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Let E/F be a finite field extension. Let x ∈ E. Letm(x) be the F -linear transformation
y 7→ m(x)y = xy

Definition. The norm of x is NE/F (x) = det(m(x)) and the trace of x is TE/F (x) =
tr (m(x)).

Definition. Let A(x) be the matrix for m(x) with respect to some basis of E over F . The
norm of x is the determinant of A(x) and the trace of x is the trace of A(x).

The characteristic polynomial of x is the characteristic polynomial of the matrix
A(x). That is,

charE/F (x) = det(XI −A(x)) .

Fact: The second coefficient of charE/F (x) is−T (x) and the constant coefficient is (−1)nN(x).

Fact: Trace is additive. Norm is multiplicative.

Proposition. Let min(x, F ) be the minimal polynomial of x over F and let r = [E : F (x)].
Then

charE/F (x) = [min(x, F )]r .

Corollary. Let [E : F ] = n and [F (x) : F ] = d. Let x1, . . . , xd be the roots of min(x, F ),
counting multiplicity, in a splitting field. Then

N(x) =

(
d∏

i=1

xi

)n/d

, T (x) =
n

d

d∑
i=1

xi, charE/F (x) =

[
d∏

i=1

(X − xi)

]n/d
.

Proposition. Let E/F be a separable extension of degree n, and let σ1, . . . , σn be the
distinct F -embeddings (that is, F -monomorphisms) of E into an algebraic closure of E, or
equally well into a normal extension L of F containing E. Then

NE/F (x) =

n∏
i=1

σi(x), TE/F (x) =

n∑
i=1

σi(x), charE/F (x) =

n∏
i=1

(X − σi(x)).
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1 BASIC SETUP FOR ALGEBRAIC NUMBER THEORY

Proposition. If F ≤ K ≤ E, where E/F is finite and separable, then

TE/F = TK/F ◦ TE/K and NE/F = NK/F ◦NE/K .

Proposition. If E/F is a finite separable extension, then the trace TE/F (x) cannot be 0
for every x ∈ E.

This is a result of Dedekind’s Lemma.

Remark. This proposition can be restated as: If E/F is finite and separable, the trace
form, that is, the bilinear form (x, y) → TE/F (xy), is nondegenerate.

Example. Let x = a+ b
√
m ∈ Q(

√
m), where m is a square-free integer.

The Galois group of the extension Q(
√
m)/Q consists of the identity and the automor-

phism σ(a+ b
√
m) = a− b

√
m. Then

T (x) = x+ σ(x) = 2a and N(x) = xσ(x) = a2 −mb2.

1. Basic Setup for Algebraic Number Theory

A and integral domain with fraction field K. L is a finite separable extension of K and B
is the ingegral closure of A in L.

L B

K A

In the most important case, A = Z, K = Q, L is a number field, and B is the ring of
algebraic integers in L.

Proposition. If x ∈ B, then the coefficients of charL/K(x) and min(x,K) are integral
over A. In particular, TL/K(x) and NL/K(x) are integral over A. If A is integrally closed,
then the coefficients belong to A.

Corollary. Assume A integrally closed, and let x ∈ L. Then x is integral over A, that is,
x ∈ B, if and only if the minimal polynomial of x over K has coefficients in A.

Corollary. An algebraic integer a that belongs to Q must in fact belong to Z.
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3 THE DISCRIMINANT

2. Quadratic Extensions of the Rationals

Let m be a square-free integer and L = Q(
√
m).

The minimal polynomial over Q of the element a+ b
√
m (with a, b ∈ Q) is X2−2aX+

a2 −mb2. So a+ b
√
m is an algebraic integer if and only if 2a and a2 −mb2 lie in Z.

(2a)2 − 4(a2 −mb2) = 4mb2 = (2b)2m ∈ Z

If 2b ̸∈ Z, then any prime in the denominator of b cannot be canceled by m since m is
square-free. So, in this case, 2b must also be in Z.

Proposition. The set B of algebraic integers of Q(
√
m), m square-free, can be described

as follows.

(i) If m ̸≡ 1 (mod 4), then B consists of all a+ b
√
m, a, b ∈ Z.

(ii) If m ≡ 1 (mod 4), then B consists of all u
2 + v

2

√
m, u, v ∈ Z with u ≡ v (mod 2).

Proposition. There is a basis for L/K consisting entirely of elements of B. (For any
element in L, a nonzero multiple (by an element of A) of that element is in B.

Corollary. If x ∈ L, then there is a nonzero element a ∈ A and an element y ∈ B such
that x = y/a. In particular, L is the fraction field of B.

Theorem. Let (x, y) be a nondegenerate symmetric bilinear form on an n-dimensional
vector space V . If x1, . . . , xn is a basis for V , then there is a basis y1, . . . , yn for V , the
dual basis referred to V , such that (xi, yj) = δij.

3. The Discriminant

Definition. If n = [L : K], the discriminant of the n-tuple x = (x1, . . . , xn) of elements
of L is

D(x) = det
(
TL/K(xixj)

)
.

Form the matrix with aij = TL/K(xixj) and take the determinant.

