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1. The Definition and Some Basic Properties

Definition. A Dedekind doman is an integral domain A satisfying the following three
conditions:

(i) A is a Noetherian ring;

(ii) A is integrally closed;

(iii) Every nonzero prime ideal of A is maximal. [That is, A has height 1.]

Proposition. In the AKLB setup, B is integrally closed, regardless of A. If A is an
integrally closed Noetherian, then B is also a Noetherian ring, as well as a finitely generated
A-module.

Proof. B is integrally closed in L, which is the field of fractions on B. If A is integrally
closed, then B is a submodule of a free A-module M of rank n. If A is Noetherian, then
M is a Noetherian A-module, and B is a Noetherian submodule. An ideal of B is, in
particular, an A-submodule of B, hence is finitely generated over A and therefore over B.
It follows that B is a Noetherian ring.

Theorem. In the AKLB setup, if A is a Dedekind domain, then so is B. In particular,
the ring of algebraic integers in a number field is a Dedekind domain.

Proof. From the last result, we need only show that every nonzero prime ideal Q of B
is maximal. Since B is integral over A and Q is a nonzero prime ideal, then Q ∩ A is a
prime ideal and nonzero. So, it’s maximal (since A is a Dedekind domain). Thus Q is also
maximal.
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2 FRACTIONAL IDEALS

2. Fractional Ideals

Recall the definition of the product of ideals.

If a prime ideal P contains a product of ideals I1 . . . In, then P ⊇ Ij for some j.

Proposition. If I is a nonzero ideal of the Noetherian integral domain R, then I is con-
tains a product of nonzero prime ideals.

Proof. Let S be the collection of all nonzero ideals that do not contain a product of nonzero
prime ideals. Use the fact that if S is not empty, it must have a maximal element J . The
ideal J cannot be prime, so there exist a, b ∈ R so that a /∈ J , b /∈ J , and ab ∈ J . By
maximality of J , the ideals J +Ra and J +Rb contain a product of nonzero prime ideals.
But then so does their product, which is contained in J . Contradiction.

Corollary. If I is an ideal of the Noetherian ring R (not necessarily an integral domain),
then I contains a product of prime ideals.

Proof. Repeat the proof of the proposition with the word “nonzero” deleted.

Definition. Let R be an integral domain with fraction field K, and let I be an R-
submodule of K. We say I is a fractional ideal of R if rI ⊂ R for some nonzero
r ∈ R. We call r a denominator of I. An ordinary ideal of R is a fractional ideal (take
r = 1), and will often be referred to as an integral ideal.

Lemma. (i) If I is a finitely generated R-submodule of K, then I is a fractional ideal.

(ii) If R is Noetherian and I is a fractional ideal of R, then I is finitely generated R-
submodule of K.

(iii) If I and J are fractional ideals with denominators r and s respectively, then I ∩ J ,
I +J , and IJ are fractional ideals with respective denominators r (or s), rs, and rs.

Lemma. Let I be a nonzero prime ideal of the Dedekind domain R, and let J be the set
of all elements x ∈ K such that xI ⊆ R. Then R ⊊ J .

Proof. Since RI ⊆ R, it follows that R is a subset of J . Pick a nonzero element a ∈ I, so
that I contains a principal ideal Ra. Let n be the smallest positive integer such that Ra
contains a product P1 · · ·Pn of n nonzero prime ideals. Since R is Noetherian, there is such
an n since every ideal in R contains a product of prime ideals. Hence I contains one of the
Pi, say P1. But in a Dedekind domain, every nonzero prime ideal is maximal, so I = P1.
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3 UNIQUE FACTORIZATION OF IDEALS

Assuming n ≥ 2, set I1 = P2 · · ·Pn, so that Ra ̸⊇ I1 by minimality of n. Choose b ∈ I1
with b /∈ Ra. Now II1 = P1 · · ·Pn ⊂ Ra, in particularly, Ib ⊆ Ra, hence Iba−1 ⊆ R. (note
that a has an inverse in K but not necessarily in R.). Thus, ba−1 ∈ J , but ba−1 /∈ R, for
if so, b ∈ Ra, contradicting the choice of b.

The case n = 1 must be handled separately. In this case, P1 = I ⊇ Ra ⊇ P1, so I = Ra.
Thus Ra is a proper ideal, and we can choose b ∈ R with b /∈ Ra. Then ba−1 /∈ R, but
ba−1I = ba−1Ra = bR ⊆ R, so ba−1 ∈ J .

We prove that J is the inverse of I.

Proposition. Let I be a nonzero prime ideal of the Dedekind domain R, and let
J = {x ∈ K | xI ⊆ R}. Then J is a fractional ideal and IJ = R.

Proof. If r is a nonzero element of I and x ∈ J , then rx ∈ R, so rJ ⊆ R and J is a
fractional ideal. Now IJ ⊆ R by definition of J , so IJ is an integral ideal. By the lemma,
we have I = IR ⊆ IJ ⊆ R, and maximality of I implies that either IJ = I or IJ = R. In
the latter case, IJ = R and we’re done. So suppose IJ = I.

