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If p ≡ 1 (mod 4), then (p− 1)/2 is even, so
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But the left side is congruent modulo p to (p − 1)! and by Wilson’s Theorem, this is
congruent to −1 modulo p. So,

x =

(
p− 1

2

)
!

is a solution to
x2 ≡ −1 (mod p)

If x2 ≡ −1 (mod p), then p divides x2 + 1 = (x− i)(x+ i) in Z[i]. p ∤ x± i, so p is not
prime in Z[i]. The ring of Gaussian integers is a UFD, so p = αβ for nonunits α, β ∈ Z[i].

The norm of α = a+ bi ∈ Z[i] is N(α) = a2 + b2. Then

p2 = N(p) = N(αβ) = N(α)N(β) with N(α), N(β) > 1.

If α = x+ yi ∈ Z[i] This forces N(α) = N(β) = p, so x2 + y2 = p.

Conversely, if x2 + y2 = p, then p ≡ 1 (mod 4), since 3 isn’t the sum of two squares
modulo 4.

This argument relies on Z[i] being a UFD. In general, Z[
√
m] need not be a UFD.
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2 SECTION 1.2

1. Section 1.1

Definitions of field extension, algebraic element, integral over a subring, equation of integral
dependence, algebraic integer (real or complex number integral over Z). For all d ∈ Z,

√
d

is an algebraic integer. Similarly, any nth root of unity is an algebraic integer.

Five equivalent notions of x ∈ R integral over a subring A:

(1) x is integral over A.

(2) The A-module A[x] is finitely generated;

(3) x belongs to a subring B of R such that A ⊆ B and B is a finitely generated A-module

(4) There is a subring B of R such that B is a finitely generated A-module and x stabilizes
B, that is, xB ⊆ B.

(5) There is a faithful A[x]-module M finitely generated as an A-module

If A ⊆ R is a subring and x1, . . . , xn ∈ R are integral over A, then A[x1, . . . , xn] is a
finitely generated A-module.

Let A, B, and C be subrings of R. If C is integral over B and B is integral over A,
then C is integral over A.

Definition of integral closure of A in R, integrally closed in R, an integral domain being
closed, If x, y are integral over A, so are x± y and xy. So the integral closure of A in R is
a ring containing A.

The integral closure of A in R is integrally closed in R.

Any UFD is integrally closed (in its field of fractions).

2. Section 1.2

Definition of a multiplicative subset of a ring, localized ring, ring of fractions of R by S.

Construction of S−1R. S−1R is a ring. If R is a domain, so is S−1R. If R is a domain
and S = R \ {0}, then S−1R is the fraction field of R.

2



2 SECTION 1.2

If X ⊆ R, define S−1X = {x/s : x ∈ X, s ∈ S}. If I is an ideal of R, S−1I is an ideal
of S−1R. If I and J are ideals in R, then

(i) S−1(I + J) = S−1(I) + S−1(J)

(ii) S−1(IJ) = S−1(I)S−1(J)

(iii) S−1(I ∩ J) = S−1(I) ∩ S−1(J)

(iv) S−1I is a proper ideal iff S ∩ I = ∅.

Lemma. Let h : R → S−1R be the natural homomorphism of rings. If J is an ideal in
S−1R, then I = h−1J , is an ideal in R and S−1I = J . (Every ideal in S−1R is an extended
ideal.)

Lemma. If I is any ideal of R, then I ⊆ h−1(S−1I). There will be equality if I is prime
and disjoint from S.

Lemma. If I is a prime ideal of R disjoint from S, then S−1I is a prime ideal of S−1R.

Theorem. There is a one-to-one correspondence between prime ideals P of R that are
disjoint from S and prime ideals Q of S−1R, given by

P → S−1P and Q → h−1(Q).

Definitions of multiplicative set, localization.

Proposition. For a ring R, the following conditions are equivalent.

(i) R is a local ring;

(ii) There is a proper ideal I of R that contains all nonunits of R;

(iii) The set of nonunits of R is an ideal.

Theorem. Let R be a (commutative) ring (with 1) and P a prime ideal in R. Then RP

is a local ring.

Note: It is convenient to write the ideal S−1I and IRP .

Definition of localization of modules.
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