at P , so
f = y + ax2 + bxy + cy2 + dx3 + ex2y + · · · . Then P is a flex if and only
if a = 0, and P is an ordinary flex if and only if a = 0 and d ̸= 0. A short
calculation shows that g = 2a + 6dx + (8ac − 2b2 + 2e)y+ higher terms,
which concludes the proof.

Corollary. (1) A nonsingular curve of degree > 2 always has a flex.

(2) A nonsingular cubic has nine flexes, all ordinary.

Solution. (a) Proof.

(b) Proof.

(c) Proof.

(d) Proof.

(e) Proof.

(1) Proof.

(2) Proof.

5.24. (char (k) = 0).

(a) Let [0 : 1 : 0] be a flex on an irreducible cubic F , Z = 0 the tangent line
to F at [0 : 1 : 0]. Show that F = ZY 2 + bY Z2 + cY XZ+ terms in X,Z.
Find a projective change of coordinates (using Y → Y − b

2Z − c
2X) to get

F to the form ZY 2 = cubic in X,Z.

(b) Show that any irreducible cubic is projectively equivalent to one of the
following: Y 2Z = X3, Y 2Z = X2(X+Z), or Y 2Z = X(X−Z)(X−λZ),
λ ∈ k, λ ̸= 0, 1. (See Problems 5.10, 5.11.)

Solution. (a) Proof.

(b) Proof.
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5.4 Multiple Points

Problems

5.25. Let F be a projective plane curve of degree n with no multiple compo-
nents, and c simple components. Show that∑ mP (mP − 1)

2
≤ (n− 1)(n− 2)

2
+ c− 1 ≤ n(n− 1)

2
.

(Hint: Let F = F1F2; consider separately the points on one Fi or on both.)

Solution. Proof.

5.26. (char (k) = 0). Let F be an irreducible curve of degree n in P2. Suppose
P ∈ P2, with mP (F ) = r ≥ 0. Then for all but a finite number of lines L
through P , L intersects F in n − r distinct points other than P . We outline a
proof:

(a) We may assume P = [0 : 1 : 0]. If Lλ = {[λ : t : 1] | t ∈ k} ∪ {P}, we need
only consider the Lλ. F = Ar(X,Z)Y

n−r + · · ·+An(X,Z), Ar ̸= 0. (See
Problems 4.24, 5.5).

(b) Let Gλ(t) = F (λ, t, 1). It is enough to show that for all but a finite number
of λ, Gλ has n− r distinct points.

(c) Show that Gλ has n− r distinct roots if Ar(λ, 1) ̸= 0, and F ∩FY ∩Lλ =
{P} (See Problem 1.53).

Solution. (a) Proof.

(b) Proof.

(c) Proof.

5.27. Show that Problem 5.26 remains true if F is reducible, provided it has
no multiple components.

Solution. Proof.

5.28. (char (k) = p > 0): F = Xp+1 − Y pZ, P = [0 : 1 : 0]. Find L ∩ F for
all lines L passing through P . Show that every line which is tangent to F at a
simple point passes through P !

Solution. Proof.
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5.5 Max Noether’s Fundamental Theorem

Problems

5.29. Fix F , G, and P . Show that in cases ?? and ??—but not ??—of Propo-
sition ?? the conditions on H are equivalent to Noether’s conditions.

Solution. Proof.

5.30. Let F be an irreducible projective plane curve. Suppose z ∈ k(F ) is
defined at every P ∈ F . Show that z ∈ k. (Hint: Write z = H/G, and use
Noether’s Theorem).

Solution. Proof.

5.6 Applications of Noether’s Theorem

Problems

5.31. If in Pascal’s Theorem we let some adjacent vertices coincide (the side
being a tangent), we get many new theorems:

(a) State and sketch what happens if P1 = P2, P3 = P4, P5 = P6.

(b) Let P1 = P2, the other four distinct.

(c) From (b) deduce a rule for constructing the tangent to a given conic at a
given point, using only a straight-edge.

Solution. (a) Proof.

(b) Proof.

(c) Proof.

5.32. Suppose the intersections of the opposite sides of a hexagon lie on a
straight line. Show that the vertices lie on a conic.

Solution. Proof.
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5.33. Let C be an irreducible cubic, L a line such that L · C = P1 + P2 + P3,
Pi distinct. Let Li be the tangent line to C at Pi: Li · C = 2Pi +Qi for some
Qi. Show that Q1, Q2, Q3 lie on a line (L2 is a conic!)

Solution. Proof.

5.34. Show that a line through two flexes on a cubic passes through a third
flex.

Solution. Proof.

5.35. Let C be any irreducible cubic, or any cubic without multiple components,
Co the set of simple points of C, O ∈ Co. Show that the same definition as
above makes Co into an abelian group.

Solution. Proof.

5.36. Let C be an irreducible cubic, O a simple point on C giving rise to the
addition ⊕ on the set Co of simple points. Suppose another O′ gives rise to
an addition ⊕′. Let Q = φ(O,O′), and define α : (C,O,⊕) → (C,O′,⊕′) by
α(P ) = φ(Q,P ). Show that α is a group isomorphism. So the structure of the
group is independent of the choice of O.

Solution. Proof.

5.37. In Proposition ??, suppose O is a flex on C.

(a) Show that the flexes form a subgroup of C; as an abelian group, this
subgroup is isomorphic to Z/(3)× Z/(3).

(b) Show that the flexes are exactly the elements of order three in the group.
(i.e., exactly those elements P such that P ⊕ P ⊕ P = O).

(c) Show that a point P is of order two in the group if and only if the tangent
to C at P passes through O.

(d) Let C = Y 2Z − X(X − Z)(X − λZ), λ ̸= 0,1, O = [0 : 1 : 0]. Find the
points of order two.

(e) Show that the points of order two on a nonsingular cubic form a group
isomorphic to Z/(2)× Z/(2).

(f) Let C be a nonsingular cubic, P ∈ C. How many lines through P are
tangent to C at some point Q ̸= P? (The answer depends on whether P
is a flex or not.)
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Solution. (a) Proof.

(b) Proof.

(c) Proof.

(d) Proof.

(e) Proof.

(f) Proof.

5.38. Let C be a nonsingular cubic given by the equation Y 2Z = X3+aX2Z+
bXZ2 + cZ3, O = [0 : 1 : 0]. Let Pi = [xi : yi : 1], i = 1, 2, 3, and suppose
P1 ⊕ P2 = P3. If x1 ̸= x2, let λ = (y1 − y2)/(x1 − x2); if P1 = P2 and
y1 ̸= 0, let λ = (3x21 + 2ax1 + b)/(2y1). Let µ = yi − λxi, i = 1, 2. Show that
x3 = λ2 − a − x1 − x2, and y3 = −λx3 − µ. This gives an easy method for
calculating in the group.

