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Let E/F be a finite field extension. Let z € E. Let m(x) be the F-linear transformation
y = m(z)y =y
Definition. The norm of x is Ng/p(x) = det(m(z)) and the trace of = is Tg/p(x) =
tr (m(z)).

Definition. Let A(z) be the matrix for m(z) with respect to some basis of E over F. The
norm of z is the determinant of A(z) and the trace of x is the trace of A(x).

The characteristic polynomial of x is the characteristic polynomial of the matrix
A(z). That is,
chargp(7) = det(X1 — A(z)) .

Fact: The second coefficient of charg/p(z) is —7'(z) and the constant coefficient is (—1)" N (z).

Fact: Trace is additive. Norm is multiplicative.

Proposition. Let min(z, F') be the minimal polynomial of x over F and letr = [E : F(x)].
Then

charp/p(z) = [min(z, F)]".

Corollary. Let [E: F| =n and [F(z) : F] =d. Let x1,...,x4 be the roots of min(x, F),
counting multiplicity, in o splitting field. Then

d n/d . d d n/d
N(z) = (H ac) . T = > i, chargp(z) = [H(X - xi)] .
=1 =1

i=1
Proposition. Let E/F be a separable extension of degree m, and let o1,...,0, be the
distinct F'-embeddings (that is, F-monomorphisms) of E into an algebraic closure of E, or
equally well into a normal extension L of F' containing E. Then
n n n

Ngyp() = [[oi@), Tpp(z)=> oi(z), chargp(z) = [[(X - 0i(x)).

i=1 i=1 i=1



1 BASIC SETUP FOR ALGEBRAIC NUMBER THEORY

Proposition. If FF < K < E, where E/F is finite and separable, then

TE/F:TK/FOTE/K and NE/F:NK/FONE/K
Proposition. If E/F is a finite separable extension, then the trace Tg p(x) cannot be 0

for every x € F.

This is a result of Dedekind’s Lemma.

Remark. This proposition can be restated as: If E/F is finite and separable, the trace
form, that is, the bilinear form (z,y) — T, p(7y), is nondegenerate.

Example. Let x = a + by/m € Q(y/m), where m is a square-free integer.

The Galois group of the extension Q(1/m)/Q consists of the identity and the automor-
phism o(a + by/m) = a — by/m. Then

T(x)=z+o0(x) =22 and N(z)=zo(x)=a®>—mb’.

1. Basic Setup for Algebraic Number Theory

A and integral domain with fraction field K. L is a finite separable extension of K and B
is the ingegral closure of A in L.

—
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In the most important case, A = Z, K = Q, L is a number field, and B is the ring of
algebraic integers in L.

Proposition. If v € B, then the coefficients of chary i (r) and min(x, K) are integral
over A. In particular, Ty, k(v) and N,k (x) are integral over A. If A is integrally closed,
then the coefficients belong to A.

Corollary. Assume A integrally closed, and let x € L. Then x is integral over A, that is,
x € B, if and only if the minimal polynomial of x over K has coefficients in A.

Corollary. An algebraic integer a that belongs to Q must in fact belong to Z.
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2. Quadratic Extensions of the Rationals

Let m be a square-free integer and L = Q(y/m).

The minimal polynomial over Q of the element a+ by/m (with a, b € Q) is X2 —2aX +
a? —mb?. So a + by/m is an algebraic integer if and only if 2a and a? — mb? lie in Z.

(2a)? — 4(a® — mb*) = 4mb* = (2b)*m € Z

If 2b ¢ 7Z, then any prime in the denominator of b cannot be canceled by m since m is
square-free. So, in this case, 2b must also be in Z.

Proposition. The set B of algebraic integers of Q(v/m), m square-free, can be described
as follows.

(i) If m # 1 (mod4), then B consists of all a + by/m, a, b € Z.
(ii) Ifm =1 (mod4), then B consists of all § + 5\/m, u, v € Z with u = v (mod 2).

Proposition. There is a basis for L/K consisting entirely of elements of B. (For any
element in L, a nonzero multiple (by an element of A) of that element is in B.

Corollary. If x € L, then there is a nonzero element a € A and an element y € B such
that x = y/a. In particular, L is the fraction field of B.

Theorem. Let (z,y) be a nondegenerate symmetric bilinear form on an n-dimensional
vector space V. If x1,...,x, is a basis for V, then there is a basis yi,...,yn for V, the
dual basis referred to V, such that (x;,y;) = 6;j.

3. The Discriminant

Definition. If n = [L : K], the discriminant of the n-tuple z = (x1,...,z,) of elements
of L is
D(z) = det (T k (wixy)) -

Form the matrix with a;; = Ty, /k (7;7;) and take the determinant.

