
Chapter 1

Rings and Ideals

Exercises

Exercise 1. Let x be a nilpotent element of a ring A. Show that 1+x is a unit
of A. Deduce that the sum of a nilpotent element and a unit is a unit.

Solution. Proof. Let x be a nilpotent element and let u be a unit in a ring A.
Assume u+ x is not a unit of A. Since u+ x is not a unit of A, u+ x must

be contained in some maximal ideal m. Since x is nilpotent, it is contained in
every prime ideal and hence every maximal ideal, so x ∈ m. It follows that
u = (u+ x)− x ∈ m, which is absurd. So u+ x is a unit of A.

Exercise 2. Let A be a ring and let A[x] be the ring of polynomials in an
indeterminate x, with coefficients in A. Let f = a0 + a1x+ · · ·+ anx

n ∈ A[x].
Prove that

i) f is a unit in A[x] ⇔ a0 is a unit in A and a1, . . . , an are nilpotent.

ii) f is nilpotent ⇔ a0, a1, . . . , an are nilpotent.

iii) f is a zero-divisor ⇔ there exists a ̸= 0 in A such that af = 0.

iv) f is said to be primitive if (a0, a1, . . . , an) = (1). Prove that if f , g ∈ A[x],
then fg is primitive ⇔ f and g are primitive.

Solution. i) Proof. (⇐) Suppose f = a0 + a1x+ · · ·+ anx
n ∈ A[x], where

a0 is a unit and a1, a2, . . . , an are nilpotent. Since a1, a2, . . . , an are
nilpotent, a1x, a2x

2, . . . , anx
n are all nilpotent, so their sum

a1x+ a2x
2 + · · ·+ anx

n

1



CHAPTER 1. RINGS AND IDEALS

is also nilpotent. Since a0 is a unit, a0 + a1x+ a2x
2 + · · ·+ anx

n is a unit
by Exercise 1.

(⇒) Suppose f = a0 + a1x + · · · + anx
n ∈ A[x] is a unit. Let g(x) =

b0 + b1x+ b2x
2 + · · ·+ bmx

m be the inverse of f . Since fg = 1, we must
have a0b0 = 1, so a0 is a unit in A.

The coefficient of xm+n in the product is anbm = 0. The coefficient of
xm+n−1 in the product is anbm−1+an−1bm = 0. Multiplying this equation
by an yields

an(anbm−1 + an−1bm) = a2nbm−1 + an−1(anbm) = a2nbm−1 = 0,

since anbm = 0. Assume that ar+1
n bm−r = 0 for all r ≤ R < m. The

coefficient of xm+n−R−1 is

anbm−R−1 + an−1bm−R + an−2bm−R+1 + · · ·+ an−R−1bm = 0

Multiplying this equation by aR+1
n yields

aR+2
n bm−R−1 + an−1(a

R+1
n bm−R) + an−2an(a

R
n bm−R+1) + · · ·+ an−R−1a

R
n (anbm) = 0

By the inductive hypothesis, all the terms in parentheses are zero, so we
have

aR+2
n bm−R−1 = 0.

We conclude that ar+1
n bm−r = 0 for all for all r ≤ m. In particular, we

have am+1
n b0 = 0. Since b0 is a unit, we must have am+1

n = 0. That is, an
is nilpotent.

Since an is nilpotent, anx
n is nilpotent. Using Exercise 1, we have that

f − anxn = a0 + a1x+ · · ·+ an−1x
n−1 is a unit. By induction, a1, a2, a3,

. . . , an are all nilpotent, as desired.

ii) (⇒) Suppose f = a0 + a1x + · · · + anx
n ∈ A[x] is nilpotent. Then xf is

likewise nilpotent, so 1+xf is a unit by Exercise 1. Then, by part (i), we
must have a0, a1, . . . , an are all nilpotent.

(⇐) Suppose f = a0 + a1x + · · · + anx
n ∈ A[x] with a0, . . . , an all

nilpotent. Then a1x, a2x
2,. . . , anx

n are all nilpotent, and therefore f =
a0 + a1x+ · · ·+ anx

n is likewise nilpotent.

iii) If there exists a ̸= 0 in A such that af = 0, then f is a zero divisor by
definition, so there’s nothing to prove.

Suppose f = a0 + a1x + · · · + anx
n ∈ A[x] is a zero divisor. If f is zero,

there’s nothing to prove, so assume f ̸= 0.
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CHAPTER 1. RINGS AND IDEALS

Let g(x) = b0 + b1x + b2x
2 + · · · + bmx

m ̸= 0 be of minimal degree so
that fg = 0. The coefficient of the n + m term is anbm which must be
zero. Then ang has degree less than m and (ang)f = 0, so ang ≡ 0 by
minimality. So, anbj = 0 for all 0 ≤ j ≤ m.

Next, consider the coefficient of the n+m−1 term is anbm−1+an−1bm =
an−1bm which must be zero. Then an−1g has degree less than m and
(an−1g)f = 0, so an−1g ≡ 0 by minimality. So, an−1bj = 0 for all 0 ≤ j ≤
m.

Suppose an−ibj = 0 for all 0 ≤ j ≤ m and for all 0 ≤ i < r ≤ n. We
extend the definitions of bℓ to be zero if ℓ is not between 0 and m. Then
the coefficient of the n− r +m term is

anbm−r + an−1bm−r+1 + · · ·+ an−r+1bm−1 + an−rbm = an−rbm,

which must be zero. Then an−rg has degree less thanm and (an−rg)f = 0,
so an−rg ≡ 0 by minimality. So, an−rbj = 0 for all 0 ≤ j ≤ m.

By induction, it follows that aibj = 0 for all 0 ≤ i ≤ n and 0 ≤ j ≤ m.
Let a be any bj ̸= 0. Then af = 0.

iv) Let A be a UFD. We first show that the product of two primitive polyno-
mials f and g is primitive.

Suppose p is prime and divides all the coefficients of fg. Since f and g
are primitive, there exist coefficients of f and coefficients of g that are
not divisible by p. Let arx

r and bsx
s be the lowest degree terms with a

coefficients not divisible by p in f and g, respectively. The coefficient of
xr+s in fg is then

∑r+s
i=0 aibr+s−i. Now, for i < r, p divides ai and for

i > r, p divides br+s−i. It follows that p divides arbs. Since p is irreducible
and A is a UFD, it follows that p divides ar or p divides bs, either of which
is a contradiction. It follows that fg is primitive.

Conversely, suppose that fg is primitive. Let k be the greatest common
divisor of the coefficients of f . Let ℓ be the greatest common divisor
of the coefficients of g. Let f ′ = f/k and g′ = g/ℓ. Then f ′ and g′

are primitive, so by the last paragraph, f ′g′ is primitive. We have that
f = kf ′ and g = ℓg′, so that fg = (kℓ)f ′g′. Since f ′g′ is primitive, the
greatest common divisor of the coefficients of fg is kℓ, so we have kℓ is a
unit. That is, k and ℓ are units, so f and g are primitive.

Exercise 3. Generalize the results of Exercise 2 to a polynomial ringA[x1, . . . , xn]
in several indeterminates.

Solution. Let A be a ring and let A[x1, . . . , xn] be the ring of polynomials in
n indeterminates with coefficients in A. Let f =

∑
I=(d0,...,dn)

aIx
d1
1 · · ·xdnn ∈

A[x1, . . . , xn]. Prove that
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i) f is a unit in A[x1, . . . , xn] ⇔ the constant coefficient is a unit and each
aI is nilpotent for |I| > 0.

ii) f is nilpotent ⇔ each aI is nilpotent.

iii) f is a zero-divisor ⇔ bf = 0 for some b ∈ A, b ̸= 0.

iv) f is said to be primitive if gcf(aI) = (1). Prove that if f , g ∈ A[x1, . . . , xn],
then fg is primitive ⇔ f and g are primitive.

Proof. We can write

f =

n∑
i=1

gix
i
n where gi ∈ A[x1, . . . , xn−1].

ii) (⇒) Suppose f is nilpotent in A[x1, . . . , xn]. By Exercise 2, each gi is
nilpotent. By induction, it follows that all the coefficients of the gi’s are
nilpotent. So, aI is nilpotent for all I.

(⇐) Suppose each aI is nilpotent. Since each aI is nilpotent, each aIx
I is

nilpotent, and since the nilradical is an ideal, the sum of these elements
is also nilpotent.

i) (⇒) Suppose f is a unit. Writing f as f =
∑n
i=1 gix

i
n with

gi ∈ A[x1, . . . , xn−1], as in Exercise 2(i), we must have g0 is a unit and
gi is nilpotent for 1 ≤ i ≤ n. By induction on the degree applied to g0,
the constant term in g0—which is also the constant term in f—is a unit
and the remaining coefficients of g0 are nilpotent. Since gi is nilpotent for
1 ≤ i ≤ n, by part (ii) of this problem, all the coefficients of gi are nilpo-
tent. So, we see that in f , the constant term is a unit and the remaining
coefficients are nilpotent.

(⇐) Suppose f has a unit for a constant term and nilpotent elements for
the remaining coefficients. Then f is the sum of a unit and a nilpotent
element by part (ii). It follows that f is a unit by Exercise 1.

iii) (⇒) Suppose f is a zero-divisor. Let g ∈ A[x1, . . . , xn] be of minimal
degree so that fg ≡ 0.

Mark, finish this one.

(⇐) Suppose there exists b ∈ A, b ̸= 0, so that bf = 0. Then f is a
zero-divisor by definition.

iv) Mark, do this one.

(⇒)

(⇐)
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Exercise 4. In the ring A[x], the Jacobson radical is equal to the nilradical.

Solution. Proof. LetN be the nilradical of A and letR be the Jacobson radical
of A. Since every maximal ideal is a prime ideal, we always have N ⊆ R.

Let f ∈ R. Then 1 + fx is a unit, by Proposition 1.9. By Exercise 2(i),
we have that all the coefficients of f are nilpotent, whereby f is nilpotent, by
Exercise 2(ii). Hence f ∈ N, as desired.

Exercise 5. Let A be a ring and let A[[x]] be the ring of formal power series
f =

∑∞
n=0 anx

n with coefficients in A. Show that

i) f is a unit in A[[x]] ⇔ a0 is a unit in A.

ii) If f is nilpotent, then an is nilpotent for all n ≥ 0. Is the converse true?
(See Chapter 7, Exercise 2.)

iii) f belongs to the Jacobson radical of A[[x]] ⇔ a0 belongs to the Jacobson
radical of A.

iv) The contraction of a maximal ideal m of A[[x]] is a maximal ideal of A,
and m is generated by mc and x.

v) Every prime ideal of A is the contraction of a prime ideal of A[[x]].

Solution. Proof. Let A be a ring and let A[[x]] be the ring of formal power
series f =

∑∞
n=0 anx

n with coefficients in A.

i) (⇒) Suppose f ∈ A[[x]] is a unit. Let g =
∑∞
n=0 bnx

n ∈ A[[x]] be such
that fg = 1. As in the proof of Exercise 2(i), a0b0 = 1, so a0 is a unit.

(⇐) Suppose a0 is a unit in A. We will construct an inverse g for f by
constructing its coefficients inductively. Let g =

∑∞
n=0 bnx

n ∈ A[[x]] be
the inverse of f to be constructed. Since fg = 1, we must have a0b0 = 1,
so b0 = a−1

0 .

