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1. The Definition and Some Basic Properties

Definition. A Dedekind doman is an integral domain A satisfying the following three
conditions:

(i) A is a Noetherian ring;
(ii) A is integrally closed;
(iii) Every nonzero prime ideal of A is maximal. [That is, A has height 1.]

Proposition. In the AKLB setup, B is integrally closed, regardless of A. If A is an
integrally closed Noetherian, then B is also a Noetherian ring, as well as a finitely generated
A-module.

Proof. B is integrally closed in L, which is the field of fractions on B. If A is integrally
closed, then B is a submodule of a free A-module M of rank n. If A is Noetherian, then
M is a Noetherian A-module, and B is a Noetherian submodule. An ideal of B is, in
particular, an A-submodule of B, hence is finitely generated over A and therefore over B.
It follows that B is a Noetherian ring. O

Theorem. In the AKLB setup, if A is a Dedekind domain, then so is B. In particular,
the ring of algebraic integers in a number field is a Dedekind domain.

Proof. From the last result, we need only show that every nonzero prime ideal @) of B
is maximal. Since B is integral over A and @ is a nonzero prime ideal, then Q N A is a
prime ideal and nonzero. So, it’s maximal (since A is a Dedekind domain). Thus @ is also
maximal. O



2 FRACTIONAL IDEALS

2. Fractional Ideals

Recall the definition of the product of ideals.

If a prime ideal P contains a product of ideals I ... I,, then P O I; for some j.

Proposition. If I is a nonzero ideal of the Noetherian integral domain R, then I is con-
tains a product of nonzero prime ideals.

Proof. Let 8 be the collection of all nonzero ideals that do not contain a product of nonzero
prime ideals. Use the fact that if 8 is not empty, it must have a maximal element J. The
ideal J cannot be prime, so there exist a,b € R so that a ¢ J, b ¢ J, and ab € J. By
maximality of J, the ideals J + Ra and J + Rb contain a product of nonzero prime ideals.
But then so does their product, which is contained in J. Contradiction. O

Corollary. If I is an ideal of the Noetherian ring R (not necessarily an integral domain),
then I contains a product of prime ideals.

Proof. Repeat the proof of the proposition with the word “nonzero” deleted. O

Definition. Let R be an integral domain with fraction field K, and let I be an R-
submodule of K. We say [ is a fractional ideal of R if rI C R for some nonzero
r € R. We call r a denominator of I. An ordinary ideal of R is a fractional ideal (take
r = 1), and will often be referred to as an integral ideal.

Lemma. (i) If I is a finitely generated R-submodule of K, then I is a fractional ideal.

(ii) If R is Noetherian and I is a fractional ideal of R, then I is finitely generated R-
submodule of K.

(iii) If I and J are fractional ideals with denominators r and s respectively, then I N J,
I+ J, and IJ are fractional ideals with respective denominators r (or s), rs, and rs.

Lemma. Let I be a nonzero prime ideal of the Dedekind domain R, and let J be the set
of all elements x € K such that xI C R. Then R C J.

Proof. Since RI C R, it follows that R is a subset of J. Pick a nonzero element a € I, so
that I contains a principal ideal Ra. Let n be the smallest positive integer such that Ra
contains a product P; - -- P, of n nonzero prime ideals. Since R is Noetherian, there is such
an n since every ideal in R contains a product of prime ideals. Hence I contains one of the
P;, say P;. But in a Dedekind domain, every nonzero prime ideal is maximal, so I = P;.



3 UNIQUE FACTORIZATION OF IDEALS

Assuming n > 2, set Iy = P5--- Py, so that Ra 2 I; by minimality of n. Choose b € I}
with b ¢ Ra. Now II; = P; --- P, C Ra, in particularly, Ib C Ra, hence Iba~! C R. (note
that a has an inverse in K but not necessarily in R.). Thus, ba~! € J, but ba=! ¢ R, for
if so, b € Ra, contradicting the choice of b.

The case n = 1 must be handled separately. In this case, P, =1 O Ra 2 Py, so I = Ra.
Thus Ra is a proper ideal, and we can choose b € R with b ¢ Ra. Then ba~! ¢ R, but
ba~'I =ba"'Ra=bR C R,sobat € J. O

We prove that J is the inverse of I.

Proposition. Let I be a monzero prime ideal of the Dedekind domain R, and let
J={zxe€ K|zl CR}. Then J is a fractional ideal and I1J = R.

Proof. If r is a nonzero element of I and x € J, then rx € R, so rJ C R and J is a
fractional ideal. Now IJ C R by definition of J, so I.J is an integral ideal. By the lemma,
we have I = IR C IJ C R, and maximality of I implies that either IJ =1 or IJ = R. In
the latter case, IJ = R and we’re done. So suppose IJ = I.