Solution. Proof.

5.39. (a) Let C = Y 2Z − X3 − 4XZ2, O = [0 : 1 : 0], A = [0 : 0 : 1],
B = [2 : 4 : 1], C = [2 : −4 : 1]. Show that {0, A,B,C} form a subgroup
of C which is cyclic of order 4.

(b) Let C = Y 2Z −X3 − 43XZ2 − 166Z3. Let O = [0 : 1 : 0], P = [3 : 8 : 1].
Show that P is an element of order 7 in C.

Solution. (a) Proof.

(b) Proof.

5.40. Let k0 be a subfield of k. If V is an affine variety, V ⊂ An(k), a point
P = (a1, . . . , an) ∈ V is rational over k0, if each ai ∈ k0. If V ⊂ Pn(k) is
projective, a point P ∈ V is rational over k0 if for some homogeneous coordinates
(a1, . . . , an+1) for P , each ai ∈ k0.

A curve F of degree d is said to be rational over k0 if the corresponding
point in Pd(d+3)/2 is rational over k0.

Suppose a nonsingular cubic C is rational over k0. Let C(k0) be the set of
points of C which are rational over k0.

(a) If P,Q ∈ C(k0) then φ(P,Q) ∈ C(k0).

(b) If 0 ∈ C(k0), then C(k0) forms a subgroup of C. (If k0 = Q, k = C, this
has important applications to number theory.)

Solution. (a) Proof.
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(b) Proof.

5.41. Let C be a nonsingular cubic, O a flex on C. Let P1, . . . , P3m ∈ C. Show
that P1 ⊕ · · · ⊕ P3m = O if and only if there is a curve F of degree m such

that F · C =

3m∑
i=1

Pi. (Hint: Use induction on m. Let L · C = P1 + P2 + Q,

L′ ·C = P3+P4+R, L
′′ ·C = Q+R+S, and apply induction to S, P5, . . . , P3m;

use Noether’s Theorem).

Solution. Proof.

5.42. Let C be a nonsingular cubic, F, F ′ curves of degree m such that F ·C =
3m∑
i=1

Pi, F
′ · C =

3m−1∑
i=1

Pi +Q. Show that P3m = Q.

Solution. Proof.

5.43. For which points P on a nonsingular cubic C does there exist a nonsin-
gular conic which intersects C only at P?

Solution. Proof.
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Chapter 6

Varieties, Morphisms, and
Rational Maps

Problems

6.1. Let Z ⊂ Y ⊂ X, X a topological space. Give Y the induced topology.
Show that the topology induced by Y on Z is the same as that induced by X
on Z.

Solution. Proof.

6.2. (a) Let X be a topological space, X =
⋃
α∈A Uα, Uα open in X. Show

that a subset W of X is closed if and only if each W ∩Uα is closed (in the
induced topology) in Uα.

(b) Suppose similarly Y =
⋃
α∈A Vα, Vα open in Y , and suppose f : X → Y

is a mapping such that f(Uα) ⊂ Vα. Show that f is continuous if and only
if the restriction of f to each Uα is a continuous function from Uα to Vα.

Solution. (a) Proof.

(b) Proof.

6.3. (a) Let V be an affine variety, f ∈ Γ(V ). Considering f as a function
from V to k = A1, show that f is continuous.

(b) Show that any polynomial map of affine varieties is continuous.

Solution. (a) Proof.
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(b) Proof.

6.4. Let Ui ⊂ Pn, φi : An → Ui as in Chapter ??. Give Ui the topology induced
from Pn.

(a) Show that φi is a homeomorphism.

(b) Show that a set W ⊂ Pn is closed if and only if each φ−1
i (W ) is closed in

An, i = 1, . . . , n+ 1.

(c) Show that if V ⊂ An is an affine variety, then the projective closure V ∗ of
V is the closure of φn+1(V ) in Pn.

Solution. (a) Proof.

(b) Proof.

(c) Proof.

6.5. Any infinite subset of a plane curve V is dense in V . Any one-to-one
mapping from one irreducible plane curve onto another is a homeomorphism.

Solution. Proof.

6.6. LetX be a topological space, f : X → An a mapping. Then f is continuous
if and only if for each hypersurface V = V (F ) of An, f−1(V ) is closed in X. A
mapping f : X → k = A1 is continuous if and only if f−1(λ) is closed for any
λ ∈ k.

Solution. Proof.

6.7. Let V be an affine variety, f ∈ Γ(V ).

(a) Show that V (f) = {P ∈ V | f(P ) = 0} is a closed subset of V , and
V (f) ̸= V unless f = 0.

(b) Suppose U is a dense subset of V and f(P ) = 0 for all P ∈ U . Then
f = 0.

Solution. (a) Proof.

(b) Proof.

6.8. Let U be an open subset of a variety V , z ∈ k(V ). Suppose z ∈ OP (V ) for
all P ∈ U . Show that Uz = {P ∈ U | z(P ) ̸= 0} is open, and that the mapping
from U → k = A1 defined by P 7→ z(P ) is continuous.

Solution. Proof.
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6.1 Varieties

Problems

6.9. Let X = A2 \ {(0, 0)}, an open subvariety of A2. Show that Γ(X) =
Γ(A2) = k[X,Y ].

Solution. Proof.

6.10. Let U be an open subvariety of a variety X, Y a closed subvariety of U .
Let Z be the closure of Y in X.

(a) Z is a closed subvariety of X.

(b) Y is an open subvariety of Z.

Solution. (a) Proof.

(b) Proof.

6.11. (a) Show that every family of closed subsets of a variety has a minimal
member.

(b) Show that if a variety is a union of a collection of open subsets, it is a union
of a finite number of these subsets. (All varieties are “quasi-compact”.)

Solution. (a) Proof.

(b) Proof.

6.12. Let X be a variety, z ∈ k(X). Show that the pole set of z is closed. If
z ∈ OP (X), there is a neighborhood U of P such that z ∈ Γ(U); so OP (X) is
the union of all Γ(U), where U runs through all neighborhoods of P .

Solution. Proof.

6.2 Morphisms of Varieties

Problems
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6.13. Let R be a domain with quotient field K, f ̸= 0 in R. Let R[1/f ] =
{a/fn | a ∈ R,n ∈ Z}, a subring of K.