Set b1 = −a−1
0 a1b0. Then the coefficient of x in the product fg is

a1b0 + a0b1 = a1b0 + a0(−a−1
0 a1b0)

= a1b0 + (a0 · −a−1
0 )a1b0

= a1b0 − a1b0
= 0.
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Suppose the coefficient bn has been constructed so that the coefficient of
xn in the product fg is zero. That is

a0bn + a1bn−1 + · · ·+ an−1b1 + anb0 = 0

Let

bn+1 = −a−1
0 (a1bn + · · ·+ anb1 + an+1b0)

Then the coefficient of xn+1 is

a0bn+1 + a1bn + · · ·+ anb1 + an+1b0 = a0 · −a−1
0 (a1bn + · · ·+ anb1 + an+1b0)

· · ·+ a1bn + · · ·+ anb1 + an+1b0

= −(a1bn + · · ·+ anb1 + an+1b0)

· · ·+ a1bn + · · ·+ anb1 + an+1b0

= 0.

By induction, bn can be constructed for all n so that the coefficient of xn
is zero for all n ≥ 1. Hence, f is a unit having inverse

g =

∞∑
n=0

bnx
n,

as required.

ii) (⇒) Suppose f ∈ A[[x]] is nilpotent. Then fn = 0 for some n ≥ 0 and since
the constant term here is an0 , we must have an0 = 0, whereby a0 is nilpotent.
Since f is nilpotent and a0 is nilpotent, so is f − a0 =

∑∞
n=1 anx

n =
x
∑∞
n=1 anx

n−1 = x
∑∞
n=0 an+1x

n. This means
∑∞
n=0 an+1x

n is nilpotent.
Since

∑∞
n=0 an+1x

n is nilpotent, the constant term a1 must likewise be
nilpotent. Continuing in this fashion, an must be nilpotent for all n.

Mark, find the counterexample.

iii) (⇒) Suppose f belongs to the Jacobson radical of A[[x]]. By Proposi-
tion 1.1.9, for any y ∈ A, 1 − yf is a unit in A[[x]]. By part (i), since
1− yf is a unit in A[[x]], the constant term of 1− yf is a unit in A, and
this occurs for all y ∈ A. But the constant term of 1 − yf is 1 − ya0, so
we have 1 − ya0 is a unit in A for all y ∈ A. By Proposition 1.1.9 again,
a0 lies in the Jacobson radical of A.

(⇐) Suppose a0 lies in the Jacobson radical of A. Let g =
∑
j bjx

j be any
element in A[[x]]. The constant term of 1 − fg is 1 − a0b0. Since a0 lies
in the Jacobson radical of A, by Proposition 1.1.9, 1− a0b0 is then a unit
in A. By part (i), 1− fg is a unit in A[[x]]. Since g ∈ A[[x]] is arbitrary,
f lies in the Jacobson radical of A[[x]], by Proposition 1.1.9 again.
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iv) Let m be a maximal ideal in A[[x]] and consider its contraction mc = A∩m
in A. Since 0 lies in the Jacobson radical of A, x lies in the Jacobson
radical of A[[x]] by part (iii). Hence, x ∈ m. If f = a + gx ∈ m, then
a = f − gx ∈ m since both f and x lie in m. Hence a ∈ mc. This shows m
is generated by mc and x.

The natural inclusion A ↪→ A[[x]] induces a homomorphism A/mc →
A[[x]]/m and this latter ring is a field since m is maximal. I claim that
A/mc is a subfield of this field, showing that mc is maximal in A.

Let a ∈ A/mc be nonzero. This element is also nonzero in A[[x]]/m, so
it has an inverse in the field A[[x]]/m. Let f + m be its inverse. Then
af +m = 1 +m whereby 1− af ∈ m. Write f = a0 + gx for some a0 ∈ A
and g ∈ A[[x]]. Then 1−af = 1−a(a0+gx) = (1−aa0)−agx ∈ m. Since
x ∈ m, we have that 1 − aa0 lies both in m and in A. So, 1 − aa0 ∈ mc.
Hence (a+mc)(a0 +mc) = 1 +mc. This shows A/mc is a field, so mc is a
maximal ideal in A.

v) Let p be a prime ideal in A. Let q be the ideal consisting of all
∑
akx

k

where a0 ∈ p. This is, in fact, an ideal. If fg ∈ q where f =
∑
k akx

k

and g =
∑
k bkx

k, then a0b0 ∈ p. Since p is prime, either a0 or b0 lies in
p. But this says f ∈ q or g ∈ q, so q is a prime ideal. It’s easy to see that
p = qc.

Exercise 6. A ring A is such that every ideal not contained in the nilradical
contains a non-zero idempotent (that is, an element e such that e2 = e ̸= 0.)
Prove that the nilradical and Jacobson radical of A are equal.

Solution. Proof. Let A be a ring such that every ideal not contained in the
nilradical contains a non-zero idempotent (that is, an element e such that e2 =
e ̸= 0.) Let N be the nilradical of A and let R be the Jacobson radical of A. As
always, N ⊆ R.

Assume the Jacobson radical is not contained in the nilradical. Since the
Jacobson radical is not contained in the nilradical, there exists a nonzero idem-
potent e ∈ R, by hypothesis. Hence, e2 = e, so e(1 − e) = 0. However, e ∈ R,
so by Proposition 1.9, 1− e is a unit, so e = 0, which is a contradiction. So, the
nilradical equals the Jacobson radical.

Exercise 7. Let A be a ring in which every element x satisfies xn = x for some
n > 1 (depending on x). Show that every prime ideal in A is maximal.
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Solution. Proof. Let A be a ring in which every element x satisfies xn = x for
some n > 1 (depending on x). Let p be a prime ideal in A. Let x ∈ A/p be
nonzero. By hypothesis, there exists n > 1 so that xn = x, so in the quotient
ring we have xn = x. Since A/p is an integral domain and x /∈ p, we must have
xn−1 = 1. Hence x is a unit with inverse xn−2. Thus we see that every nonzero
element x in A/p is a unit, so A/p is a field. It now follows that p is maximal
ideal. Since p is an arbitrary prime ideal, we see that every prime ideal in A is
maximal.

Exercise 8. Let A be a ring ̸= 0. Show that the set of prime ideals of A has
minimal elements with respect to inclusion.

Solution. Proof. Order the set of prime ideals in A by inclusion. We now apply
Zorn’s lemma. Let

p1 ⊇ p2 ⊇ p3 ⊇ p4 ⊇ · · ·

be a chain of prime ideals in A.
Let p = ∩∞n=1pn. Suppose x /∈ p and y /∈ p. Then there exist n and m so

that x /∈ pn and y /∈ pm. Let k = max{m,n}. Since x /∈ pn ⊇ pk and since
y /∈ pm ⊇ pk. Since pk is a prime ideal, xy /∈ pk, so that xy /∈ p. This shows
p is a prime ideal. By Zorn’s lemma, the set of prime ideals of A has minimal
elements with respect to inclusion.

Exercise 9. Let a be an ideal ̸= (1) in a ring A. Show that a = rad (a) ⇔ a is
an intersection of prime ideals.

Solution. Proof. (⇒) Suppose a = rad (a). Since rad (a) = NA/a, a is an
intersection of prime ideals by Proposition 1.1.8.

(⇐) Suppose that an ideal a is an intersection of prime ideals. Since each of
these prime ideals contains a, the set of all prime ideals containing a includes
these prime ideals. Since the intersection of all prime ideals containing a is
rad (a), we have rad (a) ⊆ a. Since the reverse inclusion is clear, we have
a = rad (a).

Exercise 10. Let A be a ring, N its nilradical. Show that the following are
equivalent:

i) A has exactly one prime ideal;

8
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ii) every element of A is either a unit or nilpotent;

iii) A/N is a field.

Solution. Proof. i) ⇒ ii) Suppose A contains exactly one prime ideal p.
Let x ∈ A be arbitrary. Suppose x ∈ p. Since the nilradical of A is p,
we have that x is nilpotent. Suppose that x /∈ p. Since every nonunit is
contained in a maximal ideal and p is the only prime ideal and therefore
the only maximal ideal, x must be a unit. Hence, every element of A is
either nilpotent or a unit.

ii) ⇒ iii) Suppose every element of A is either a unit or nilpotent. Let
x ∈ A/N, x ̸= 0. Since x ̸= 0, x /∈ N, so, by hypothesis, x is a unit.
Hence, there exists y ∈ A with xy = 1. Then x · y = 1, whereby x is a
unit in A/N. Since x is an arbitrary nonzero element of A/N, we conclude
that A/N is a field.

iii) ⇒ i) Suppose A/N is a field. Since there is a one-to-one correspondence
between ideals in A/N and ideals in A which contain N, and since any
field only contains two trivial ideals, we see that there is no proper ideal
which properly contains N. That is, N is maximal and so must be the
only prime ideal in A.

Exercise 11. A ring A is Boolean if x2 = x for all x ∈ A. In a Boolean ring
A, show that

i) 2x = 0 for all x ∈ A;

ii) every prime ideal p is maximal, and A/p is a field with two elements;

iii) every finitely generated ideal in A is principal.

Solution. Proof. i) Let x ∈ A. Then

(x+ 1)2 = x+ 1

x2 + 2x+ 1 = x+ 1

x+ 2x+ 1 = x+ 1

2x = 0,

since x2 = x for all x ∈ A.

9
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ii) Let p be a prime ideal in A. By Exercise 7, p is maximal.

Let x ∈ A/p be represented by x ∈ A. Since x2 = x in A, x2 = x in A/p,
and since A/p is a field, either x = 0 or 1. So, we see that A/p is the field
with two elements.

iii) Let a be a finitely generated ideal. Let’s say a is generated by two elements,
x and y. Then

a = {ax+ by | a, b ∈ A}

Let z = x+ y + xy. Then

xz = x(x+ y + xy) = x2 + xy + x2y = x

yz = y(x+ y + xy) = xy + y2 + xy2 = y.

So, (x, y) = (z). The result follows by induction on the number of gener-
ators.

Exercise 12. A local ring contains no idempotent unequal to zero or one.

Solution. Proof. Let R be a local ring and let x be any idempotent.
Suppose x is a unit and let y be the multiplicative inverse of x. Then

x2 = x

x2y = xy

x(xy) = xy

x = 1.

On the other hand, suppose x is not a unit. Let p be a prime ideal in R.
Considering the integral domain R/p, we have x2−x = x(x− 1) = 0 in R/p, so
either x = 0 or x = 1 in R/p.

Suppose x = 1 in R/p. Then x = 1 + y for some y ∈ p. Now x and y are
necessarily nonunits, so they must be contained in the unique maximal ideal of
R. Then 1 = x − y is also in this maximal ideal, a contradiction. So, we must
have x = 0 in R/p. That is, x ∈ p.

Since p is an arbitrary prime ideal in R, it follows that x is contained in
every prime ideal in R, so x is nilpotent. However, since x2 = x, by induction
xn = x for all n ∈ N, and since x is nilpotent, x = 0.

This concludes the proof.
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Exercise 13. Let K be a field and let Σ be the set of all irreducible monic
polynomials f in one indeterminate with coefficients in K. Let A be the poly-
nomial ring over K generated by indeterminates xf , one for each f ∈ Σ. Let a
be the ideal of A generated by the polynomials f(xf ) for all f ∈ Σ. Show that
a ̸= (1).

Let m be a maximal ideal of A containing a, and let K1 = A/m. Then K1 is
an extension field of K in which each f ∈ Σ has a root. Repeat the construction
with K1 in place of K, obtaining a field K2, and so on. Let L =

⋃∞
n=1Kn. Then

L is a field in which each f ∈ Σ splits completely into linear factors. Let K be
the set of all elements of L which are algebraic over K. Then K is an algebraic
closure of K.

Solution. Proof. Let K be a field and let Σ be the set of all irreducible monic
polynomials f in one indeterminate with coefficients in K. Let A be the poly-
nomial ring over K generated by indeterminates xf , one for each f ∈ Σ. Let a
be the ideal of A generated by the polynomials f(xf ) for all f ∈ Σ.