If x ∈ J , then xI ⊆ IJ ⊆ R, and by induction xnI ⊆ I for all n ∈ N. Let r be any
nonzero element of I. Then rxn ∈ xnI ⊆ I ⊆ R, so R[x] is a fractional ideal. Since R is
Noetherian, part (ii) implies that R[x] is a finitely generated R-submodule of K. Then x
is integral over R. But R, a Dedekind domain, is integrally closed, so x ∈ R. Therefore
J ⊆ R, contradicting the last lemma.

Theorem. If R is a Dedekind domain, then R is a UFD if and only if R is a PID.

Proof. Recall from basic algebra that a (commutative) ring R is a PID iff R is a UFD and
every nonzero prime ideal of R is maximal.

3. Unique Factorization of Ideals

Theorem. If I is a nonzero fractional ideal of the Dedekind domain R, then I can be
factored uniquely at Pn1

1 Pn2
2 · · ·Pnr

r , where ni are integers. Consequently, the nonzero
fractional ideals form a group under multiplication.

Proof. First consider the existence of such a factorization. Without loss of generality, we
can restrict to integral ideals. [Note that if r ̸= 0 and rI ⊆ R, then I = (rR)−1(rI).]
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3 UNIQUE FACTORIZATION OF IDEALS

By convention, we regard R as the product of the empty collection of prime ideals, so let
S be the set of all nonzero proper ideals of R that cannot be factored in the given form,
with all ni positive integers. (This trick will yield the useful result that the factorization
of integral ideals only involves positive exponents.) Since R is Noetherian, S, if nonempty,
has a maximal element I0, which is contained in a maximal ideal I. Since every nonzero
prime ideal in a Dedekind domain is invertible, I has an inverse fractional ideal J . Thus,
by the lemma and proposition at the end of section 2,

I0 = I0R ⊆ I0J ⊆ IJ = R.

Therefore I0J is an integral ideal, and we claim that I0 ⊂ I0J . For it I0 = I0J , then the
last paragraph of the proof of the last proposition in Section 2 can be reproduced with I
replaced by I0 to reach a contradiction. By maximality of I0, I0J is a product of prime
ideals, say I0J = P1 · · ·Pr (with repetition allowed). Multiply both sides by the prime
ideal I to conclude that I0 is a product of prime ideals, contradicting I0 ∈ S. Thus S must
be empty, and the existence of the desired factorization is established.

Uniqueness is on p. 5 in box.

Corollary. A nonzero fractional ideal I is an integral ideal if and only if all exponents in
the prime factorization of I are nonnegative.

Proof. The “only if” part was noted in the proof of the last theorem. The “if” part follows
because a power of an integral ideal is still an integral ideal.

Corollary. Denote by nP (I) the exponent of the prime ideal P in the factorization of I.
(If P does not appear, take nP (I) = 0.) If I1 and I2 are nonzero fractional ideals, then
I1 ⊇ I2 if and only if for every prime ideal P of R, nP (I1) ≤ nP (I2).

Proof. We have I2 ⊆ I1 iff I2I
−1
1 ⊆ R, and by the last corollary, this happens iff for every

P , nP (I2)− nP (I1) ≥ 0.

Definition. Let I1 and I2 be nonzero integral ideals. We say that I1 divides I2 if I2 = JI1
for some integral ideal J . Just as with integers, an equivalent statement is that each prime
factor of I1 is a factor of I2.

Corollary. If I1 and I2 are nonzero integral ideals, then I1 divides I2 if and only if I1 ⊇ I2.
In other words, for these ideals,

Divides means contains.

4



4 SOME ARITHMETIC IN DEDEKIND DOMAINS

Proof. By the definition, I1 divides I2 iff nP (I1) ≤ nP (I2) for every prime ideal P . By the
last corollary, this is equivalent to I1 ⊇ I2.

GCD’s and LCM’s

In a Dedekind domain, we can compute the GCD and LCM of two nonzero ideals. The
GCD is the smallest ideal containing both I and J , that is, I + J . The least common
multiple is the largest ideal contains in both I and J , which is I ∩ J .

A Dedekind domain comes close to being a PID in the sense that every nonzero integral
ideal, in fact every nonzero fractional ideal, divides some principal ideal.

Proposition. Let I be a nonzero fractional ideal of the Dedekind domain R. Then there
is a nonzero integral ideal J such that IJ is a principal ideal of R.

Proof. By the theorem on factorization of fractional ideals in a Dedekind domain R, there
is a nonzero fractional ideal I ′ such that II ′ = R. By definition of fractional ideal, there
is a nonzero element r ∈ R such that rI ′ is an integral ideal. If J = rI ′, then IJ = Rr, a
principal ideal of R.

4. Some Arithmetic in Dedekind Domains

Page 7 in box.
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