(a) Show that if φ : R → S is any ring homomorphism such that φ(f) is a
unit in S, then φ extends uniquely to a ring homomorphism from R[1/f ]
to S.

(b) Show that the ring homomorphism from R[X]/(Xf − 1) to R[1/f ] which
takes X to 1/f is an isomorphism.

Solution. (a) Proof.

(b) Proof.

6.14. LetX,Y be varieties, f : X → Y a function. LetX =
⋃
α Uα, Y =

⋃
α Vα,

with Uα, Vα open subvarieties, and suppose f(Uα) ⊂ Vα for all α.

(a) f is a morphism if and only if each restriction fα : Uα → Vα of f is a
morphism.

(b) If each Uα, Vα is affine, f is a morphism if and only if each f̃(Γ(Vα)) ⊂
Γ(Uα).

Solution. (a) Proof.

(b) Proof.

6.15. (a) If Y is an open or closed subvariety of X, the inclusion i : Y → X
is a morphism.

(b) The composition of morphisms is a morphism.

Solution. (a) Proof.

(b) Proof.

6.16. Let f : X → Y be a morphism of varieties, X ′ ⊂ X, Y ′ ⊂ Y subvarieties
(open or closed). Assume f(X ′) ⊂ Y ′. Then the restriction of f to X ′ is a
morphism from X ′ to Y ′. (Use Problems 6.14 and 2.9.)

Solution. Proof.

6.17. (a) Show that A2 \ {(0, 0)} is not an affine variety (See Problem 6.9).

(b) The union of two open affine subvarieties of a variety may not be affine.

Solution. (a) Proof.
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(b) Proof.

6.18. Show that the natural map π from An+1\{(0, . . . , 0)} to Pn is a morphism
of varieties, and that a subset U of Pn is open if and only if π−1(U) is open.

Solution. Proof.

6.19. Let X be a variety, f ∈ Γ(X). Let φ : X → A1 be the mapping defined
by φ(P ) = f(P ) for P ∈ X.

(a) Show that for λ ∈ k, φ−1(λ) is the pole set of z = 1/(f − λ).

(b) Show that φ is a morphism of varieties.

Solution. (a) Proof.

(b) Proof.

6.20. Let A = Pn1 × · · · × An, B = Pm1 × · · · × Am. Let y ∈ B, V a closed
subvariety of A. Show that V × {y} = {(x, y) ∈ A × B |x ∈ V } is a closed
subvariety of A × B, and that the map V → V × {y} taking x to (x, y) is an
isomorphism.

Solution. Proof.

6.21. Any variety is the union of a finite number of open affine subvarieties.

Solution. Proof.

6.22. Let X be a projective variety in Pn, and let H be a hyperplane in Pn
that doesn’t contain X.

(a) Show that X \ (H ∩X) is isomorphic to an affine variety X∗ ⊂ An.

(b) If L is the linear form definingH, and ℓ is its image in Γh(X) = k[x1, . . . , xn+1],
then Γ(X∗) may be identified with k[x1/ℓ, . . . , xn+1/ℓ]. (Hint: Change co-
ordinates so L = Xn+1.)

Solution. (a) Proof.

(b) Proof.

6.23. Let P,Q ∈ X, X a variety. Show that there is an affine open set V on X
that contains P and Q. (Hint: See the proof of the Corollary to Proposition ??,
and use Problem (c).)
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Solution. Proof.

6.24. Let X be a variety, P , Q two distinct points of X. Show that there is an
f ∈ k(X) that is defined at P and at Q, with f(P ) = 0, f(Q) ̸= 0. (Problem
6.23, 1.17). So f ∈ mP (X), 1/f ∈ OQ(X). The local rings OP (X), as P varies
in X, are distinct.

Solution. Proof.

6.25. Show that [x1 : · · · : xn] → [x1 : · · · : xn : 0] gives an isomorphism of
Pn−1 with H∞ ⊂ Pn. If a variety V in Pn is contained in H∞, V is isomorphic
to a variety in Pn−1. Any projective variety is isomorphic to a closed subvariety
V ⊂ Pn (for some n) such that V is not contained in any hyperplane in Pn.

Solution. Proof.

6.3 Products and Graphs

Problems

6.26. (a) Let f : X → Y be a morphism of varieties such that f(X) is dense

in Y . Show that the homomorphism f̃ : Γ(Y ) → Γ(X) is one-to-one.

(b) If X and Y are affine, show that f(X) is dense in Y if and only if f̃ :
Γ(Y ) → Γ(X) is one-to-one. Is this true if Y is not affine?

Solution. (a) Proof.

(b) Proof.

6.27. Let U, V be open subvarieties of a variety X.

(a) Show that U ∩ V is isomorphic to (U × V ) ∩∆X .

(b) If U and V are affine, show that U ∩V is affine. (Compare Problem 6.17.)

Solution. (a) Proof.

(b) Proof.
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6.28. Let d ≥ 1, N = (d+1)(d+2)
2 , and let M1, . . . , MN be the monomials of

degree d in X,Y, Z (in some order). Let T1, . . . , TN be homogeneous coordinates

for PN−1. Let V = V (
∑N
i=1Mi(X,Y, Z)Ti) ⊂ P2×PN−1, and let π : V → PN−1

be the restriction of the projection map.

(a) Show that V is an irreducible closed subvariety of P2 × PN−1, and π is a
morphism.

(b) For each t = (t1, . . . , tN ) ∈ PN−1, let Ct be the corresponding curve
(Section 5.2). Show that π−1(t) = Ct × {t}.
We may thus think of π : V → PN−1 as a “universal family” of curves of
degree d. Every curve appears as a fiber π−1(t) over some t ∈ PN−1

Solution. (a) Proof.

(b) Proof.

6.29. Let V be a variety, and suppose V is also a group, i.e., there are mappings
φ : V ×V → V (multiplication or addition), and ψ : V → V (inverse) satisfying
the group axioms. If φ and ψ are morphisms, V is said to be an algebraic group.
Show that each of the following is an algebraic group:

(a) A1 = k, with the usual addition on k; this group is often denoted Ga.

(b) A1 \ {(0)} = k \ {(0)}, with the usual multiplication on k: this is denoted
Gm.

(c) An(k) with addition; likewise Mn(k) = {n by n matrices} under addition

may be identified with An2

(k).

(d) GLn(k) = {invertible n×nmatrices} is an affine open subvariety ofMn(k),
and a group under multplication.