Suppose a = A. Then there is an n and polynomials g1, . . . , gn such that

1 = f1(xi1)g1(xi1 , . . . , xin) + · · ·+ fn(xin)gn(xi1 , . . . , xin)

For simplicity we shall write xm in place of xim for each m. We can assume
that all the gm involve only the variables, x1, . . . , xn by increasing the number
of fm if necessary in an equation of this type.

Suppose n is chosen to be minimal such that we have such an expression in-
volving n of the xi. Let S = K[x1, . . . , xn], so that then (f(x1), . . . , fn(xn)) = S.
LetR = K[x1, . . . , xn−1]. By minimality of n we have (f(x1), . . . , fn−1(xn−1)) ̸=
R. Let us view the above equation as taking place in S = R[xn]. If cm =
fm(xm) ∈ R we have J = (c1, . . . , cn−1, fn(xn)) = S. Set I0 = (c1, . . . , cn−1) ⊆
R so that J = (I0, fn(xn)). There are ring homomorphisms

R[xn]→ (R/I0)[xn]→
(R/I0)[xn]

(fn(xn))

where fn(xn) is the image of fn(xn) in (R/I0)[xn]. Since R/I0 is a nonzero ring
and fn(xn) is not a unit (as fn is monic of degree at least 1) we see that this last
ring is nonzero. Hence the kernel of the composite homomorphism is a proper
ideal of S. But J lies in this kernel, so J ̸= S. This contradiction shows our
original I is a proper ideal of K[{xi}], finishing the first part of the proof.

Let m be a maximal ideal containing a, and let K1 = A/m. Then K1 is an
extension field of K in which each f ∈ Σ has a root. Repeat the construction
with K1 in place of K, obtaining a field K2, and so on. Let L =

⋃∞
n=1Kn.

Then L is a field in which each f ∈ Σ splits completely into linear factors. Let
K be the set of all elements of L which are algebraic over K. We claim that K
is an algebraic closure of K.

Let f ∈ K[x] be irreducible. Then f is a constant multiple of one of the
monic irreducible polynomials in Σ, so in K1 we have a root xf for f . The result
follows by induction on the degree of f .
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Exercise 14. In a ring A, let Σ be the set of all ideals in which every element
is a zero-divisor. Show that the set Σ has maximal elements and that every
maximal element of Σ is a prime ideal. Hence the set of zero-divisors in A is a
union of prime ideals.

Solution. Proof. Let A be a ring and let Σ be the set of all ideals in which
every element is a zero-divisor. The set Σ is nonempty since (0) ∈ Σ.

Let a1 ⊆ a2 ⊆ . . . be a chain of ideals in Σ. Let a =
⋃
i ai. As in the proof

of Theorem 1.1.3, a is an ideal and since all the ideals consist only of elements
which are zero-divisors, we see that a contains only zero-divisors, so a ∈ Σ. By
Zorn’s lemma, Σ contains a maximal element.

Let p be a maximal element in Σ. Let x and y be elements of A which are
not in p. By the maximality of p, p+ (x) is not in Σ, so it contains an element
u which is not a zero divisor. Similarly, p + (y) is not in Σ, so it contains an
element v which is not a zero divisor. Since u and v are not zero-divisors, neither
is uv ∈ p+ (xy). It follows that xy /∈ p, so p is a prime ideal.

If x is a zero-divisor, the principal ideal (x) is in Σ and since Σ contains
maximal elements which are prime, x lies in some prime ideal consisting only
of zero-divisors. It follows that the set of zero-divisors in A is a union of prime
ideals.

Exercise 15. Let A be a ring and let X be the set of all prime ideals of A, let
V (E) denote the set of all prime ideals of A which contain E. Prove that

i) if a is the ideal generated by E, then V (E) = V (a) = V (r(a)).

ii) V (0) = X, V (1) = ∅.

iii) if (Ei)i∈I is any family of subsets of A, then

V

(⋃
i∈I

Ei

)
=
⋂
i∈I

V (Ei).

iv) V (a ∩ b) = V (ab) = V (a) ∪ V (b) for any ideals a, b of A.

These results show that the sets V (E) satisfy the axioms for closed sets in
a topological space. The resulting topology is called the Zariski topology. The
topological space X is called the prime spectrum of A, and is written Spec(A).

Solution. Proof. Let A be a ring and let X be the set of all prime ideals of A,
let V (E) denote the set of all prime ideals of A which contain E.

12
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i) Let a be the ideal generated by E. Then E ⊆ a ⊆ r(a), so

V (r(a)) ⊆ V (a) ⊆ V (E).

On the other hand, let p be a prime ideal in V (E). Then p contains E, and
since a is the smallest ideal containing E, we have a ⊆ p. Let x ∈ rad (a).
Then xn ∈ a for some n ∈ N, so that xn ∈ a ⊆ p. Since p is a prime ideal,
x ∈ p. Since x ∈ rad (a) is arbitrary, rad (a) ⊆ p. So, p ∈ V (rad (a)).
Since p ∈ V (E) is arbitrary, V (E) ⊆ V (rad (a)).

From the inclusions above, this implies that

V (E) = V (a) = V (r(a)).

This concludes the proof of part (i).

ii) It is clear that V (0) = X since every prime ideal contains the zero ideal.
Similarly, it is clear that V (1) = ∅ since no prime ideal contains 1.

iii) Let (Ei)i∈I be any family of subsets of A. Let p ∈ V (
⋃
i∈I Ei). Then

p ⊇
⋃
i∈I Ei ⊇ Ei for each i ∈ I. Hence, p ∈ V (Ei) for all i ∈ I,

whereby p ∈
⋂
i∈I V (Ei). Since p ∈ V (

⋃
i∈I Ei) is arbitrary, V (

⋃
i∈I Ei) ⊆⋂

i∈I V (Ei).

On the other hand, let p ∈
⋂
i∈I V (Ei). Then p ∈ V (Ei) for all i ∈ I,

whereby p ⊇ Ei for all i ∈ I. Hence p ⊇
⋃
i∈I Ei. So, p ∈ V (

⋃
i∈I Ei).

Since p ∈
⋂
i∈I V (Ei) is arbitrary,

⋂
i∈I V (Ei) ⊆ V (∪i∈IEi).

Putting the two inclusions together, we see that

⋂
i∈I

V (Ei) = V

(⋃
i∈I

Ei

)
,

as desired.

iv) Since a ⊇ a ∩ b ⊇ ab, we have V (a) ⊆ V (a ∩ b) ⊆ V (ab). Similarly, since
b ⊇ a ∩ b ⊇ ab, we have V (b) ⊆ V (a ∩ b) ⊆ V (ab). Hence

V (a) ∪ V (b) ⊆ V (a ∩ b) ⊆ V (ab).

Now, let p ∈ V (ab). Then p ⊇ ab, and since p is a prime ideal, p ⊇ a
or p ⊇ b. So, p ∈ V (a) or p ∈ V (b), whereby p ∈ V (a) ∪ V (b). Since
p ∈ V (ab) is arbitrary, we have V (ab) ⊆ V (a) ∪ V (b).

Putting these two inclusions together yields

V (a) ∪ V (b) = V (ab) = V (a ∩ b).

13
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Exercise 16. Draw pictures of Spec(Z), Spec(R), Spec(C[x]), Spec(R[x]), Spec(Z[x]).

Solution. Spec(Z) has two types of points: (0), which is dense, and (p), where
p ∈ Z is prime. This ideal is maximal, so (p) is a closed point in Spec(Z).

Spec(R) only has one point, (0), which is closed.

Spec(C[x]) has two types of points: (0), which is dense, and (f(x)), where
f(x) ∈ C[x] is irreducible. This ideal is maximal, so (f(x)) is a closed point in
Spec(C[x]). Since the only irreducible polynomials in C[x] are the linear ones,
this gives a one-to-one correspondence between the closed points of Spec(C[x])
and C itself.

Spec(R[x]) has two types of points: (0), which is dense, and (f(x)), where
f(x) ∈ R[x] is irreducible. This ideal is maximal, so (f(x)) is a closed point
in Spec(R[x]). The only irreducible polynomials in R[x] are either the linear
ones or the irreducible quadratic ones. The points in Spec(R[x]) represented by
linear polynomials give a one-to-one correspondence between those points and
elements of R. The points in Spec(R[x]) represented by irreducible quadratic
polynomials give a one-to-one correspondence between those points and conju-
gate pairs of non-real complex numbers in C.

Spec(Z[x]) has four types of points:

i) (0), which is dense

ii) (f(x)), where f(x) ∈ Z[x] is irreducible

iii) (p), where p ∈ Z is prime

iv) (p, f(x)), where f(x) is irreducible modulo p. These ideals are maximal,
so the points they represent are closed.

Exercise 17. For each f ∈ A, let Xf denote the complement of V (f) in X =
Spec(A). The sets Xf are open. Show that they form a basis of open sets for
the Zariski topology, and that

i) Xf ∩Xg = Xfg;

ii) Xf = ∅ ⇐⇒ f is nilpotent;

iii) Xf = X ⇐⇒ f is a unit;

iv) Xf = Xg ⇐⇒ rad((f)) = rad((g));

v) X is quasi-compact (that is, every open covering of X has a finite subcov-
ering).

14
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vi) More generally, each Xf is quasi-compact.

vii) An open subset of X is quasi-compact if and only if it is a finite union of
sets Xf .

The sets Xf are called basic open sets of X = Spec(A).

Solution. Proof. For each f ∈ A, let Xf denote the complement of V (f) in
X = Spec(A).

Let U ⊆ Spec(A) be open and let p ∈ U . Since U is open, U = Spec(A)\V (q)
for some prime ideal q ⊆ A. Since p ∈ U , p ̸⊇ q, so there exists f ∈ q, f /∈ p.
Then p ∈ Xf and Xf ∩ V (q) = ∅ whereby Xf ⊆ U . This shows that basic open
sets Xf form a basis for the Zariski topology on Spec(A).

i) Since (fg) ⊆ (f), we have V (f) ⊆ V (fg), whereby Xfg ⊆ Xf . Similarly,
since (fg) ⊆ (g), we have V (g) ⊆ V (fg), whereby Xfg ⊆ Xg. Hence
Xfg ⊆ Xf ∩ Xg. On the other hand, let p ∈ Xf ∩ Xg. Then f /∈ p and
g /∈ p. Since p is a prime ideal, fg /∈ p, so p ∈ Xfg. Hence Xf ∩Xg ⊆ Xfg.
Putting these two inclusions together, we have

Xfg = Xf ∩Xg.

ii) Suppose Xf = ∅. Then V (f) = Spec(A), which means that f is contained
in every prime ideal in A. Hence, f is nilpotent.

Conversely, suppose that f is nilpotent. Then f is contained in every
prime ideal in A. Consequently, Xf = ∅.

iii) Suppose Xf = X. Then f is not contained in any prime ideal of X. Since
every nonunit is contained in a prime ideal of A, f must be unit.

Conversely, suppose f is a unit. Since every prime ideal in A is proper, f
is not in any prime ideal of A. Hence Xf = X.

iv) It is clear that Xf = Xg if and only if V (f) = V (g). Further, V (f) = V (g)
if and only if the set of prime ideals containing f equals the set of prime
ideals containing g, which of course is equivalent to rad(f) = rad(g).

v) Let U be an open cover of Xf = Spec(Af ). Without loss of generality,
we may assume U is a cover by basic open sets Xfα . Since Xf ⊆

⋃
αXfα ,

we must have that the set {fα} generates Af . So, there exists gα1
, . . . ,

gαn
so that

n∑
k=1

fαk
gαk

= 1.

15
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We claim that Xfα1
, . . . , Xfαn

is a subcover of U .