Lemma. Ify = Cz, where C is an n by n matriz over K and x and y are n-tuples written
as column vectors, then D(y) = (det C)2D(x).
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Proof. If C' = [¢;j], then y, = > " | ¢rix; and

n n
YrYs = (Z Cri$i> chjﬂfj

i=1 j=1
n
= Z CriZiTjCsj
i,j=1
So,
n
T(yrys) =T Z CriliTjCsj
ij=1
n
=T | Y mizy |
ij=1
S0,
(T(yrys)) = C(T(xixj))CT
The result follows by taking the determinant. O
Lemma. Let oq,...,0, be the distinct K-embeddings of L into an algebraic closure of L.

Then D(z) = [det(o;(x;))]?.

Proof.
T(wirj) = Y or(ricy) = Y ox(w)ok(x;),
k k
so if H = [o3(z;)], then (T(z;z;)) = HT H. Now take determinants. O
Proposition. If x = (x1,...,xy,), then the z; form a basis for L over K if and only if
D(z) #0.
Proof. See Chapter 2, page 9. 0

Proposition. Assume that L = K(z), and let f be the minimal polynomial of x over K.
Let D be the discriminant of the basis 1,z,22,...,2" " over K, and let z1,...,x, be the
roots of f in a splitting field, with x1 = x. Then D = [[,_.(z; — x;)?, the discriminant of
the polynomial f.

1<J
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Proof. Let o; be the K-embedding that takes x to x;, i = 1,...,n. Then the matrix
oi(z?) =z}, 0<j <n—1. Then D is the square of the determinant of the matrix

1z 2 - 2!
2 n—1
1 xo x5 -+
V= .
1z, 22 - 2t

But det(V) is a Vandermonde determinant, whose value is [, ;(z; — z;). O

Corollary. Under the hypothesis of the last proposition

D= (_1)(3)NL/K(f/(x))

where f' is the derivative of f.

Proof. Let ¢ = (—1)(3) Then

D:H(xi—xj)2:cH(xi— —CHH x; — ).

i<j i#j i j#i

But f(X)= (X —21) - (X —x,), so

=> [Ix ==,

k j#k

and
fl(ai) = Z H(X = )|, = H(mz 5)
k j#k J#i
So,
D= CH f(x)

i=1

But,
f'(@i) = fl(oi(@)) = oi(f'(2)),
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Remark. In the AKLB setup with [L : K| = n, suppose that B turns out to be a free
A-module of rank n. A basis for this module is an integral basis of B (or of L). This is a
basis for L over K. Such a basis always exists when L is a number field. The discriminant
is the same for all integral bases. It is called the field discriminant.

Theorem. If A is integrally closed, then B is a submodule of a free A-module of rank n.
If A is a PID, then B itself is free of rank n over A, so B has an integral basis.

Proof. Let z1,...,x, be any basis for L over K consisting of elements of B and let y1,...,yn
be the dual basis referred to L. If z € B, then we can write z = 3, a;y; with a; € K. We
know that the trace of x, belongs to A, and we also hve

n n n
T(xlz) =T Z ajxiyj = Z ajT (inyj) = Z ajéij = Q.
7=1 7j=1 7=1

Thus, each a; belongs to A, so that B is an A-submodule of the free A-module ®7_; Ay;.
Moreover, B contains the free A-module @?:1143@. Consequently, if A is a PID, then B is
free over A of rank n. O

Corollary. The set B if algebraic integers in any number field L if a free Z-module of
rankn = [L : Q]. Therefore B has an integral basis. The discriminant is the same fo every
integral basis.

Proof. Take A = 7Z in the theorem to show that B has an integral basis. The transformation
matrix C' between two integral bases is invertible, and both C' and C~! have rational
integral coefficients. Take determinants to conclude that det(C') is a unit in Z. But then
D is well-defined for all integral bases. O

Remark. An invertible matrix C with coefficients in Z is unimodular if C~! also has
coefficients in Z. We just saw that unimodular matrix has determinant +1. Conversely, a
matrix over Z with determinant +1 is unimodular, by Cramer’s rule.

Theorem. Let B be the algebraic integers of Q(y/m), where m is a square-free integer.

(i) If m # 1 (mod4), then 1 and v/m form an integral basis, and the field discriminant
is d = 4m.

(ii) If m = 1 (mod4), then 1 and (1 + /m)/2 form an integral basis, and the field
discriminant is d = m.
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Proof. (i) The numbers 1 and /m span B over Z, and the are linearly independent.
The trace of a + by/m is 2a, so the field discriminant is
2 0
‘O 2m‘ = dm
[Recall: D(x) = det (T q(ziz;))]]

(ii) The numbers 1 and (1 + v/m)/2 span B over Z, and the are linearly independent.
The trace of a + by/m is 2a, so the field discriminant is
‘2 1

1 (1 +m)/2' -m

[Recall: D(x) = det (TL/Q(JSixj))H