(e) C a nonsingular plane cubic, O ∈ C, ⊕ the resulting addition (See Problem
5.38).

Solution. (a) Proof.

(b) Proof.

(c) Proof.

(d) Proof.

(e) Proof.

6.30. (a) Let C = V (Y 2Z−X3) be a cubic with a cusp, Co = C \{[0 : 0 : 1]}
the simple points, a group with O = [0 : 1 : 0]. Show that the map
φ : Ga → Co given by φ(t) = [t : 1 : t3] is an isomorphism of algebraic
groups.
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(b) Let C = V (X3+Y 3−XY Z) be a cubic with a node, Co = C \{[0 : 0 : 1]},
O = [1 : 1 : 0]. Show that φ : Gm → Co defined by φ(t) = (t, t2, 1− t3) is
an isomorphism of algebraic groups.

Solution. (a) Proof.

(b) Proof.

6.4 Algebraic Function Fields and Dimension of
Varieties

Problems

6.31. (Theorem of the Primitive Element) Let K be a field of characteristic
zero, L a finite (algebraic) extension of K. Then there is a z ∈ L such that
L = K(z).

Outline of Proof:

Step (i) Suppose L = K(x, y). Let F and G be monic irreducible polynomials in
K[T ] such that F (x) = 0, G(y) = 0. Let L′ be a field in which F =∏n
i=1(T − xi), G =

∏m
j=1(T − yi), x = x1, y = y1, L

′ ⊃ L (See Problems
1.52, 1.53). Choose λ ̸= 0 in K so that λx + y ̸= λxi + yj for all i ̸= 1,
j ̸= 1. Let z = λx+ y, K ′ = K(z). Set H(T ) = G(z−λT ) ∈ K ′[T ]. Then
H(x) = 0, H(xi) ̸= 0 if i > 0. Therefore (H,F ) = (T − x) ∈ K ′[T ]. Then
x ∈ K ′, so y ∈ K ′, so L = K ′.

Step (ii) If L = K(x1, . . . , xn), use induction on n to find λ1, . . . , λn ∈ K such that
L = K(

∑
λixi).

Solution. (i) Proof.

(ii) Proof.

6.32. Let L = K(x1, . . . , xn) as in Problem 6.31. Suppose k ⊂ K is an al-
gebraically closed subfield, and V ⊊ An(k) is an algebraic set. Show that
L = K(

∑
λixi) for some (λ1, . . . , λn) ∈ An \ V .

Solution. Proof.
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6.33. The notion of transcendence degree is analogous to the idea of the dimen-
sion of a vector space. If k ⊂ K, we say that x1, . . . , xn ∈ K are algebraically
independent if there is no nonzero polynomial F ∈ k[X1, . . . , Xn] such that
F (x1, . . . , xn) = 0. By methods entirely analogous to those for bases of vector
spaces, one can prove:

(a) Let x1, . . . , xn ∈ K, K a finitely generated extension of k. Then x1, . . . , xn
is a minimal set such that K is algebraic over k(x1, . . . , xn) if and only
if x1, . . . , xn is a maximal set of algebraically independent elements of K.
Suvch {x1, . . . , xn} is called a transcendence basis of K over k.

(b) Any algebraically independent set may be completed to a transcendence
basis. Any set {x1, . . . , xn} such that K is algebraic over k(x1, . . . , xn)
contains a transcendence basis.

(c) tr.degk (K) is the number of elements in any transcendence basis of K
over k.

Solution. (a) Proof.

(b) Proof.

(c) Proof.

6.34. Show that dim (An) = dim (Pn) = n.

Solution. Proof.

6.35. Let Y be a closed subvariety of a variety X. Then dim (Y ) ≤ dim (X),
with equality if and only if Y = X.

Solution. Proof.

6.36. Let K = k(x1, . . . , xn) be a function field in n variables over k.

(a) Show that there is an affine variety V ⊂ An with k(V ) = K.

(b) Show that we may find V ⊂ Ar+1 with k(V ) = K, r = dim (V ). (Assume
char (k) = 0 if you wish).

Solution. (a) Proof.

(b) Proof.
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6.5 Rational Maps

Problems

6.37. Let C = V (X2 + Y 2 − Z2) ⊂ P2. For each t ∈ k, let Lt be the line
between P0 = [−1 : 0 : 1] and Pt = [0 : t : 1]. (Sketch this.)

(a) If t ̸= ±1, show that Lt · C = P0 +Qt, where Qt = [1− t2 : 2t : 1 + t2].

(b) Show that the map φ : A1 \ {±1} → C taking t to Qt extends to an
isomorphism of P1 with the projective closure of C.

(c) Any irreducible conic in P2 is rational; in fact, a conic is isomorphic to P1.

(d) Give a prescription for finding all integer solutions (x, y, z) to the Pytha-
gorean equation X2 + Y 2 = Z2.

Solution. (a) Proof.

(b) Proof.

(c) Proof.

(d) Proof.

6.38. An irreducible cubic with a multiple point is rational (Problems 6.30,
5.10, 5.11).

Solution. Proof.

6.39. Pn × Pm is birationally equivalent to Pn+m. Show that P1 × P1 is not
isomorphic to P2. (Hint: P1×P1 has closed subvarieties of dimension one which
do not intersect.)

Solution. Proof.

6.40. If there is a dominating rational map from X to Y , then dim (Y ) ≤
dim (X).

Solution. Proof.

6.41. Every n-dimensional variety is birationally equivalent to a hypersurface
in An+1 (or Pn+1).

106



CHAPTER 6. VARIETIES, MORPHISMS, AND RATIONAL MAPS

Solution. Proof.

6.42. Suppose X,Y varieties, P ∈ X, Q ∈ Y , with OP (X) isomorphic (over
k) to OQ(Y ). Then there are neighborhoods U of P on X, V of Q on Y , such
that U is isomorphic to V . This is another justification for the assertion that
properties of X near P should be determined by the local ring OP (X).

Solution. Proof.

6.43. Let C be a projective curve, P ∈ C. Then there is a birational morphism
f : C → C ′, C ′ a projective plane curve, such that f−1(f(P )) = {P}. We
outline a proof:

(a) We can assume: C ⊂ Pn+1 Let T,X1, . . . , Xn, Z be coordinates for Pn+1;
Then C ∩ V (T ) is finite; C ∩ V (T,Z) = ∅; P = [0 : · · · : 0 : 1]; and k(C)
is algebraic over k(u), where u = T/Z ∈ k(C).