Assume p is a prime ideal in Af which lies in no Xfαk
. Then fαk

∈ p for
all k = 1, . . . , n, and hence

n∑
k=1

fαk
gαk

= 1 ∈ p,

which is absurd. Hence, the collection Xfα1
, . . . , Xfαn

is a subcover of U ,
as desired. Since U is an arbitrary open cover of Xf , Xf is quasi-compact.

vi) This is proved in v).

vii) (⇒) Let U be a quasi-compact open subset of X. Since the basic open
sets Xf form a basis for the Zariski topology, we can find an open cover
{Xfα} of U with Xfα ⊆ U for all fα. Since U is quasi-compact, we can
find a finite subcover {Xfα1

, . . . , Xfαn
}. But then

U =

n⋃
i=1

Xfαi
.

(⇐) Let O be an open subset which is a finite union of basic open sets
Xf . Say O = ∪ni=1Xfi . Let U be a cover of O. Since the basic open sets
Xf form a basis for the Zariski topology, for each point in each open set
in U , there exists a basic open set containing that point and contained
in the open set. We look at that cover {Xgα} of Xf by basic open sets.
Since {Xgα} is an open cover for each Xfi and Xfi is quasi-compact, we
can find a finite subcover {Xgα1

, . . . , Xgαm
}. Since there are only finitely

many Xfi ’s, doing this for each Xfi provides a finite subcover of {Xgα}
for O itself. For each basic open set in this finite subcover, choose an open
set Ui ∈ U containing it. Then the cover {Ui} is a finite subcover of U .
Since U is an arbitrary cover of O, O is quasi-compact.

Exercise 18. For psychological reasons it is sometimes convenient to denote
a prime ideal of A by a letter such as x or y when thinking of it as a point of
X = Spec(A). When thinking of x as a prime ideal of A, we denote it by px
(logically, of course, it is the same thing). Show that

i) the set {x} is closed (we say that x is a “closed point”) in Spec(A) if and
only if px is maximal;

ii) {x} = V (px);

iii) y ∈ {x} if and only if px ⊆ py;

16
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iv) X is a T0-space (this means that if x, y are distinct points of X, then
either there is a neighborhood of x which does not contain y, or else there
is a neighborhood of y which does not contain x).

Solution. Proof. Let X = Spec(A) for some ring A. For x ∈ X, let px denote
the corresponding prime ideal of A. Let x ∈ X.

ii) By definition, the closure of {x} is the intersection of all closed sets con-
taining x. Any closed set containing x is of the form V (a) where a ⊆ px.
Hence, the closure of {x} equals

{x} =
⋂

a⊆px

V (a) = V

 ⋃
a⊆px

a

 = V (px).

i) By part (ii), the set {x} is closed if and only if V (px) = {px}, that is, if
and only if the only prime ideal to contain px is px. This occurs if and
only if the ideal px is maximal.

iii) We have that y ∈ {x} if and only if py ∈ {x} = V (px) if and only if
py ⊇ px.

iv) Let x, y ∈ X be distinct points. Since x and y are distinct points, we
must have either px ⊈ py or py ⊈ px. If px ⊈ py, then py /∈ V (px) = {x},
so X \ {x} is an open set containing y but not x. Similarly, if py ⊈ px,

then px /∈ V (py) = {y}, so X \ {y} is an open set containing x but not y.
Since x, y are arbitrary distinct points in X, X is a T0-space.

Exercise 19. A topological space X is said to be irreducible if X ̸= ∅ and if
every pair of non-empty open sets in X intersect, or equivalently if every non-
empty open set is dense in X. Show that Spec(A) is irreducible if and only if
the nilradical of A is a prime ideal.

Solution. Proof. We note that X being irreducible is equivalent to that fact
that X cannot be written as the union of two proper, nonempty, closed subsets.

Let A be a ring.

(⇐) Suppose the nilradical NA of A is a prime ideal. Then NA ∈ Spec(A) and
NA = V (NA) = Spec(A). Hence the closure of NA is Spec(A).

17
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Let U , V be nonempty open sets in X. Assume U ∩ V = ∅. Then

X = X \ ∅ = X \ U ∩ V = X \ U ∪X \ V.

Since NA ∈ X, NA must be contained in one of these two closed sets. Since NA

is a point whose closure is X, this forces U or V to be empty. This contradiction
shows that U ∩ V ̸= ∅, so X is irreducible.

(⇒) Suppose the nilradical NA is not prime. Then there exist f , g ∈ A so that
f , g /∈ NA, but fg ∈ NA. Let U = Xf and V = Xg. Since f /∈ NA, there exists
some prime ideal that does not contain f . Hence U is nonempty. For the same
reason, V is nonempty. Further

U ∩ V = Xf ∩Xg = Xfg = ∅,

since fg is nilpotent and hence contained in every prime ideal. So, we see X is
reducible.

Exercise 20. Let X be a topological space.

i) If Y is an irreducible (Exercise 19) subspace of X, then the closure Y of
Y in X is irreducible.

ii) Every irreducible subspace of X is contained in a maximal irreducible
subspace.

iii) The maximal irreducible subspaces of X are closed and cover X. They
are called the irreducible components of X. What are the irreducible
components of a Hausdorff space?

iv) If A is a ring and X = Spec(A), then the irreducible components of X are
the closed sets V (p), where p is a minimal prime ideal of A.

Solution. Proof. Let X be a topological space.

i) Let Y ⊆ X be irreducible and consider the closure Y of Y . Suppose
U and V are nonempty, open sets in Y and assume U ∩ V = ∅. Then
∅ = (U ∩ V )∩ Y = (U ∩ Y )∩ (V ∩ Y ). Since Y is irreducible, one of these
sets must be empty.

Suppose U ∩ Y is empty. Then Y ⊆ (Y \ U), which is a proper, closed
set in Y . This contradicts the definition of Y , so we see that U ∩ V ̸= ∅.
Similarly, if V ∩Y is empty, we have U ∩V ̸= ∅. Hence, any two nonempty
open sets in Y intersect. It follows that Y is irreducible.

ii) Let Y be an irreducible subspace of X. Let F be the family of irreducible
subspaces which contain Y . Note that F is nonempty, since Y ∈ F .

18
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Let X1 ⊆ X2 ⊆ X3 ⊆ . . . be a chain in F . Let S =
⋃∞
i=1Xi. We claim

that S is irreducible and contains Y . Clearly S contains Y . Suppose U
and V be nonempty open subsets of S. Since U is a a nonempty subset
of S, U ∩Xi ̸= ∅ for some i. Similarly, since V is a a nonempty subset of
S, V ∩Xj ̸= ∅ for some j. Let k = max{i, j}. Then U ∩Xk and V ∩Xk

are nonempty open sets in Xk. Since Xk is irreducible, these two open
sets must have nonempty intersection. But then U ∩V is nonempty. This
shows S is irreducible.

By Zorn’s lemma, F contains maximal elements. So, there exists a max-
imal irreducible set containing Y .

iii) Let A be a ring and X = Spec(A). Let x ∈ X. Since {x} is irreducible,
by part (ii), it must be contained in a maximal irreducible subspace of X.
It follows that X is covered by maximal irreducible subspaces. Let Y be
a maximal irreducible subspace of X. By part (i), Y is also irreducible.
By the maximality of Y , we must have Y = Y , so Y is closed.

If X is a Hausdorff topological space, the irreducible components are sets
consisting of single points. Indeed, given two (distinct) points x1 and
x2 ∈ X, since X is Hausdorff, we can find disjoint open sets U , V so
that x1 ∈ U and x2 ∈ V . It follows that any Hausdorff space with at
least two points is necessarily reducible. Hence, the maximal irreducible
components of a Hausdorff space are sets consisting of singleton points.

iv) Let A be a ring and X = Spec(A). Let Y ⊆ X be an irreducible compo-
nent. Since Y is closed by (iii), we must have Y = V (p) for some ideal
p ∈ A. Since Y ⊆ X is irreducible, by Exercise 19, p is prime. Suppose
q ⊊ p is likewise a prime ideal. Then Y = V (p) ⊊ V (q), and since q is
prime, V (q) is irreducible. This contradicts the fact that Y is an irre-
ducible component. Thus, irreducible components correspond to minimal
prime ideals in A.

Exercise 21. Let ϕ : A→ B be a ring homomorphism. Let X = Spec(A) and
Y = Spec(B). If q ∈ Y , then ϕ−1(q) is a prime ideal of A, i.e., a point of X.
Hence ϕ induces a mapping ϕ∗ : Y → X. Show that

i) If f ∈ A then ϕ∗−1(Xf ) = Yϕ(f), and hence that ϕ∗ is continuous.

ii) If a is an ideal of A, then ϕ∗−1(V (a)) = V (ae).

iii) If b is an ideal of B, then ϕ∗(V (b)) = V (bc).

iv) If ϕ is surjective, then ϕ∗ is a homeomorphism of Y onto the closed subset
V (Ker (ϕ)) of X. (In particular, Spec(A) and Spec(A/N) (where N is the
nilradical of A) are naturally homeomorphic.)
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v) If ϕ is injective, then ϕ∗(Y ) is dense in X. More precisely, ϕ∗(Y ) is dense
in X ⇐⇒ Ker (ϕ) ⊆ N.

vi) Let ψ : B → C be another ring homomorphism. Then (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

vii) Let A be an integral domain with just one non-zero prime ideal p, and let
K be the field of fractions of A. Let B = (A/p)×K. Define ϕ : A→ B by
ϕ(x) = (x, x), where x is the image of x in A/p. Show that ϕ∗ is bijective
but not a homeomorphism.

Solution. Proof. Let ϕ : A → B be a ring homomorphism. Let X = Spec(A)
and Y = Spec(B). If q ∈ Y , then ϕ−1(q) is a prime ideal of A, i.e., a point of
X. Hence ϕ induces a mapping ϕ∗ : Y → X.

i) Let f ∈ A. Let y ∈ ϕ∗−1(Xf ). Then ϕ
∗(y) = ϕ−1(py) ∈ Xf , so ϕ(f) /∈ py.

Hence, y ∈ Yϕ(f). Since y ∈ ϕ∗−1(Xf ) is arbitrary, ϕ
∗−1(Xf ) ⊆ Yϕ(f).

On the other hand, suppose y ∈ Yϕ(f). Then ϕ(f) /∈ py, so f /∈ ϕ−1(py) =

ϕ∗(y). Since f /∈ ϕ∗(y), ϕ∗(y) ∈ Xf , whereby, y ∈ ϕ∗−1(Xf ). Since
y ∈ Yϕ(f) is arbitrary, Yϕ(f) ⊆ ϕ∗−1(Xf ).

Combining these two inclusions gives ϕ∗−1(Xf ) = Yϕ(f). Since the basic
open sets form a basis for the Zariski topology, this is sufficient to show
that ϕ∗ is continuous.

ii) Let a be an ideal of A.

Let y ∈ ϕ∗−1(V (a)). Then ϕ∗(y) = ϕ−1(py) ∈ V (a), whereby a ⊆ ϕ−1(py).
Hence ϕ(a) ⊆ py. Since ϕ(a) ⊆ py and ae is the ideal in B generated by
ϕ(a), we must have ae ⊆ py. Hence, y ∈ V (ae). Since y ∈ ϕ∗−1(V (a)) is
arbitrary, ϕ∗−1(V (a)) ⊆ V (ae).

On the other hand, let y ∈ V (ae). Then ae ⊆ py, whereby ϕ(a) ⊆ ae ⊆ py.
Hence a ⊆ ϕ−1py, so ϕ

∗(y) = ϕ−1py ∈ V (a), and y ∈ ϕ∗−1(V (a)). Since
y ∈ V (ae) is arbitrary, we have V (ae) ⊆ ϕ∗−1(V (a)).

Combining these two inclusions, we have ϕ∗−1(V (a)) = V (ae).

iii) Let b be an ideal of B. Let x ∈ ϕ∗(V (b)). Then ϕ(px) = ϕ∗−1(x) ∈ V (b),
whereby b ⊆ ϕ(px). So, bc ⊆ px, whereby x ∈ V (bc). Since x ∈ ϕ∗(V (b))
is arbitrary, ϕ∗(V (b)) ⊆ V (bc). Since V (bc) is closed, ϕ∗(V (b)) ⊆ V (bc).