Lemma. If y = Cx, where C is an n by n matrix over K and x and y are n-tuples written
as column vectors, then D(y) = (detC)2D(x).
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3 THE DISCRIMINANT

Proof. If C = [cij ], then yr =
∑n

i=1 crixi and

yrys =

(
n∑

i=1

crixi

) n∑
j=1

csjxj


=

n∑
i,j=1

crixixjcsj

So,

T (yrys) = T

 n∑
i,j=1

crixixjcsj


= criT

 n∑
i,j=1

xixj

 csj ,

so,
(T (yrys)) = C(T (xixj))C

T

The result follows by taking the determinant.

Lemma. Let σ1, . . . , σn be the distinct K-embeddings of L into an algebraic closure of L.
Then D(x) = [det(σi(xj))]

2.

Proof.

T (xixj) =
∑
k

σk(xixj) =
∑
k

σk(xi)σk(xj),

so if H = [σi(xj)], then (T (xixj)) = HTH. Now take determinants.

Proposition. If x = (x1, . . . , xn), then the xi form a basis for L over K if and only if
D(x) ̸= 0.

Proof. See Chapter 2, page 9.

Proposition. Assume that L = K(x), and let f be the minimal polynomial of x over K.
Let D be the discriminant of the basis 1, x, x2, . . . , xn−1 over K, and let x1, . . . , xn be the
roots of f in a splitting field, with x1 = x. Then D =

∏
i<j(xi − xj)

2, the discriminant of
the polynomial f .
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3 THE DISCRIMINANT

Proof. Let σi be the K-embedding that takes x to xi, i = 1, . . . , n. Then the matrix
σi(x

j) = xji , 0 ≤ j ≤ n− 1. Then D is the square of the determinant of the matrix

V =


1 x1 x21 · · · xn−1

1

1 x2 x22 · · · xn−1
2

...
...

...
. . .

...
1 xn x2n · · · xn−1

n

 .

But det(V ) is a Vandermonde determinant, whose value is
∏

i<j(xi − xj).

Corollary. Under the hypothesis of the last proposition

D = (−1)(
n
2)NL/K(f ′(x))

where f ′ is the derivative of f .

Proof. Let c = (−1)(
n
2). Then

D =
∏
i<j

(xi − xj)
2 = c

∏
i ̸=j

(xi − xj) = c
∏
i

∏
j ̸=i

(xi − xj).

But f(X) = (X − x1) · · · (X − xn), so

f ′(X) =
∑
k

∏
j ̸=k

(X − xj),

and
f ′(xi) =

∑
k

∏
j ̸=k

(X − xj)|xi =
∏
j ̸=i

(xi − xj).

So,

D = c

n∏
i=1

f ′(xi).

But,
f ′(xi) = f ′(σi(x)) = σi(f

′(x)),

so
D = cNL/k(f

′(x)).
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3 THE DISCRIMINANT

Remark. In the AKLB setup with [L : K] = n, suppose that B turns out to be a free
A-module of rank n. A basis for this module is an integral basis of B (or of L). This is a
basis for L over K. Such a basis always exists when L is a number field. The discriminant
is the same for all integral bases. It is called the field discriminant.

Theorem. If A is integrally closed, then B is a submodule of a free A-module of rank n.
If A is a PID, then B itself is free of rank n over A, so B has an integral basis.

Proof. Let x1, . . . , xn be any basis for L overK consisting of elements of B and let y1, . . . , yn
be the dual basis referred to L. If z ∈ B, then we can write z =

∑
j ajyj with aj ∈ K. We

know that the trace of xz belongs to A, and we also hve

T (xiz) = T

 n∑
j=1

ajxiyj

 =

n∑
j=1

ajT (xiyj) =
n∑

j=1

ajδij = ai.

Thus, each ai belongs to A, so that B is an A-submodule of the free A-module ⊕n
j=1Ayj .

Moreover, B contains the free A-module ⊕n
j=1Axj . Consequently, if A is a PID, then B is

free over A of rank n.

Corollary. The set B if algebraic integers in any number field L if a free Z-module of
rank n = [L : Q]. Therefore B has an integral basis. The discriminant is the same fo every
integral basis.

Proof. Take A = Z in the theorem to show that B has an integral basis. The transformation
matrix C between two integral bases is invertible, and both C and C−1 have rational
integral coefficients. Take determinants to conclude that det(C) is a unit in Z. But then
D is well-defined for all integral bases.

Remark. An invertible matrix C with coefficients in Z is unimodular if C−1 also has
coefficients in Z. We just saw that unimodular matrix has determinant ±1. Conversely, a
matrix over Z with determinant ±1 is unimodular, by Cramer’s rule.

Theorem. Let B be the algebraic integers of Q(
√
m), where m is a square-free integer.

(i) If m ̸≡ 1 (mod 4), then 1 and
√
m form an integral basis, and the field discriminant

is d = 4m.

(ii) If m ≡ 1 (mod 4), then 1 and (1 +
√
m)/2 form an integral basis, and the field

discriminant is d = m.
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3 THE DISCRIMINANT

Proof. (i) The numbers 1 and
√
m span B over Z, and the are linearly independent.

The trace of a+ b
√
m is 2a, so the field discriminant is∣∣∣∣2 0

0 2m

∣∣∣∣ = 4m.

[Recall: D(x) = det
(
TL/Q(xixj)

)
]]

(ii) The numbers 1 and (1 +
√
m)/2 span B over Z, and the are linearly independent.

The trace of a+ b
√
m is 2a, so the field discriminant is∣∣∣∣2 1

1 (1 +m)/2

∣∣∣∣ = m.

[Recall: D(x) = det
(
TL/Q(xixj)

)
]]
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