(b) For each λ = (λ1, . . . , λn) ∈ kn, let φλ : C → P2 be defined by φλ([t : x1 :
· · · : xn : z]) = [t :

∑
λixi : z]. Then φλ is a well-defined morphism, and

φλ(P ) = [0 : 0 : 1]. Let C ′ be the closure of φλ(C).

(c) The variable λ can be chosen so φλ is a birational morphism from C to C ′,
and φ−1

λ ([0 : 0 : 1]) = {P}. (Use Problem 6.32 and the fact that C ∩V (T )
is finite).

Solution. (a) Proof.

(b) Proof.

(c) Proof.

6.44. Let V = V (X2 − Y 3, Y 2 − Z3) ⊂ A3, f : A1 → V as in Problem 2.13.

(a) Show that f is birational, so V is a rational curve.

(b) Show that there is no neighborhood of (0, 0, 0) on V which is isomorphic
to an open subvariety of a plane curve. (See Problem 3.14).

Solution. (a) Proof.

(b) Proof.

6.45. Let C,C ′ be curves, F a rational map from C ′ to C. Prove:

(a) Either F is dominating, or F is constant (i.e., for some P ∈ C, F (Q) = P ,
all Q ∈ C ′).

(b) If F is dominating, then k(C ′) is a finite algebraic extension of F̃ (k(C)).
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Solution. (a) Proof.

(b) Proof.

6.46. Let k(P1) = k(T ), T = X/Y (Problem 4.8). For any variety V , and f ∈
k(V ), f /∈ k, the subfield k(f) generated by f is naturally isomorphic to k(T ).
Thus a nonconstant f ∈ k(V ) corresponds to a homomorphism from k(T ) to
k(V ), and hence to a dominating rational map from V to P1. The corresponding
map is usually denoted also by f . If this rational map is a morphism, show that
the pole set of f is just f−1([1 : 0]).

Solution. Proof.

6.47. (The dual curve). Let F be an irreducible projective plane curve of degree
n > 1. Let Γh(F ) = k[X,Y, Z]/(F ) = k[x, y, z], and let u, v, w ∈ Γh(F ) be the
residues of FX , FY , FZ , respectively. Define α : k[U, V,W ] → Γh(F ) by letting
α(U) = u, α(V ) = v, α(W ) = w. Let I be the kernel of α.

(a) Show that I is a homogeneous prime ideal in k[U, V,W ], so V (I) is a closed
subvariety of P2.

(b) Show that for any simple point P on F , [FX(P ) : FY (P ) : FZ(P )] is in
V (I), so V (I) contains the points corresponding to tangent lines to F at
simple points.

(c) If V (I) ⊂ {[a : b : c]}, use Euler’s Theorem to show that F divides
aX + bY + cZ, which is impossible. Conclude that V (I) is a curve. It is
called the dual curve of F .

(d) Show that the dual curve is the only irreducible curve containing all the
points of (b). (See Walker’s “Algebraic Curves” for more about the dual
curves when char (k) = 0.)

Solution. (a) Proof.

(b) Proof.

(c) Proof.

(d) Proof.
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Resolution of Singularities

7.1 Rational Maps of Curves

Problems

7.1. Show that any curve has only a finite number of multiple points.

Solution. Proof.

7.2 Blowing up a Point in A2

Problems

7.2. (a) For each of the curves F in Section 3.1, find F ′; show that F ′ is
nonsingular in the first five examples, but not in the sixth.

(b) Let F = Y 2 − X5. What is F ′? What is (F ′)′? What must be done to
resolve the singularity of the curve Y 2 = X2n+1?

Solution. (a) Proof.

(b) Proof.

7.3. Let F be any plane curve with no multiple components. Generalize the
results of this section to F .
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Solution. Proof.

7.4. Suppose P is an ordinary multiple point on C, f−1(P ) = {P1, . . . , Pr}.
With the notation of Step (2), show that FY =

∑
i

∏
j ̸=i(Y −αjX)+(Fr+1)Y +

· · · , so FY (x, y) = xr−1(
∑
i

∏
j ̸=i(z−αj)+x+· · · ). Conclude that ordC

′

Pi
(FY (x, y)) =

r − 1 for i = 1, . . . , r.

Solution. Proof.

7.5. Let P be an ordinary multiple point on C, f−1(P ) = {P1, . . . , Pr}, Li =
Y −αiX the tangent line corresponding to Pi = (0, αi). Let G be a plane curve
with image g in Γ(C) ⊂ Γ(C ′).

(a) Show that ordC
′

Pi
(g) ≥ mP (G), with equality if Li is not tangent to G at

P .

(b) If s ≤ r, and ordC
′

Pi
(g) ≥ s for each i = 1, . . . , r, show that mP (G) ≥ s.

(Hint: How many tangents would G have otherwise?)

Solution. (a) Proof.

(b) Proof.

7.6. If P is an ordinary cusp on C, show that f−1(P ) = {P1}, where P1 is a
simple point on C ′.

Solution. Proof.

7.3 Blowing Up Points in P2

Problems

7.7. Suppose P1 = [0 : 0 : 1], P ′
1 = [a11 : a12 : 1], and

T = (aX + bY + a11Z, cX + dY + a12Z, eX + fY + Z).

Show that T1 = ((a− a11e)X +(b− a11f)Y, (c− a12e)X +(d− a12f)Y ) satisfies
T1 ◦ f1 = f ′1 ◦ T . Use this to prove Step (3) above.

Solution. Proof.
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7.8. Suppose P1 = [0 : 0 : 1], T1 = (aX + bY, cX + dY ). Show that T =
(aX + bY, cX + dY, Z) satisfies f1 ◦ T = T1 ◦ f1. Use this to prove Step (4).

Solution. Proof.

7.9. Let C = V (X4 + Y 4 − XY Z2). Write down equations for a nonsingular
curve X in some PN which is birationally equivalent to C. (Use the Segre
imbedding.)

Solution. Proof.

7.4 Quadratic Transformations

Problems

7.10. Let F = 8X3Y + 8X3Z + 4X2Y Z − 10XY 3 − 10XY 2Z − 3Y 3Z. Show
that F is in good position, and that F ′ = 8Y 2Z + 8Y 3 + 4XY 2 − 10X2Z −
10X2Y +3X3. Show that F and F ′ have real parts as in the example, and find
the multiple points of F and F ′.

Solution. Proof.

7.11. Find a change of coordinates T so that (Y 2Z − X3)T is in excellent
position, and T (0, 0, 1) = (0, 0, 1). Calculate the quadratic transformation.