On the other hand, let x ∈ V (bc). Then bc = ϕ−1(b) ⊆ px, whereby
b ⊆ ϕ(px) = ϕ∗−1(x). Thus, ϕ∗−1(x) ∈ V (b), whereby x ∈ ϕ∗(V (b)).
Since x ∈ V (bc) is arbitrary, V (bc) ⊆ ϕ∗(V (b)). Putting the two inclusions
together yields

ϕ∗(V (b)) ⊆ V (bc) ⊆ ϕ∗(V (b)),

which implies that
ϕ∗(V (b)) = V (bc).
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iv) Suppose ϕ : A→ B is surjective. If a is the kernel of ϕ, then ϕ induces an
isomorphism A/a ∼= B, so ϕ∗ : Spec(B)→ Spec(A) induces a homeomor-
phism Spec(A/a) ∼= Spec(B). Since Spec(A/a) ∼= V (a) = V (Ker (ϕ)), this
concludes the proof.

v) Suppose ϕ : A → B is injective. Suppose F = V (a) is a closed set in
Spec(A) so that ϕ∗(Spec(B)) ⊆ F . Since ϕ∗(Spec(B)) ⊆ V (a), we have
that ϕ−1(b) ⊇ a for all prime ideals b ⊆ B. So, ϕ(a) ⊆ b for all prime
ideals b ⊆ B.

Let x ∈ a. Since ϕ(a) ⊆ b for all prime ideals b ⊆ B, ϕ(x) is nilpotent in
B. Consequently, ϕ(xn) = 0 for some natural number n ∈ N. Since ϕ is
injective, we have that xn = 0 in A, whereby x is nilpotent. Since x ∈ a
is arbitrary, every element of a is nilpotent. Consequently, a is contained
in every prime ideal of A. So, F = V (a) = Spec(A). So, ϕ∗(Spec(B)) is
dense in Spec(A).

More generally, suppose that Ker (ϕ) ⊆ N, where N is the nilradical of A.
Let x ∈ a. As above, ϕ(x) is nilpotent in B, so ϕ(xn) = ϕ(x)

n
= 0 for

some n ∈ N. Hence, xn ∈ Ker (ϕ) ⊆ N, whereby x is nilpotent in A. So,
every element of a is nilpotent. The proof now proceeds as above.

Conversely, suppose ϕ∗(Spec(B)) is dense in Spec(A). This means every
prime ideal p in A contains ϕ∗(Spec(B)) = ϕ−1(Spec(B)).

Let p ⊂ A be a prime ideal in A and let q be a prime ideal in B. Then
ϕ−1(q) ⊂ p.

Let x ∈ Ker (ϕ). Then ϕ(x) = 0 ∈ q so that x ∈ ϕ−1(q) ⊂ p. Since
this is true for all prime ideals p in A, x ∈ N, the nilradical of A. Since
x ∈ Ker (ϕ) is arbitrary, Ker (ϕ) ⊆ N.

vi) Let ψ : B → C be another ring homomorphism. Then ψ ◦ ϕ : A → C
induces (ψ ◦ϕ)∗ : Spec(C)→ Spec(A). Let p be a prime ideal in C. Then

(ψ ◦ ϕ)∗(p) = (ψ ◦ ϕ)−1(p)

= ϕ−1(ψ−1(p))

= ϕ∗(ψ∗(p))

= (ϕ∗ ◦ ψ∗)(p).

So, (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗, as desired.

vii) Let A be an integral domain with just one non-zero prime ideal p, and let
K be the field of fractions of A. Let B = (A/p)×K. Define ϕ : A→ B by
ϕ(x) = (x, x), where x is the image of x in A/p. Consider ϕ∗ : Spec(B)→
Spec(A).

We note that both Spec(A) and Spec(B) contain two points. Spec(A)
consists of the two points, (0) and p, the first of which is open and dense
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and the second of which is closed. Spec(B) consists of the two points,
(1, 0) and (0, 1), each of which is closed.

Then

ϕ∗(1, 0) = (0) (1.1)

ϕ∗(0, 1) = p. (1.2)

So, ϕ is a bijection between Spec(A) and Spec(B). However, this map is
not a homeomorphism since the two spaces are not homeomorphic, as is
seen by comparing the two respective topologies. (Or, you can say that
ϕ∗ takes the closed point (1, 0) to the open, dense point (0).)

Exercise 22. Let A =
∏n
i=1Ai be the direct product of rings Ai. Show that

Spec(A) is the disjoint union of open (and closed) subspaces Xi, where Xi is
canonically homeomorphic with Spec(Ai).

Conversely, let A be any ring. Show that the following statements are equiv-
alent:

i) X = Spec(A) is disconnected.

ii) A ∼= A1 ×A2 where neither of the rings A1, A2 is the zero ring.

iii) A contains an idempotent ̸= 0, 1.

In particular, the spectrum of a local ring is always connected.

Solution. Proof. Suppose a ring A is a product of rings A1, . . . , An, so that
A =

∏n
i=1Ai.

For each k, 1 ≤ k ≤ n, let ϕk : A→ Ak be the canonical projection map and
let bk = Ker (ϕk ). Note that bk = {(a1, . . . , ak−1, 0, ak+1, . . . , an) : ai ∈ Ai}

The canonical ring homomorphism πk is a surjective ring homomorphism,
so by Exercise 21(iv), π∗

k : Spec(Ak) → Spec(A) is a homeomorphism from
Spec(Ak) onto its image, which is the closed set Xk := V (bk).

I claim that Spec(A) = ⨿nk=1Xk.

Since Xk ⊆ Spec(A) for all k, we have
⋃n
k=1Xk ⊆ Spec(A).

Let p ∈ Xk ∩Xℓ for k ̸= ℓ. Then p ⊇ bk and p ⊇ bℓ, so p ⊇ (bk ∪ bℓ). But
the set bk ∪ bℓ generates the entire ring A, which implies that p ⊇ A, which is
not possible. Hence, Xk ∩Xℓ = ∅. So, the subsets X1, . . . , Xn are disjoint.

Let p be a prime ideal in A. Then p ⊇ {0} =
⋂n
k=1 bk. Since p is a

prime ideal, we must have that p ⊇ bk for some k, so p ∈ Xk. It follows that
Spec(A) = ⨿nk=1Xk, as desired.
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ii)⇒iii) Suppose A ∼= A1 × A2 where neither of the rings A1, A2 is the
zero ring. Let eA1 be the multiplicative identity in A1. Then let e be
the element in A corresponding to (eA1

, 0) under the isomorphism. Then
e2 = e and e is not equal to 0 or 1 in A.

iii)⇒i) Suppose A contains an idempotent e ̸= 0, 1. Let U be the prime
ideals containing e and let V be the prime ideals containing 1− e. Hence,
both U and V are closed in Spec(A).

Suppose p ∈ U ∩V . Then p contains both e and 1− e, which implies that
p contains 1, which is not possible. So U and V are disjoint. On the other
hand, e(1− e) = e− e2 = e− e = 0, so 0 = e(1− e) ∈ p for all prime ideals
p. Hence, every prime ideal in A contains either e or 1− e, so every prime
ideal is in U or V . Consequently, Spec(A) = U ⨿ V .

iii)⇒ii) Suppose A contains an idempotent e ̸= 0, 1. We note that 1 − e
is also an idempotent not equal to 0 or 1 and that e(1 − e) = 0. Define
the ideals a = (e) and b = (1 − e). Consider the rings A1 = A/a and
A2 = A/b. For x ∈ A, x = xe + x(1 − e), so a + b = (1). Let y ∈ a ∩ b.
Then

y = ae = b(1− e), (1.3)

for some a, b ∈ A. Multiplying Equation (1.3) by e, we get ae2 = ae =
y = 0, so a ∩ b = (0). It follows that A ∼= A1 ×A2.

i)⇒iii) Suppose Spec(A) is disconnected. Then there exist closed (and
open) sets V (a) and V (b) so that X = V (a)⨿V (b). So, every prime ideal
in A contains either a or b and no prime ideal contains both.

Since no prime ideal contains both a and b, we must have that a+b = (1).
So there exist e ∈ a and f ∈ b so that e + f = 1. Then e ̸= 0, 1 and
e(1 − e) = ef ∈ a ∩ b ⊆ N, the nilradical of A. Then e is idempotent in
A/N.

Exercise 23. Let A be a Boolean ring (Exercise 11) and let X = Spec(A).

i) For each f ∈ A, the set Xf (Exercise 17) is both open and closed in X.

ii) Let f1, . . . , fn ∈ A. Show that Xf1 ∪ · · · ∪Xfn = Xf for some f ∈ A.

iii) The sets Xf are the only subsets of X which are both open and closed.

iv) X is a compact Hausdorff space.

Solution. Proof. Let A be a Boolean ring and let X = Spec(A).
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i) Let f ∈ A. The set Xf is always open. Since A is a Boolean ring, f
is idempotent. Then the closed sets V (f) and V (1 − f) are disjoint and
have union X. This means V (f) is the complement of V (1− f) in X, so
Xf = V (1− f), so it’s also closed.

ii) Let f1, . . . , fn ∈ A. Then

Xf1 ∪ · · · ∪Xfn = (Spec(A) \ V (f1)) ∪ · · · ∪ (Spec(A) \ V (fn))

= Spec(A) \ ∩iV (fi)

= Spec(A) \ V (f1, . . . , fn)

By Exercise 11, every finitely generated ideal in A is principal, so we can
find f ∈ A so that (f1, . . . , fn) = (f). Then

Xf1 ∪ · · · ∪Xfn = Spec(A) \ V (f1, . . . , fn)

= Spec(A) \ V (f)

= Xf .

iii) Let S ⊆ X be both open and closed. Since X is quasi-compact, S is
likewise quasi-compact. By Exercise 17(vii), S is the finite union of basic
open sets, Xf1 , . . .Xfn . By part (ii), S = Xf1 ∪ · · · ∪Xfn = Xf for some
f ∈ A.

iv) By Exercise 17(v), X is quasi-compact, so all we have to do is show that X
is Hausdorff. Let xp and xq be distinct points in Spec(A). Let f ∈ p \ q.
Since f is idempotent, we have that X is the disjoint union of Xf and
X1−f . Since f ∈ p, xp /∈ Xf , so xp ∈ X1−f . On the other hand, since
f /∈ q, xq ∈ Xf . Since Xf and X1−f are open and disjoint, this shows X
is Hausdorff. The same result holds for f ∈ q \ p.

Exercise 24. Let L be a lattice, in which the sup and inf of two elements a, b
are denoted by a ∨ b and a ∧ b, respectively. L is a Boolean lattice (or Boolean
algebra) if

i) L has a least element and a greatest element (denoted by 0, 1, respec-
tively).

ii) Each of ∨, ∧ is distributive over the other.

iii) Each a ∈ L has a unique “complement”a′ ∈ L such that a ∨ a′ = 1 and
a ∧ a′ = 0.

(For example, the set of all subsets of a set, ordered by inclusion, is a Boolean
lattice.)
Let L be a Boolean lattice. Define addition and multiplication in L by the rules

a+ b = (a ∧ b′) ∨ (a′ ∧ b), ab = a ∧ b.
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Verify that in this way L becomes a Boolean ring, say A(L).
Conversely, starting from a Boolean ring A, define an ordering on A as follows:
a ≤ b means that a = ab. Show that, with respect to this ordering, A is a
Boolean lattice. [The sup and inf are given by a∨ b = a+ b+ ab and a∧ b = ab,
and the complement by a′ = 1 − a.] In this way we obtain a one-to-one cor-
respondence between (isomorphism classes of) Boolean rings and (isomorphism
classes of) Boolean lattices.

