Ash Notes Chapter 3

Wiliam M. Faucette

1. The Definition and Some Basic Properties

Definition. A **Dedekind doman** is an integral domain *A* satisfying the following three conditions:

- (i) A is a Noetherian ring;
- (ii) A is integrally closed;
- (iii) Every nonzero prime ideal of A is maximal. [That is, A has height 1.]

Proposition. In the AKLB setup, B is integrally closed, regardless of A. If A is an integrally closed Noetherian, then B is also a Noetherian ring, as well as a finitely generated A-module.

Proof. B is integrally closed in L, which is the field of fractions on B. If A is integrally closed, then B is a submodule of a free A-module M of rank n. If A is Noetherian, then M is a Noetherian A-module, and B is a Noetherian submodule. An ideal of B is, in particular, an A-submodule of B, hence is finitely generated over A and therefore over B. It follows that B is a Noetherian ring.

Theorem. In the AKLB setup, if A is a Dedekind domain, then so is B. In particular, the ring of algebraic integers in a number field is a Dedekind domain.

Proof. From the last result, we need only show that every nonzero prime ideal Q of B is maximal. Since B is integral over A and Q is a nonzero prime ideal, then $Q \cap A$ is a prime ideal and nonzero. So, it's maximal (since A is a Dedekind domain). Thus Q is also maximal.

2. Fractional Ideals

Recall the definition of the product of ideals.

If a prime ideal P contains a product of ideals $I_1 \dots I_n$, then $P \supseteq I_j$ for some j.

Proposition. If I is a nonzero ideal of the Noetherian integral domain R, then I is contains a product of nonzero prime ideals.

Proof. Let S be the collection of all nonzero ideals that do not contain a product of nonzero prime ideals. Use the fact that if S is not empty, it must have a maximal element J. The ideal J cannot be prime, so there exist $a, b \in R$ so that $a \notin J, b \notin J$, and $ab \in J$. By maximality of J, the ideals J + Ra and J + Rb contain a product of nonzero prime ideals. But then so does their product, which is contained in J. Contradiction.

Corollary. If I is an ideal of the Noetherian ring R (not necessarily an integral domain), then I contains a product of prime ideals.

Proof. Repeat the proof of the proposition with the word "nonzero" deleted. \Box

Definition. Let R be an integral domain with fraction field K, and let I be an R-submodule of K. We say I is a **fractional ideal** of R if $rI \subset R$ for some nonzero $r \in R$. We call r a **denominator** of I. An ordinary ideal of R is a fractional ideal (take r = 1), and will often be referred to as an **integral ideal**.

Lemma. (i) If I is a finitely generated R-submodule of K, then I is a fractional ideal.

- (ii) If R is Noetherian and I is a fractional ideal of R, then I is finitely generated Rsubmodule of K.
- (iii) If I and J are fractional ideals with denominators r and s respectively, then $I \cap J$, I+J, and IJ are fractional ideals with respective denominators r (or s), rs, and rs.

Lemma. Let I be a nonzero prime ideal of the Dedekind domain R, and let J be the set of all elements $x \in K$ such that $xI \subseteq R$. Then $R \subsetneq J$.

Proof. Since $RI \subseteq R$, it follows that R is a subset of J. Pick a nonzero element $a \in I$, so that I contains a principal ideal Ra. Let n be the smallest positive integer such that Ra contains a product $P_1 \cdots P_n$ of n nonzero prime ideals. Since R is Noetherian, there is such an n since every ideal in R contains a product of prime ideals. Hence I contains one of the P_i , say P_1 . But in a Dedekind domain, every nonzero prime ideal is maximal, so $I = P_1$.

Assuming $n \geq 2$, set $I_1 = P_2 \cdots P_n$, so that $Ra \not\supseteq I_1$ by minimality of n. Choose $b \in I_1$ with $b \notin Ra$. Now $II_1 = P_1 \cdots P_n \subset Ra$, in particularly, $Ib \subseteq Ra$, hence $Iba^{-1} \subseteq R$. (note that a has an inverse in K but not necessarily in R.). Thus, $ba^{-1} \in J$, but $ba^{-1} \notin R$, for if so, $b \in Ra$, contradicting the choice of b.

The case n = 1 must be handled separately. In this case, $P_1 = I \supseteq Ra \supseteq P_1$, so I = Ra. Thus Ra is a proper ideal, and we can choose $b \in R$ with $b \notin Ra$. Then $ba^{-1} \notin R$, but $ba^{-1}I = ba^{-1}Ra = bR \subseteq R$, so $ba^{-1} \in J$.

We prove that J is the inverse of I.

Proposition. Let I be a nonzero prime ideal of the Dedekind domain R, and let $J = \{x \in K \mid xI \subseteq R\}$. Then J is a fractional ideal and IJ = R.

Proof. If r is a nonzero element of I and $x \in J$, then $rx \in R$, so $rJ \subseteq R$ and J is a fractional ideal. Now $IJ \subseteq R$ by definition of J, so IJ is an integral ideal. By the lemma, we have $I = IR \subseteq IJ \subseteq R$, and maximality of I implies that either IJ = I or IJ = R. In the latter case, IJ = R and we're done. So suppose IJ = I.