Solution. Proof.

7.12. Find a quadratic transformation of Y 2Z2 −X4 − Y 4 with only ordinary
multiple points. Do the same with Y 4 + Z4 − 2X2(Y − Z)2.

Solution. Proof.

7.13. (a) Show that in the lemma, we may choose T in such a way that for a
given finite set S of points of F (P /∈ S), T−1(S) ∩ V (XY Z) = ∅. Then
there is a neighborhood of S on F which is isomorphic to an open set on
(FT )′.

(b) If S is finite set of simple points on a plane curve F , there is a curve F ′

with only ordinary multiple points, and a neighborhood U of S on F , and
an open set U ′ on F ′ consisting entirely of simple points, such that U is
isomorphic to U ′.
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Solution. (a) Proof.

(b) Proof.

7.14. (a) What happens to the degree, and to g∗(F ), when a quadratic trans-
formation is centered at: (i) an ordinary multiple point (ii) a simple point
(iii) a point not on F?

(b) Show that the curve F ′ of Problem (b) may be assumed to have arbitrarily
large degree.

Solution. (a) Proof.

(b) Proof.

7.15. Let F = F1, . . . , Fm be a sequence of quadratic transformations of F ,
such that Fm has only ordinary multiple points. Let Pi1, Pi2, . . . be the points
as in part ?? of Step ?? introduced in going from Fi−1 to Fi (called “neighboring
singularities”; see Walker’s “Algebraic Curves”, Chap. III, §7.6, 7.7). If n =
deg(F ), show that

(n− 1)(n− 2) ≥
∑
P∈F

mP (F )(mP (F )− 1) +
∑
i,j

mPij (Fi)(mPij (Fi)− 1).

Solution. Proof.

7.16. (a) Show that everything in this section, including Theorem ??, goes
through for any plane curve with no multiple components.

(b) If F and G are two curves with no common components, and no multiple
components, apply (a) to the curve FG. Show that there are sequences
of quadratic transformations F = F1, . . . , Fs = F ′, G = G1, . . . , Gs = G′,
where F ′ and G′ have only ordinary multiple points, and no tangents in
common at points of intersection. Show that

deg(F ) deg(G) =
∑

mP (F )mP (G) +
∑
i,j

mPij
(Fi)mPij

(Gi),

where Pij are the neighboring singularities of FG, determined as in Prob-
lem 7.15.

Solution. (a) Proof.

(b) Proof.
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7.5 Nonsingular Models of Curves

Problems

7.17. (a) Show that for any irreducible curve C (projective or not) there is a
nonsingular curve X and a birational morphism f from X onto C. What
conditions on X will make it unique?

(b) Let f : X → C as in (a), and let Co be the set of simple points of C. Show
that the restriction of f to f−1(Co) gives an isomorphism of f−1(Co) with
Co.

Solution. (a) Proof.

(b) Proof.

7.18. Show that for any place P of a curve C, and choice t of uniformizing
parameter for OP (X), there is a homomorphism φ : k(C) → k((T )) taking t
to T (See Problem 2.32). Show how to recover the place from φ. (In many
treatments of curves, a place is defined to be a suitable equivalence class of
“power series expansions”.)

Solution. Proof.

7.19. Let f : X → C as above, C a projective plane curve. Suppose P is
an ordinary multiple point of multiplicity r on C, Q1, . . . , Qr the places on X
centered at P . Let G be any projective plane curve, and let s ≤ r. Show that
mP (G) ≥ s if and only if ordQi

(G) ≥ s for i = 1, . . . , r. (See Problem 7.5.)

Solution. Proof.

7.20. Let R be a domain with quotient field K. The integral closure R′ of R is
{z ∈ k | z is integral over R}.

(a) If R is a DVR, then R′ = R.

(b) If R′
α = Rα, then (∩Rα)′ = (∩Rα).

(c) With f : X → C as in Lemma ??, show that Γ(f−1(U)) = Γ(U)′ for all
open sets U of C. This gives another algebraic characterization of X.

Solution. (a) Proof.

(b) Proof.
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(c) Proof.

7.21. Let X be a nonsingular projective curve, P1, . . . , Ps ∈ X.

(a) Show that there is projective plane curve C with only ordinary multiple
points, and a birational morphism f : X → C such that f(Pi) is simple on
C for each i. (Hint: if f(Pi) is multiple, do a quadratic transform centered
at f(Pi).)

(b) For any m1, . . . ,mr ∈ Z, show that there is a z ∈ k(X) such that
ordPi

(z) = mi (Problem 5.15).

(c) Show that the curve C of Part (a) may be found with arbitrarily large
degree (Problem 7.14).

Solution. (a) Proof.

(b) Proof.

(c) Proof.

7.22. Let P be a node on an irreducible plane curve F , and let L1, L2 be the
tangents to F at P . P is called a simple node if I(P,Li ∩ F ) = 3 for i = 1, 2.
Let H be the Hessian of F .

(a) If P is a simple node on F , show that I(P, F ∩ H) = 6. (Hint: Let
P = (0, 0, 1), F∗ = xy + . . . , and use Proposition ?? to show that all
monomials of degree ≥ 4 may be ignored. See Problem 5.23).

(b) If P is a cusp on F , show that I(P, F ∩H) = 8. (See Problem 7.6).

(c) Use (a) and (b) to show that every cubic has one, three, or nine flexes;
then Problem 5.24 gives another proof that every cubic is projectively
equivalent to one of the type Y 2Z = cubic in X and Z.

(d) If the curve F has degree n, and i flexes (all ordinary), and δ simple nodes,
and k cusps, and no other singularities, then i+6δ+8k = 3n(n−2). This
is one of “Plücker’s formulas” (See Walker’s “Algebraic Curves” for the
others).

Solution. (a) Proof.

(b) Proof.

(c) Proof.

(d) Proof.
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Riemann-Roch Theorem

Problems

8.1. Let X = C = P1, k(X) = k(t), where t = X1/X2, X1, X2 homogeneous
coordinates on P1.

(a) Calculate div (t).

(b) Calculate div (f/g), f , g relatively prime in k[t].

(c) Prove Proposition ?? directly in this case.

Solution. (a) Proof.

(b) Proof.

(c) Proof.

8.2. Let X = C = V (Y 2Z −X(X − Z)(X − λZ)) ⊂ P2, λ ∈ k, λ ̸= 0, 1. Let
x = X/Z, y = Y/Z ∈ K; K = k(x, y). Calculate div (x), div (y).