Solution. Let L be a Boolean lattice. Define addition and multiplication in L
by the rules

a+ b = (a ∧ b′) ∨ (a′ ∧ b), ab = a ∧ b. (1.4)

For a ∈ L, we have

a2 = aa = a ∧ a = a,

so A(L) with the operations defined in Equation 1.4 is a Boolean ring.

Let A be a Boolean ring. Define an ordering ≤ by a ≤ b means that a = ab.
For any x ∈ A, 0 = 0x, so 0 ≤ x. So, (A,≤) has least element. Also for any

x ∈ A, x = x1, so x ≤ 1. So, (A,≤) has greatest element.
Define the sup by a ∨ b = a + b + ab. Define the inf by a ∧ b = ab. Define

the complement by a′ = 1− a.
Recall that we have 2x = 0 for all x ∈ A by Exercise 11(a). For a, b, c ∈ A,

we have

a ∨ (b ∧ c) = a ∨ bc
= a+ bc+ abc

= a+ bc+ abc+ 2(ac+ ab+ abc)

= a+ ac+ ac+ ab+ bc+ abc+ ab+ abc+ abc

= a2 + ac+ a2c+ ab+ bc+ abc+ a2b+ abc+ a2bc

= (a+ b+ ab)(a+ c+ ac)

= (a+ b+ ab) ∧ (a+ c+ ac)

= (a ∨ b) ∧ (a ∨ c).
a ∧ (b ∨ c) = a ∧ (b+ c+ bc)

= a(b+ c+ bc)

= ab+ ac+ abc

= abc+ ab+ ac

= a2bc+ ab+ ac

= ab ∨ ac
= (a ∧ b) ∨ (a ∧ c).

a ∨ a′ = a+ a′ + aa′ = a+ (1− a) + a(1− a) = 1 + a− a2 = 1 + a− a = 1.

a ∧ a′ = aa′ = a(1− a) = a− a2 = a− a = 0.
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This shows A with these operations is a Boolean lattice.
In this way we obtain a one-to-one correspondence between (isomorphism

classes of) Boolean rings and (isomorphism classes of) Boolean lattices.

Exercise 25. From the last two exercises deduce Stone’s theorem, that every
Boolean lattice is isomorphic to the lattice of open-and-closed subsets of some
compact Hausdorff topological space.

Solution. Proof. Let L be a Boolean lattice and let A be the Boolean ring
associated to L as in Exercise 24. Let X = Spec(A), which is known to be a
compact Hausdorff space from Exercise 23. Let L′ be the lattice of {Xf | f ∈ A}.
By Exercise 23, we have

Xf ∨Xg = Xf ∪Xg = Xh for some h ∈ A
Xf ∧Xg = Xf ∩Xg = Xfg

Since the correspondence between (isomorphism classes of) Boolean rings and
(isomorphism classes of) Boolean lattice is a one-to-one correspondence, L is
isomorphic to L′ and this proves the result.

Exercise 26. Let A be a ring. The subspace of Spec(A) consisting of the
maximal ideals of A, with the induced topology, is called the maximal spectrum
of A and is denoted by Max(A). For arbitrary commutative rings it does not
have the nice functorial properties of Spec(A), because the inverse image of a
maximal ideal under a ring homomorphism need not be maximal.

Let X be a compact Hausdorff space and let C(X) denote the ring of all
real-valued continuous functions on X. For each x ∈ X, let mx be the set of
all f ∈ C(X) such that f(x) = 0. The ideal mx is maximal, because it is the
kernel of the homomorphism C(X) → R which takes f to f(x). If X̃ denotes
Max(C(X)), we have therefore defined a mapping µ : X → X̃, namely x 7→ mx.

We shall show that µ is a homeomorphism of X onto X̃.

i) Let m be any maximal ideal of C(X), and let V = V (m) be the set of
common zeros of the functions in m: that is,

V = {x ∈ X | f(x) = 0 for all f ∈ m}.

Suppose that V is empty. Then for each x ∈ X there exists fx ∈ m such
that fx(x) ̸= 0. Since fx is continuous, there is an open neighborhood Ux
of x in X on which fx does not vanish. By compactness a finite number
of the neighborhoods, say Ux1

, . . . , Uxn
, cover X. Let

f = f2x1
+ · · ·+ f2xn

.

Then f does not vanish at any point of X, hence is a unit in C(X). But
this contradicts f ∈ m, hence V is not empty. Let x be a point of V . Then
m ⊂ mx, hence m = mx because m is maximal. Hence µ is surjective.
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ii) By Urysohn’s lemma (this is the only non-trivial fact required in the
argument) the continuous functions separate the points of X. Hence
x ̸= y ⇒ mx ̸= my, and therefore µ is injective.

iii) Let f ∈ C(X); let

Uf = {x ∈ X | f(x) ̸= 0}

and let

Ũf = {m ∈ X̃ | f /∈ m}.

Show that µ(Uf ) = Ũf . The open sets Uf (resp. Ũf ) form a basis of the

topology of X (resp. X̃) and therefore µ is a homeomorphism.

Thus X can be reconstructed from the ring of functions C(X).

Solution. Let A be a ring. The subspace of Spec(A) consisting of the maximal
ideals of A, with the induced topology, is called the maximal spectrum of A and
is denoted by Max(A). For arbitrary commutative rings it does not have the
nice functorial properties of Spec(A), because the inverse image of a maximal
ideal under a ring homomorphism need not be maximal.

Let X be a compact Hausdorff space and let C(X) denote the ring of all
real-valued continuous functions on X. For each x ∈ X, let mx be the set of
all f ∈ C(X) such that f(x) = 0. The ideal mx is maximal, because it is the
kernel of the homomorphism C(X) → R which takes f to f(x). If X̃ denotes
Max(C(X)), we have therefore defined a mapping µ : X → X̃, namely x 7→ mx.

i) Proof. Let m be any maximal ideal of C(X), and let V = V (m) be the set
of common zeros of the functions in m: that is,

V = {x ∈ X | f(x) = 0 for all f ∈ m}.

Suppose that V is empty. Then for each x ∈ X there exists fx ∈ m such
that fx(x) ̸= 0. Since fx is continuous, there is an open neighborhood Ux
of x in X on which fx does not vanish. By compactness a finite number
of the neighborhoods, say Ux1

, . . . , Uxn
, cover X. Let

f = f2x1
+ · · ·+ f2xn

.

Then f does not vanish at any point of X, hence is a unit in C(X). But
this contradicts f ∈ m, hence V is not empty. Let x be a point of V . Then
m ⊂ mx, hence m = mx because m is maximal. Hence µ is surjective.

ii) Proof. By Urysohn’s lemma the continuous functions separate the points
of X. Hence x ̸= y ⇒ mx ̸= my, and therefore µ is injective.

iii) Proof. Let f ∈ C(X); let

Uf = {x ∈ X | f(x) ̸= 0}
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and let
Ũf = {m ∈ X̃ | f /∈ m}.

By definition, µ(x) = mx = {f ∈ C(X) | f(x) = 0}, but for x ∈ Uf , we
have f(x) ̸= 0. We conclude that f /∈ mx, whereby mx ∈ Ũf . Since

x ∈ Uf is arbitrary, µ(Uf ) ⊆ Ũf . Since every m ∈ X̃ is of the form

mx for some x ∈ X, we see that µ(Uf ) = Ũf . This shows that µ is a
homeomorphism.

Exercise 27. Let k be an algebraically closed field and let

fα(t1, . . . , tn) = 0

be a set of polynomial equations in n variables with coefficients in k. The set
X of all points x = (x1, . . . , xn) ∈ kn which satisfy these equations is an affine
algebraic variety. Consider the set of all polynomials g ∈ k[t1, . . . , tn] with the
property that g(x) = 0 for all x ∈ X. This set is an ideal I(X) in the polynomial
ring, and is called the ideal of the variety X. The quotient ring

P (X) = k[t1, . . . , tn]/I(X)

is the ring of polynomial functions on X, because two polynomials g, h define
the same polynomial function on X if and only if g − h vanishes at every point
of X, that is, if and only if g − h ∈ I(X).

Let ξi be the image of ti in P (X). The ξi (1 ≤ i ≤ n) are the coordinate
functions on X: if x ∈ X, then ξi is the ith coordinate of x. P (X) is generated
as a k-algebra by the coordinate functions, and is called the coordinate ring (or
algebra) of X.

As in the previous exercise, for each x ∈ X let mx be the ideal of all f ∈ P (X)
such that f(x) = 0; it is a maximal ideal of P (X). Hence, if X̃ = Max(P (X)),
we have defined a mapping µ : X → X̃, namely x 7→ mx.

It is easy to show that µ is injective: if x ̸= y, we must have xi ̸= yi for
some i (1 ≤ i ≤ n), and hence ξi − xi is in mx, but not in my, so that mx ̸= my.
What is less obvious (but still true) is that µ is surjective. This is one form of
Hilbert’s Nullstellensatz.

Solution. Proof. Let k be an algebraically closed field and let

fα(t1, . . . , tn) = 0

be a set of polynomial equations in n variables with coefficients in k.
Consider the set of all polynomials g ∈ k[t1, . . . , tn] with the property that

g(x) = 0 for all x ∈ X. This set is an ideal I(X) in the polynomial ring. Let
P (X) = k[t1, . . . , tn]/I(X) be the coordinate ring of X. Let ξi be the image
of ti in P (X). For each x ∈ X let mx be the ideal of all f ∈ P (X) such that
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f(x) = 0; it is a maximal ideal of P (X). Hence, if X̃ = Max(P (X)), we have
defined a mapping µ : X → X̃, namely x 7→ mx.

It is easy to show that µ is injective: if x ̸= y, we must have xi ̸= yi for
some i (1 ≤ i ≤ n), and hence ξi − xi is in mx, but not in my, so that mx ̸= my.
What is less obvious (but still true) is that µ is surjective. This is one form of
Hilbert’s Nullstellensatz.

Let m be a maximal ideal in P (X). Suppose the affine variety defined by
m is empty. Then for each x ∈ X, there is a regular function fx ∈ m so that
fx(x) ̸= 0. Since each fx is continuous, for each x ∈ X, there is an open set Ux
so that fx(y) ̸= 0 for all y ∈ Ux. Now, the set {Ux |x ∈ X} is an open cover
of X, which is quasi-compact in the Zariski topology, so we can find a finite
subcover {Ux1

, Ux2
, . . . , Uxn

} of X.
Let f = f21 + · · ·+ f2n. Then for any y ∈ X, we have

f(y) = f21 (y) + · · ·+ f2n(y) ̸= 0.

So, f is a unit in P (X). However, f ∈ m, which is a contradiction.
Thus, the algebraic variety defined by m is not empty. Let x be in the variety

defined by m. If mx is the maximal ideal of x, then we have m ⊂ mx. Since m
is a maximal ideal by hypothesis, m = mx. This shows µ is surjective.

Exercise 28. Let f1, . . . , fm be elements of k[t1, . . . , tn]. They determine a
polynomial mapping ϕ : kn → km: if x ∈ kn, the coordinates of ϕ(x) are
f1(x),. . . , fm(x).

Let X, Y be affine algebraic varieties in kn, km respectively. A mapping
ϕ : X → Y is said to be regular if ϕ is the restriction to X of a polynomial
mapping from kn to km.

If η is a polynomial function on Y , then η ◦ϕ is a polynomial function on X.
Hence ϕ induces a k-algebra homomorphism P (Y )→ P (X), namely η 7→ η ◦ ϕ.
Show that in this way we obtain a one-to-one correspondence between regular
mappings X → Y and the k-algebra homomorphisms P (Y )→ P (X).

