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If p=1 (mod4), then (p —1)/2 is even, so
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But the left side is congruent modulo p to (p — 1)! and by Wilson’s Theorem, this is
congruent to —1 modulo p. So,
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22 = —1 (mod p)
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is a solution to

If 22 = —1 (modp), then p divides 22 + 1 = (z —4)(x + i) in Z[i]. ptx £, so p is not
prime in Z[i]. The ring of Gaussian integers is a UFD, so p = a3 for nonunits «, 5 € Z[i].

The norm of a = a + bi € Z]i] is N(a) = a® + b?. Then

p* = N(p) = N(ap) = N(@)N(8) with N(a), N() > 1.

If a = 2 + yi € Z][i] This forces N(a) = N(B8) = p, so 22 + y*> = p.

Conversely, if 22 + 32 = p, then p = 1 (mod 4), since 3 isn’t the sum of two squares
modulo 4.

This argument relies on Z[i] being a UFD. In general, Z[/m| need not be a UFD.




2 SECTION 1.2

1. Section 1.1

Definitions of field extension, algebraic element, integral over a subring, equation of integral
dependence, algebraic integer (real or complex number integral over Z). For all d € Z, Vd
is an algebraic integer. Similarly, any n'" root of unity is an algebraic integer.

Five equivalent notions of z € R integral over a subring A:

1) z is integral over A.

3) x belongs to a subring B of R such that A C B and B is a finitely generated A-module

(1)
(2) The A-module A[z] is finitely generated;
(3)
(4)

There is a subring B of R such that B is a finitely generated A-module and x stabilizes
B, that is, B C B.

(5) There is a faithful A[z]-module M finitely generated as an A-module

If A C R is asubring and z1,...,z, € R are integral over A, then A[xi,...,z,] is a
finitely generated A-module.

Let A, B, and C be subrings of R. If C is integral over B and B is integral over A,
then C' is integral over A.

Definition of integral closure of A in R, integrally closed in R, an integral domain being
closed, If x, y are integral over A, so are x +y and xy. So the integral closure of A in R is
a ring containing A.

The integral closure of A in R is integrally closed in R.

Any UFD is integrally closed (in its field of fractions).

2. Section 1.2

Definition of a multiplicative subset of a ring, localized ring, ring of fractions of R by S.

Construction of S™'R. S™!'R is a ring. If R is a domain, so is S™'R. If R is a domain
and S = R\ {0}, then S™!R is the fraction field of R.
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If X C R, define S™!X = {z/s:x € X,s € S}. If I is an ideal of R, S71I is an ideal
of ST'R. If I and J are ideals in R, then
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Lemma. Let h : R — S™'R be the natural homomorphism of rings. If J is an ideal in
STIR, then I = h=1J, is an ideal in R and S~'I = J. (Every ideal in S~ 'R is an extended
ideal.)

S~1I is a proper ideal iff SN I = 0.

) S
) S
) S
v) S

Lemma. If I is any ideal of R, then I C h=1(S7I). There will be equality if I is prime
and disjoint from S.

Lemma. If I is a prime ideal of R disjoint from S, then S™'I is a prime ideal of S™'R.

Theorem. There is a one-to-one correspondence between prime ideals P of R that are
disjoint from S and prime ideals Q of ST'R, given by

P—S7'P and Q— h Q).

Definitions of multiplicative set, localization.

Proposition. For a ring R, the following conditions are equivalent.

(i) R is a local ring;
(i) There is a proper ideal I of R that contains all nonunits of R;
(iii) The set of nonunits of R is an ideal.

Theorem. Let R be a (commutative) ring (with 1) and P a prime ideal in R. Then Rp
s a local Ting.

Note: It is convenient to write the ideal S~'I and IRp.

Definition of localization of modules.