Solution. Proof.

8.3. Let C = X be a nonsingular cubic.

(a) Let P,Q ∈ C. Show that P ≡ Q if and only if P = Q. (Hint: Lines are
adjoints of degree 1.)

(b) Let P,Q,R, S ∈ C. Show that P + Q ≡ R + S if and only if the line
through P and Q intersects the line through R and S in a point on C (If
P = Q use the tangent line).
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(c) Let P0 be a fixed point on C, thus defining an addition ⊕ on C (Chapter 5,
Section 5.6). Show that P ⊕ Q = R if and only if P + Q ≡ R + P0. Use
this to give another proof of Proposition ?? of Section 5.6).

Solution. (a) Proof.

(b) Proof.

(c) Proof.

8.4. Let C be a cubic with a node. Show that for any two simple points P,Q
on C, P ≡ Q.

Solution. Proof.

8.5. Let C be a nonsingular quartic, P1, P2, P3 ∈ C. Let D = P1 + P2 + P3.
Let L, L′ lines such that L ·C = P1 +P2 +P4 +P5, L

′ ·C = P1 +P3 +P6 +P7.
Suppose these seven points are distinct. Show that D is not linearly equiva-

lent to any other effective divisor. (Hint: Apply the residue theorem to the conic
LL′.) Investigate in a similar way other divisors of small degree on quartics with
various types of multiple points.

Solution. Proof.

8.6. Let D(X) be the group of divisors on X, D0(X) the subgroup consisting of
divisors of degree zero, and P (X) the subgroup of D0(X) consisting of divisors
of rational functions. Let C0(X) = D0(X)/P (X) be the quotient group. It is
the divisor class group on X.

(a) If X = P1, then C0(X) = 0.

(b) Let X = C be a nonsingular cubic. Pick P0 ∈ C, defining ⊕ on C. Show
that the map from C to C0(X) which sends P to the residue class of the
divisor P − P0 is an isomorphism from (C,⊕) onto C0(X).

Solution. (a) Proof.

(b) Proof.

8.7. When do two curves G,H, have the same divisor (C and X fixed)?

Solution. Proof.
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8.1 The Vector Spaces L(D)

Problems

8.8. If D ≤ D′, then ℓ(D′) ≤ ℓ(D) + deg(D′ − D), i.e. deg(D) − ℓ(D) ≤
deg(D′)− ℓ(D′).

Solution. Proof.

8.9. Let X = P1, t as in Problem 8.1. Calculate L(r(t)0) explicitly, and show
that ℓ(r(t)0) = r + 1.

Solution. Proof.

8.10. Let X = C be a cubic, x, y as in Problem 8.2. Let z = x−1. Show that
L(r(z)0) ⊂ k[x, y], and show that ℓ(r(z)0) = 2r if r > 0.

Solution. Proof.

8.11. Let D be a divisor. Show that ℓ(D) > 0 if and only if D is linearly
equivalent to an effective divisor.

Solution. Proof.

8.12. Show that deg(D) = 0 and ℓ(D) > 0 if and only if D ≡ 0.

Solution. Proof.

8.13. Suppose ℓ(D) > 0, and let f ̸= 0, f ∈ L(D). Show that f /∈ L(D − P )
for all but a finite number of P . So ℓ(D − P ) = ℓ(D) − 1 for all but a finite
number of P .

Solution. Proof.
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8.2 Riemann’s Theorem

Problems

8.14. Calculate the genus of each of the following curves:

(a) X2Y 2 − Z2(X2 + Y 2).

(b) (X3 + Y 3)Z2 +X3Y 2 −X2Y 3.

(c) The two curves of Problem 7.12.

(d) (X2 − Z2)2 − 2Y 3Z − 3Y 2Z2.

Solution. (a)

(b)

(c)

(d)

8.15. LetD =
∑
nPP be an effective divisor, S = {P ∈ X |nP > 0}, U = X\S.

Show that L(rD) ⊂ Γ(U,OX) for all r ≥ 0.

Solution. Proof.

8.16. Let U be any open set on X, ∅ ≠ U ̸= X. Then Γ(U,OX) is infinite
dimensional over k.

Solution. Proof.

8.17. Let X,Y be nonsingular projective curves, f : X → Y a dominating
morphism. Prove that f(X) = Y . (Hint: If P ∈ Y \f(X), then f̃(Γ(Y \{P})) ⊂
Γ(X) = k; apply Problem 8.16.)

Solution. Proof.

8.18. Show that a morphism from a projective curve X to a curve Y is either
constant or surjective; if it is surjective, Y must be projective.

Solution. Proof.
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8.19. If f : C → V is a morphism from a projective curve to a variety V , then
f(C) is a closed subvariety of V . (Hint: Consider C ′ = closure of f(C) in V .)

Solution. Proof.

8.20. Let C be the curve of Problem 8.14(b), and let P be a simple point on
C. Show that there is a z ∈ Γ(C \ {P}) with ordP (z) ≥ −12, z /∈ k.

Solution. Proof.

8.21. Let C0(X) be the divisor class group of X. Show that C0(X) = 0 if and
only if X is rational.

Solution. Proof.

8.3 Derivations and Differentials

Problems

8.22. Generalize Proposition ?? to function fields in n variables.

Solution. Proof.

8.23. With O, t as in Proposition ??, let φ : O → k[[T ]] be the corresponding
homomorphism (Problem 2.32). Show that, for f ∈ O, φ takes the derivative
of f to the “formal derivative” of φ(f). Use this to give another proof of
Proposition ??, and of the fact that Ωk(K) ̸= 0 in Proposition ??.

Solution. Proof.

8.4 Canonical Divisors

Problems

8.24. Show that if g > 0, then n ≥ 3 (notation as in Proposition ??).

Solution. Proof.
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8.25. Let X = P1, K = k(t) as in Problem 8.1. Calculate div (dt), and show
directly that the above corollary holds when g = 0.

Solution. Proof.

8.26. Show that for any X there is a curve C birationally equivalent to X
satisfying the conditions of Proposition ?? (See Problem 7.21).

Solution. Proof.

8.27. Let X = C, x, y as in Problem 8.2. Let ω = y−1 dx. Show that div (ω) =
0.

Solution. Proof.

8.28. Show that if g > 0, there are effective canonical divisors.

Solution. Proof.

8.5 Riemann-Roch Theorem

Problems

8.29. Let D be any divisor, P ∈ X. Then ℓ(W −D − P ) ̸= ℓ(W −D) if and
only if ℓ(D + P ) = ℓ(D).

Solution. Proof.