Solution. Proof. Let ϕ : X → Y be a regular map from X to Y . Define
ϕ∗ : P (Y )→ P (X) by ϕ∗(f) = f ◦ ϕ. Then

ϕ∗(f + g) = (f + g) ◦ ϕ = f ◦ ϕ+ g ◦ ϕ = ϕ∗(f) + ϕ ∗ (g)
ϕ∗(fg) = (fg) ◦ ϕ = (f ◦ ϕ) · (g ◦ ϕ) = ϕ∗(f) · ϕ∗(g).

Hence, ϕ∗ is a ring homomorphism.
Define Ψ : Mor(X,Y )→ Hom(P (Y ), P (X)) by Ψ(ϕ) = ϕ∗.
Let ξi, 1 ≤ i ≤ n, be the coordinate functions on Y . That is, ξi is the image

of ti in P [Y ].
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Suppose Ψ(ϕ) = Ψ(θ). Then ϕ∗ = θ∗, so that

(ϕ∗(ξi))(x) = (θ∗(ξi))(x)

ξi(ϕ(x)) = ξi(θ(x)).

for all x ∈ X and all i, 1 ≤ i ≤ n. This means that the ith coordinate of ϕ(x)
and the ith coordinate of θ(x) are equal for all x ∈ X and all i, 1 ≤ i ≤ n.
Hence ϕ(x) = θ(x) for all x ∈ X, whereby ϕ = θ. This proves Ψ is injective.

Let µ ∈ Hom(P (Y ), P (X)). Let fi = µ(ξi) ∈ P (X). Define f : X → Y
by f(x) = (f1(x), . . . , fn(x)). Since fi ∈ P (X) for all i, f ∈ Mor(X,Y ). Then
(Ψ(f))(ξi) = f∗(ξi). So, for all x ∈ X, we have

(Ψ(f))(ξi)(x) = f∗(ξi)(x) = ξi(f(x)) = fi(x) = µ(ξi)(x).

So, we see that Ψ(f) = µ. This shows Ψ is surjective.
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Modules

Exercises

Exercise 1. Show that (Z/mZ)⊗Z (Z/nZ) = 0 if m, n are coprime.

Proof. Let m and n be coprime natural numbers. Then there exist integers a
and b so that am+ bn = 1. For x⊗ y ∈ (Z/mZ)⊗Z (Z/nZ), we have

x⊗ y = x(am+ bn)⊗ y = x(bn)⊗ y
= xb⊗ ny = xb⊗ 0 = 0.

So, (Z/mZ)⊗Z (Z/nZ) = 0.

Exercise 2. Let A be a ring, a an ideal,M an A-module. Show that (A/a)⊗AM
is isomorphic to M/aM . [Tensor the exact sequence 0 → a → A → A/a → 0
with M .]

Proof. Let A be a ring and let a be an ideal in A. Consider the exact sequence
of A-modules

0→ a→ A→ A/a→ 0.

Tensoring this exact sequence with M yields

a⊗AM → A⊗AM → (A/a)⊗AM → 0,

since the tensor product is a right-exact functor. Note that A ⊗A M ∼= M by
Proposition 2.14.

We will first show that a⊗AM ∼=Ma. Define ϕ : a×M → aM by ϕ(x,m) =
xm. This map is bilinear, so it induces a homomorphism ϕ : a⊗AM → aM by
x ⊗m 7→ xm. This homomorphism is clearly surjective. Suppose ϕ(x,m) = 0.
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Then xm = 0, whereby x⊗m = 1⊗ xm = 1⊗ 0 = 0. Thus, ϕ is injective and
hence an isomorphism.

So, we have an exact sequence

aM →M → (A/a)⊗AM → 0.

Now, we need to show that the first map is injective. But this is clear since the
map is just inclusion. Thus, we see from the first isomorphism theorem that
(A/a)⊗AM is isomorphic to M/aM .

Exercise 3. Let A be a local ring, M and N finitely generated A-modules.
Prove that if M ⊗N = 0, then M = 0 or N = 0. [Let m be the maximal ideal,
k = A/m the residue field. Let Mk = k ⊗A M ∼= M/mM by Exercise 2. By
Nakayama’s Lemma, Mk = 0 ⇒ M = 0. But M ⊗A N = 0 ⇒ (M ⊗A N)k =
0⇒ Mk ⊗k Nk = 0⇒ Mk = 0 or Nk = 0, since Mk, Nk are vector spaces over
a field.]

Proof. Let A be a local ring, and let M and N finitely generated A-modules.
Let m be the unique maximal ideal of A and let k = A/m be the residue field
of m.

We note that Mk = k ⊗AM = (A/m) ⊗AM ∼= M/mM , by Exercise 2. By
Nakayama’s lemma, if Mk

∼= M/mM = 0, then M = 0. Now, if M ⊗A N = 0,
then (M ⊗A N)k = 0, whereby Mk ⊗k Nk = 0. Since Mk and Nk are vector
spaces over the field k, this implies that Mk or Nk is zero. It now follows by
Nakayama’s lemma that M = 0 or N = 0.

Exercise 4. Let Mi (i ∈ I) be any family of A-modules, and let M be their
direct sum. Prove that M is flat if and only if each Mi is flat.

Proof. Let Mi (i ∈ I) be any family of A-modules, and let M be their direct
sum.

I claim that for any A-module N ,M⊗N ∼= ⊕(Mi⊗N). Define ϕ :M×N →
⊕(Mi ⊗ N) by ϕ((xi), n) = (xi ⊗ n). Then ϕ is A-bilinear and so induces a
homomorphism Φ :M ⊗N → ⊕(Mi ⊗N) for which Φ((xi)⊗ n) = (xi ⊗ n).

Let ji : Mi → M be the natural injection. We can then define a map
Mi ×N → M ×N → M ⊗N by (xi, n) 7→ ji(xi)⊗ n. This map is bilinear, so
we get a map Mi⊗N →M ⊗N defined by xi⊗n 7→ ji(xi)⊗n. Together, these
define a map Ψ : ⊕(Mi ⊗N) → M ⊗N given by Ψ((xi ⊗ ni)) =

∑
ji(xi)⊗ ni

is a homomorphism.
The maps Φ and Ψ are inverses of one another, so they are isomorphisms

and M ⊗N ∼= ⊕(Mi ⊗N).
Suppose now that f : N ′ → N is injective and consider the mapping 1⊗ f :

M ⊗N ′ →M ⊗N . As above, M ⊗N ′ is isomorphic to ⊕(Mi ⊗N ′) under Ψ′,
and ⊕(Mi ⊗N) is isomorphic to M ⊗N under Φ.
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Therefore 1⊗f is injective if and only if the induced map g = Φ◦(1M⊗f)⊗Ψ′

from ⊕(Mi ⊗N ′) to ⊕(Mi ⊗N) is injective.

M ⊗N ′ 1M ⊗ f- M ⊗N

⊕i(Mi ⊗N ′)

Ψ′

6

g - ⊕i(Mi ⊗N)

Φ

?

Notice that g((xi ⊗ ni)) = (xi ⊗ f(ni)). So, g = (1Mi
⊗ f). Hence g is

injective if and only if 1Mi
⊗ f :Mi ⊗N →Mi ⊗N ′ is injective for all i. That

is, M is flat if and only if Mi is flat for all i.

Exercise 5. Let A[x] be the ring of polynomials in one indeterminate over a
ring A. Prove that A[x] is a flat A-algebra.

Proof. This follows immediately from the preceding problem. The ring of poly-
nomials A[x] is isomorphic as an A-module to

⊕
i∈N∪{0}A. Since A is certainly

a flat A-module, by the preceding problem,
⊕

i∈N∪{0}A
∼= A[x] is a flat A-

module.

Exercise 6. For any A-module, let M [x] denote the set of all polynomials in x
with coefficients in M , that is to say expressions of the form

m0 +m1x+ · · ·+mrx
r (mi ∈M).

Defining the product of an element of A[x] and an element ofM [x] in the obvious
way, show that M [x] is an A[x]-module.

Show that M [x] ∼= A[x]⊗AM .

Proof. If we prove the second statement, the first statement follows since
A[x]⊗AM is clearly and A[x]-module.

Define a map ϕ : A[x]×AM →M [x] by

((anx
n + · · ·+ a0),m) 7→ (anm)xn + · · ·+ (a0m).

This map is bilinear, so it factors through the tensor product and therefore
induces a homomorphism (which we also call ϕ) ϕ : A[x] ⊗M → M [x]. This
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homomorphism is clearly surjective since it is linear and surjective on mono-
mials. Suppose ϕ(f ⊗ m) = 0. If f(x) = anx

n + · · · + a0, then ϕ(f ⊗ m) =
(anm)xn + · · ·+ (a0m) = 0, so aim = 0 for all i, 0 ≤ i ≤ n. Then

f ⊗m = (anx
n + · · ·+ a0)⊗m

= anx
n ⊗m+ · · ·+ a0 ⊗m

= xn ⊗ anm+ · · ·+ 1⊗ a0m
= 0,

since aim = 0 for all i, 0 ≤ i ≤ n. So, ϕ is an isomorphism and A[x] ⊗AM ∼=
M [x]. It follows that M [x] is an A[x]-module.

Exercise 7. Let p be a prime ideal in A. Show that p[x] is a prime ideal in
A[x]. If m is a maximal ideal in A, is m[x] a maximal ideal in A[x]?

Proof. Let p be a prime ideal in a ring A and consider p[x] ⊆ A[x]. We wish to
show that p[x] is a prime ideal.

The sequence of A-modules

0→ p→ A→ A/p→ 0

is exact. By Exercise 5 of this chapter, A[x] is a flat A-module. Tensoring the
above exact sequence with A[x], we get

0→ p⊗A A[x]→ A⊗A A[x]→ (A/p)⊗A A[x]→ 0,

the sequence being exact on the left by Proposition 2.19. By Exercise 6 in this
chapter, M [x] ∼= A[x]⊗AM for any A-module M . It follows that

0→ p[x]→ A[x]→ (A/p)[x]→ 0.

Hence A[x]/p[x] is isomorphic to (A/p)[x], the ring of polynomials in one variable
over an integral domain. Since this is an integral domain as well, it follows that
p[x] is prime in A[x].

If we substitute a maximal ideal m for p, we see that A[x]/m[x] is isomorphic
to (A/m)[x], the ring of polynomials in one variable over a field. Since such a
ring of polynomials is not necessarily a field, it is not true that m[x] is a maximal
ideal in A[x] whenever m is maximal in A.

As an example, take the ideal m = (2) in Z. This ideal is a maximal ideal
and the quotient field is the field Z/2Z. Now look at a[x] = m[x] in Z[x]. Then
we have ideals m[x] ⊊ (2, x)[x] ⊊ Z[x], so m[x] is not a maximal ideal.
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Exercise 8. (i) If M and N are flat A-modules, then so is M ⊗A N .
(ii) If B is a flat A-algebra and N is a flat B-module, then N is flat as an

A-module.

Proof. (i) Let M and N be flat A-modules. Let 0 → P → Q → R → 0 be an
exact sequence of A-modules. Tensoring with the flat A-module M , we get the
exact sequence

0→ P ⊗AM → Q⊗AM → R⊗AM → 0.

Tensoring with the flat A-module N , we get the exact sequence

0→ (P ⊗AM)⊗A N → (Q⊗AM)⊗A N → (R⊗AM)⊗A N → 0.

Using the canonical isomorphism 2.14(ii), we get the exact sequence

0→ P ⊗A (M ⊗A N)→ Q⊗A (M ⊗A N)→ R⊗A (M ⊗A N)→ 0.

Since the exact sequence we began with was arbitrary, M ⊗A N is a flat A-
module, by Proposition 2.19.

(ii) Let B be a flat A-algebra and N be a flat B-module. Let 0 → P →
Q → R → 0 be an exact sequence of A-modules. Since B is a flat A-algebra,
tensoring with B gives us the exact sequence of B-modules:

0→ P ⊗A B → Q⊗A B → R⊗A B → 0.