If $x \in J$, then $xI \subseteq IJ \subseteq R$, and by induction $x^nI \subseteq I$ for all $n \in \mathbb{N}$. Let r be any nonzero element of I. Then $rx^n \in x^nI \subseteq I \subseteq R$, so R[x] is a fractional ideal. Since R is Noetherian, part (ii) implies that R[x] is a finitely generated R-submodule of K. Then xis integral over R. But R, a Dedekind domain, is integrally closed, so $x \in R$. Therefore $J \subseteq R$, contradicting the last lemma. \Box

Theorem. If R is a Dedekind domain, then R is a UFD if and only if R is a PID.

Proof. Recall from basic algebra that a (commutative) ring R is a PID iff R is a UFD and every nonzero prime ideal of R is maximal.

3. Unique Factorization of Ideals

Theorem. If I is a nonzero fractional ideal of the Dedekind domain R, then I can be factored uniquely at $P_1^{n_1}P_2^{n_2}\cdots P_r^{n_r}$, where n_i are integers. Consequently, the nonzero fractional ideals form a group under multiplication.

Proof. First consider the existence of such a factorization. Without loss of generality, we can restrict to integral ideals. [Note that if $r \neq 0$ and $rI \subseteq R$, then $I = (rR)^{-1}(rI)$.]

By convention, we regard R as the product of the empty collection of prime ideals, so let S be the set of all nonzero proper ideals of R that cannot be factored in the given form, with all n_i positive integers. (This trick will yield the useful result that the factorization of integral ideals only involves positive exponents.) Since R is Noetherian, S, if nonempty, has a maximal element I_0 , which is contained in a maximal ideal I. Since every nonzero prime ideal in a Dedekind domain is invertible, I has an inverse fractional ideal J. Thus, by the lemma and proposition at the end of section 2,

$$I_0 = I_0 R \subseteq I_0 J \subseteq IJ = R.$$

Therefore I_0J is an integral ideal, and we claim that $I_0 \subset I_0J$. For it $I_0 = I_0J$, then the last paragraph of the proof of the last proposition in Section 2 can be reproduced with Ireplaced by I_0 to reach a contradiction. By maximality of I_0 , I_0J is a product of prime ideals, say $I_0J = P_1 \cdots P_r$ (with repetition allowed). Multiply both sides by the prime ideal I to conclude that I_0 is a product of prime ideals, contradicting $I_0 \in S$. Thus S must be empty, and the existence of the desired factorization is established.

Uniqueness is on p. 5 in box.

Corollary. A nonzero fractional ideal I is an integral ideal if and only if all exponents in the prime factorization of I are nonnegative.

Proof. The "only if" part was noted in the proof of the last theorem. The "if" part follows because a power of an integral ideal is still an integral ideal. \Box

Corollary. Denote by $n_P(I)$ the exponent of the prime ideal P in the factorization of I. (If P does not appear, take $n_P(I) = 0$.) If I_1 and I_2 are nonzero fractional ideals, then $I_1 \supseteq I_2$ if and only if for every prime ideal P of R, $n_P(I_1) \le n_P(I_2)$.

Proof. We have $I_2 \subseteq I_1$ iff $I_2I_1^{-1} \subseteq R$, and by the last corollary, this happens iff for every $P, n_P(I_2) - n_P(I_1) \ge 0$.

Definition. Let I_1 and I_2 be nonzero integral ideals. We say that I_1 **divides** I_2 if $I_2 = JI_1$ for some integral ideal J. Just as with integers, an equivalent statement is that each prime factor of I_1 is a factor of I_2 .

Corollary. If I_1 and I_2 are nonzero integral ideals, then I_1 divides I_2 if and only if $I_1 \supseteq I_2$. In other words, for these ideals,

DIVIDES MEANS CONTAINS.

Proof. By the definition, I_1 divides I_2 iff $n_P(I_1) \le n_P(I_2)$ for every prime ideal P. By the last corollary, this is equivalent to $I_1 \supseteq I_2$.

GCD's and LCM's

In a Dedekind domain, we can compute the GCD and LCM of two nonzero ideals. The GCD is the smallest ideal containing both I and J, that is, I + J. The least common multiple is the largest ideal contains in both I and J, which is $I \cap J$.

A Dedekind domain comes close to being a PID in the sense that every nonzero integral ideal, in fact every nonzero fractional ideal, divides some principal ideal.

Proposition. Let I be a nonzero fractional ideal of the Dedekind domain R. Then there is a nonzero integral ideal J such that IJ is a principal ideal of R.

Proof. By the theorem on factorization of fractional ideals in a Dedekind domain R, there is a nonzero fractional ideal I' such that II' = R. By definition of fractional ideal, there is a nonzero element $r \in R$ such that rI' is an integral ideal. If J = rI', then IJ = Rr, a principal ideal of R.

4. Some Arithmetic in Dedekind Domains

Page 7 in box.