8.30. (Reciprocity Theorem of Brill-Noether). Suppose D and D′ are divisors,
and D + D′ = W is a canonical divisor. Then ℓ(D) − ℓ(D′) = 1

2 (deg(D) −
deg(D′)).

Solution. Proof.

8.31. Let D be a divisor with deg(D) = 2g − 2 and ℓ(D) = g. Show that D is
a canonical divisor. So these properties characterize canonical divisors.

Solution. Proof.
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8.32. Let P1, . . . , Pm ∈ P2, r1, . . . , rm non-negative integers. Let
V (d; r1P1, . . . , rmPm) be the space of curves F of degree d with mPi(F ) ≥ ri.
Suppose there is a curve C of degree n with ordinary multiple points P1, . . . , Pm,
and mPi

(C) = ri+1; and suppose d ≥ n− 3. Show that (as a projective space)
dim (V ) (d; r1P1, . . . , rmPm) = 1

2d(d+ 3)− 1
2

∑
(ri + 1)ri. Compare with Theo-

rem ??.

Solution. Proof.

8.33. (Linear Series). Let D be a divisor, and let V be a subspace of L(D) (as a
vector space). The set of effective divisors {div (F )+D | f ∈ V } is called a linear
series. If f1, . . . , fr+1 is a basis for V , then the correspondence div (

∑
λifi) +

D 7→ (λ1, . . . , λr+1) sets up a one-to-one correspondence between the linear
series and Pr. If deg(D) = n, the series is often called a grn. The series is
called complete if V = L(D), i.e. every effective divisor linearly equivalent to
D appears. Show that, with C, E as in Section ??, the series {div (G) − E |G
is an adjoint of degree n not containing C} is complete.

Solution. Proof.

8.34. Show that there are curves of every positive genus. (Hint: Consider affine
plane curves y2a(x) + b(x) = 0, where deg(a) = g, deg(b) = g + 2).

Solution. Proof.

8.35. Show that every curve of genus 2 is birationally equivalent to a plane
curve of order 4 with one double point.

Solution. Proof.

8.36. Let f : X → Y be a nonconstant (therefore surjective) morphism of

projective nonsingular curves, corresponding to a homomorphism f̃ of k(Y )
into k(X). The integer n = [k(X) : k(Y )] is called the degree of f . If P ∈ X,
f(P ) = Q, let t ∈ OQ(Y ) be a uniformizing parameter. The integer e(P ) =
ordP (t) is called the ramification index of f at P .

(a) For each Q ∈ Y , show that
∑

f(P )=Q

e(P )P is an effective divisor of degree

n. (See Proposition ??).

(b) (char (k) = 0). With t as above, show that ordP (dt) = e(P )− 1.

(c) (char (k) = 0). If gX (resp. gY ) is the genus of X (resp. Y ), show that
2gX − 2 = (2gY − 2)n+

∑
P∈X(e(P )− 1). (Hurwitz Formula).
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(d) For all but a finite number of P ∈ X, e(P ) = 1. The points P ∈ X (and
f(P ) ∈ Y ) where e(P ) > 1 are called ramification points. If Y = P1,
n > 1, show that there are always some ramification points.

If k = C, a nonsingular projective curve has a natural structure of a
one-dimensional compact complex analytic manifold, and hence a two-
dimensional real analytic manifold. From the Hurwitz Formula (c) with
Y = P1 it is easy to prove that the genus defined here is the same as
the topological genus (= 1

2 dimR (H1(X,R)) of this manifold. (See Lang’s
“Algebraic Functions”.)

Solution. (a) Proof.

(b) Proof.

(c) Proof.

(d) Proof.

8.37. (Weierstrass Points; assume char (k) = 0). Let P be a point on a non-
singular curve X of genus g. Let Nr = Nr(P ) = ℓ(rP ).

(a) 1 = N0 ≤ N1 ≤ · · · ≤ N2g−1 = g. So there are exactly g numbers 0 < n1 <
n2 < · · · < ng < 2g such that there is no z ∈ k(X) with a pole only at P ,
and ordP (z) = −ni. These ni are called the Weierstrass gaps, (n1, . . . , ng)
the gap sequence at P . The point P is called a Weierstrass point if the
gap sequence at P is anything but (1, 2, . . . , g) i.e. if

∑g
i=1(ni − i) > 0.

(b) The following are equivalent:

i) P is a Weierstrass point.

ii) ℓ(gP ) > 1.

iii) ℓ(W − gP ) > 0.

iv) There is a differential ω on X with div (ω) ≥ gP .

(c) If r, s are not gaps at P , then r + s is not a gap.

(d) If 2 is not a gap at P , the sequence is (1, 3, . . . , 2g−1). Such a Weierstrass
point (if g > 1) is called hyperelliptic. X has a hyperelliptic Weierstrass
point if and only if there is a morphism f : X → P1 of degree 2. Such an
X is called a hyperelliptic curve.

(e) n is a gap at P if and only if there is a differential of the first kind ω with
ordP (ω) = n− 1.

Solution. (a) Proof.

(b) Proof.
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(c) Proof.

(d) Proof.

(e) Proof.

8.38. Fix z ∈ K, z /∈ k. For f ∈ K, denote the derivative of f with respect
to z by f ′; let f (0) = f , f (1) = f ′,f (2) = (f ′)′, etc. For f1, . . . , fr ∈ K, let

W (f1, . . . , fr) = det(() f
(i)
j ), i = 0, . . . , r − 1, j = 1, . . . , r. (The “Wronskian”).

Let ω1, . . . , ωg be a basis of Ω(0). Write ωi = fi dz, and let h =W (f1, . . . , fg).

(a) h is independent of choice of basis, up to multiplication by a constant.

(b) If t ∈ K and ωi = ei dt, then h =W (e1, . . . , eg)(t
′)1+···+g.

(c) There is a basis ω1, . . . , ωg for Ω(0) such that ordP (ωi) = ni − 1, where
(n1,. . . , ng) is the gap sequence at P .

(d) ordP (h) =
∑

(ni− i)− 1

2
g(g+1) ordP (dz) (Hint: Let t be a uniformizing

parameter at P and look at lowest degree terms in the determinant.)

(e)
∑
P,i(ni(P )−i) = (g−1)g(g+1), so there are a finite number of Weierstrass

points. Every curve of genus > 1 has Weierstrass points.

Solution. (a) Proof.

(b) Proof.

(c) Proof.

(d) Proof.

(e) Proof.
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