If x € J, then I C IJ C R, and by induction ™I C [ for all n € N. Let r be any
nonzero element of I. Then rz™ € 2" C I C R, so R[z] is a fractional ideal. Since R is
Noetherian, part (ii) implies that R[z] is a finitely generated R-submodule of K. Then x
is integral over R. But R, a Dedekind domain, is integrally closed, so x € R. Therefore
J C R, contradicting the last lemma. O

Theorem. If R is a Dedekind domain, then R is a UFD if and only if R is a PID.

Proof. Recall from basic algebra that a (commutative) ring R is a PID iff R is a UFD and
every nonzero prime ideal of R is maximal. O

3. Unique Factorization of Ideals

Theorem. If I is a nonzero fractional ideal of the Dedekind domain R, then I can be
factored uniquely at P Py*--- PP, where n; are integers. Consequently, the nonzero

fractional ideals form a group under multiplication.

Proof. First consider the existence of such a factorization. Without loss of generality, we
can restrict to integral ideals. [Note that if r # 0 and 71 C R, then I = (rR)~'(rI)



3 UNIQUE FACTORIZATION OF IDEALS

By convention, we regard R as the product of the empty collection of prime ideals, so let
8 be the set of all nonzero proper ideals of R that cannot be factored in the given form,
with all n; positive integers. (This trick will yield the useful result that the factorization
of integral ideals only involves positive exponents.) Since R is Noetherian, 8, if nonempty,
has a maximal element Iy, which is contained in a maximal ideal I. Since every nonzero
prime ideal in a Dedekind domain is invertible, I has an inverse fractional ideal J. Thus,
by the lemma and proposition at the end of section 2,

Io=I,RCI,J CIJ=R.

Therefore IyJ is an integral ideal, and we claim that Iy C IyJ. For it Iy = IyJ, then the
last paragraph of the proof of the last proposition in Section 2 can be reproduced with 1
replaced by Iy to reach a contradiction. By maximality of Iy, IpJ is a product of prime
ideals, say IpJ = Pj--- P, (with repetition allowed). Multiply both sides by the prime
ideal I to conclude that Iy is a product of prime ideals, contradicting Iy € 8. Thus & must
be empty, and the existence of the desired factorization is established.

Uniqueness is on p. 5 in box. [

Corollary. A nonzero fractional ideal I is an integral ideal if and only if all exponents in
the prime factorization of I are nonnegative.

Proof. The “only if” part was noted in the proof of the last theorem. The “if” part follows
because a power of an integral ideal is still an integral ideal. O

Corollary. Denote by np(I) the exponent of the prime ideal P in the factorization of I.
(If P does not appear, take np(I) = 0.) If I and Iy are nonzero fractional ideals, then
Iy D I, if and only if for every prime ideal P of R, np(I1) < np(l2).

Proof. We have I, C Iy iff Io1; 1 c R, and by the last corollary, this happens iff for every
P, np(Ig)—np(Il) ZO O]

Definition. Let I; and I be nonzero integral ideals. We say that I divides I if I = J1I;
for some integral ideal J. Just as with integers, an equivalent statement is that each prime
factor of I is a factor of Is.

Corollary. If I; and I are nonzero integral ideals, then Iy divides Is if and only if Iy D Is.
In other words, for these ideals,

DIVIDES MEANS CONTAINS.



4 SOME ARITHMETIC IN DEDEKIND DOMAINS

Proof. By the definition, I divides Iy iff np(I1) < np(I2) for every prime ideal P. By the
last corollary, this is equivalent to I; 2 Is. O

GCD’s and LCM’s

In a Dedekind domain, we can compute the GCD and LCM of two nonzero ideals. The
GCD is the smallest ideal containing both I and J, that is, I + J. The least common
multiple is the largest ideal contains in both I and J, which is I N J.

A Dedekind domain comes close to being a PID in the sense that every nonzero integral
ideal, in fact every nonzero fractional ideal, divides some principal ideal.

Proposition. Let I be a nonzero fractional ideal of the Dedekind domain R. Then there
s a nonzero integral ideal J such that I.J is a principal ideal of R.

Proof. By the theorem on factorization of fractional ideals in a Dedekind domain R, there
is a nonzero fractional ideal I’ such that II’ = R. By definition of fractional ideal, there
is a nonzero element r € R such that rI’ is an integral ideal. If J = rI’, then I.J = Rr, a
principal ideal of R. O

4. Some Arithmetic in Dedekind Domains
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