Since N is a flat B-module, we can tensor this last exact sequence with N to
get the exact sequence

0→ (P ⊗A B)⊗B N → (Q⊗A B)⊗B N → (R⊗A B)⊗B N → 0.

Using the canonical isomorphisms in Proposition 2.15 and Proposition 2.14(iv),
we get the exact sequences

0→ P ⊗A (B ⊗B N)→Q⊗A (B ⊗B N)→ R⊗A (B ⊗B N)→ 0

0→ P ⊗A N →Q⊗A N → R⊗A N → 0.

Since the exact sequence we began with was arbitrary, N is a flat A-module, by
Proposition 2.19.

Exercise 9. Let 0→M ′ →M →M ′′ → 0 be an exact sequence of A-modules.
If M ′ and M ′′ are finitely generated, then so is M .
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Proof. Let 0→M ′ α→M
β→M ′′ → 0 be an exact sequence of A-modules, where

M ′ and M ′′ are finitely generated. Let u1, . . . , um generate M ′ and let v1, . . . ,
vn generate M ′′. Let xi = α(ui) ∈ M for each i, 1 ≤ i ≤ m. Since the map
M → M ′′ is surjective, we may choose elements yi ∈ M so that the image of
β(yi) = vi for each i, 1 ≤ i ≤ n.

I claim that the set {x1, . . . , xm, y1, . . . , yn} generatesM . Let m ∈M . Then
β(m) ∈M ′′, so we can find a1,. . . , an ∈ A so that

β(m) = a1v1 + · · ·+ anvn.

Consider the element m− (a1y1 + · · ·+ anyn) ∈M . Then

β(m− (a1y1 + · · ·+ anyn)) = β(m)− β(a1y1 + · · ·+ anyn)

= β(m)− (a1β(y1) + · · ·+ anβ(yn))

= β(m)− (a1v1 + · · ·+ anvn) = 0,

so m− (a1y1 + · · ·+ anyn) lies in the kernel of β, which equals the image of α.
Thus, we can find a′1, . . . , a

′
m ∈ A so that

α(a′1u1 + . . . a′mum) = m− (a1y1 + · · ·+ anyn).

Then

m = α(a′1u1 + . . . a′mum) + (a1y1 + · · ·+ anyn)

= a′1α(u1) + · · ·+ a′mα(um) + (a1y1 + · · ·+ anyn)

= a′1x1 + · · ·+ a′mxm + a1y1 + · · ·+ anyn.

Since m ∈M is arbitrary, {x1, . . . , xm, y1, . . . , yn} generates M , so M is finitely
generated.

Exercise 10. Let A be a ring, a an ideal contained in the Jacobson radical
of A; let M be an A-module and N a finitely generated A-module, and let
u : M → N be a homomorphism. If the induced homomorphism M/aM →
N/aN is surjective, then u is surjective.

Proof. Let A be a ring, a an ideal contained in the Jacobson radical of A; let
M be an A-module and N a finitely generated A-module, and let u : M → N
be a homomorphism. Suppose the induced homomorphism M/aM → N/aN is
surjective. Then u(M) + aN = N . By Nakayama’s lemma, u(M) = N , so u is
surjective.
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Exercise 11. Let A be a ring ̸= 0. Show that Am ∼= An ⇒ m = n. [Let
m be a maximal ideal of A and let ϕ : Am → An be an isomorphism. Then
1⊗ ϕ : (A/m)⊗Am → (A/m)⊗An is an isomorphism between vector spaces of
dimensions m and n over the field k = A/m. Hence m = n.]

Proof. Let A be a ring ̸= 0. Let m be a maximal ideal of A and let ϕ : Am → An

be an isomorphism. Then 1⊗ϕ : (A/m)⊗Am → (A/m)⊗An is an isomorphism
between vector spaces of dimensions m and n over the field k = A/m. Hence
m = n.

Exercise 12. Let M be a finitely generated A-module and ϕ : M → An a
surjective homomorphism. Show that Ker (ϕ) is finitely generated. [Let e1, . . . ,
en be a basis of An and choose ui ∈M such that ϕ(ui) = ei, (1 ≤ i ≤ n). Show
that M is the direct sum of Ker (ϕ) and the submodule generated by u1,. . . ,
un.]

Proof. Let M be a finitely generated A-module and ϕ : M → An a surjective
homomorphism. Let e1, . . . , en be a basis of An and choose ui ∈ M such that
ϕ(ui) = ei, (1 ≤ i ≤ n). Let m ∈ M . Since e1, . . . , en is a basis of An, we can
find ai ∈ A, 1 ≤ i ≤ n, so that ϕ(m) = a1e1 + · · · + anen. Now, consider the
element m− (a1u1 + · · ·+ anun) ∈M . Then

ϕ(m− (a1u1 + · · ·+ anun)) = ϕ(m)− ϕ(a1u1 + · · ·+ anun)

= ϕ(m)− (a1ϕ(u1) + · · ·+ anϕ(un))

= ϕ(m)− (a1e1 + · · ·+ anen) = 0,

so, m − (a1u1 + · · · + anun) lies in the kernel of ϕ. Since m ∈ M is arbitrary,
M is spanned by Ker (ϕ) and the set {u1, . . . , un}.

To show this is a direct sum, we show that the kernel of ϕ and the span
of the set {u1, . . . , un} meet trivially. Suppose m lies in the span of the set
{u1, . . . , un}. Then m = a1u1 + · · · + anun for some ai ∈ A, 1 ≤ i ≤ n. If m
also lies in the kernel of ϕ, then

0 = ϕ(m) = ϕ(a1u1+ · · ·+anun) = a1ϕ(u1)+ · · ·+anϕ(un) = a1e1+ · · ·+anen.

Since e1, . . . , en are linearly independent, this implies that ai = 0 for all i,
1 ≤ i ≤ n, so m = 0. So, M is the direct sum of Ker (ϕ) and the submodule
generated by u1,. . . , un.

Let m1, . . . ,ms generate M . From what we’ve just shown, we can write
mi = ki +

∑
j a

i
juj , where ki ∈ Ker (ϕ).
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I claim that Ker (ϕ) is generated by {k1, . . . , kn}. Let m ∈ Ker (ϕ). We can
write

m =
∑
i

λimi

=
∑
i

λi

ki +∑
j

aijuj


=

(∑
i

λiki

)
+

∑
i,j

aijuj



Since m and the sum
∑
i λiki lie in the kernel of ϕ, so does their difference

m − (
∑
i λiki) =

∑
i,j a

i
juj . Since the kernel of ϕ and the span of u1,. . . , un

meet trivially, we must have m =
∑
i λiki. Since m ∈ Ker (ϕ) is arbitrary,

Ker (ϕ) is finitely generated.

Exercise 13. Let f : A → B be a ring homomorphism, and let N be a B-
module. Regarding N as an A-module by restriction of scalars, form the B-
module NB = B ⊗A N . Show that the homomorphism g : N → NB which
maps y to 1⊗ y is injective and that g(N) is a direct summand of NB . [Define
p : NB → N by p(b⊗ y) = by, and show that NB = im(g)⊕Ker (p).]

Proof. Let f : A → B be a ring homomorphism and let N be a B-module.
Regarding N as an A-module by restriction of scalars, form the B-module
NB = B ⊗A N . Define the homomorphism g : N → NB which maps y to
1 ⊗ y. Define the homomorphism p : NB → N by p(b ⊗ y) = by. Since p ◦ g is
the identity map, g is injective.

Let
∑
i bi ⊗ yi ∈ NB . Then we can write

∑
i

bi ⊗ yi =

(∑
i

bi ⊗ yi − g

(∑
i

biyi

))
+ g

(∑
i

biyi

)

and

p

(∑
i

bi ⊗ yi − g

(∑
i

biyi

))
= p

(∑
i

bi ⊗ yi

)
− p

(
g

(∑
i

biyi

))

=

(∑
i

p (bi ⊗ yi)

)
− (p ◦ g)

(∑
i

biyi

)
=
∑
i

biyi −
∑
i

biyi

= 0.
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So, we see that
∑
i bi⊗ yi can be written as the sum of an element in the image

of g and an element in the kernel of ϕ.
Suppose g(n) = 1⊗ n lies in the kernel of p. Then

0 = p(g(n)) = p(1⊗ n) = n,

This shows the intersection of the image of g and the kernel of p is trivial.
So,

NB = Im(g)⊕Ker (ϕ) .

Thus, g(N) is a direct summand of NB .

Exercise 14. A partially ordered set I is said to be a directed set if for each
pair i, j in I there exists k ∈ I such that i ≤ k and j ≤ k.

Let A be a ring, let I be a directed set and let (Mi)i∈I be a family of A-
modules indexed by I. For each pair i, j in I such that i ≤ j, let µij :Mi →Mj

be an A-homomorphism, and suppose that the following axioms are satisfied:

i) µii is the identity mapping of Mi, for all i ∈ I;

ii) µik = µjk ◦ µij whenever i ≤ j ≤ k.

Then the modules Mi and the homomorphisms µij are said to form a direct
system M = (Mi, µij) over the directed set I.

We shall construct an A-moduleM called the direct limit of the direct system
M. Let C be the direct sum of the Mi, and identify each module Mi with its
canonical image in C. Let D be the submodule of C generated by all elements
of the form xi−µij(xi) where i ≤ j and xi ∈Mi. LetM = C/D, let µ : C →M
be the projection and let µi be the restriction of µ to Mi.

The module M , or more correctly the pair consisting of M and the family
of homomorphisms µi : Mi → M , is called the direct limit of the direct system
M, and is written lim−→Mi. From the construction it is clear that µi = µj ◦ µij .
whenever i ≤ j.

Proof. Let A be a ring, let I be a directed set, and let M = (Mi, µij) be the
direct system over the directed set I.

Let C =
⊕

i∈IMi. Let D be the submodule of C generated by all elements
of the form xi−µij(xi) where i ≤ j and xi ∈Mi. LetM = C/D, let µ : C →M
be the projection and let µi be the restriction of µ to Mi. Let µij : Mi → Mj

be the homomorphisms of the direct system. Since µij(xi) − xi ∈ D, we have
that µ(µij(xi)) = µ(xi) in M . Since xi ∈ Mi, µ(xi) = µi(xi). Similarly, since
µij(xi) ∈Mj , µ(µij(xi)) = µj(µij(xi)). So, we have

µi = µj ◦ µij ,

as desired.
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Exercise 15. In the situation in Exercise 14, show that every element of M
can be written in the form µi(xi) for some i ∈ I. Show also that if µi(xi) = 0
then there exists j ≥ i such that µij(xi) = 0 in Mj .

Proof. Let A be a ring, let I be a directed set, and let M = (Mi, µij) be a direct
system over the directed set I. Let M = lim−→Mi and let µi : Mi → M be the
homomorphism defined in the previous problem.

Since M is the quotient of the direct sum ⊕Mi, every element of M is the
image of an element (mi)mi∈Mi , where all but finitely many of the mi are zero.

Let i, j be two indices for which mi ̸= 0, mj ̸= 0. Since I is a directed set,
we can find an index k so that i ≤ k and j ≤ k. Then µik(mi) and µjk(mj) are
in Mk and

mi +mj = (mi − µik(mi)) + (mj − µjk(mj)) + µik(mi) + µjk(mj)

= µik(mi) + µjk(mj) in M,

and µik(mi) + µjk(mj) ∈ Mk. It follows by induction that we can reduce the
number of indices in which the non-zero mi’s occur down to one. That is, every
element of M can be written in the form µi(xi) for some i ∈ I.

Now, suppose that µi(xi) = 0. We use the alternate equivalence relation to
define the direct limit: Two elements (ai) and (bi) are equivalent if there exists
k with i, j ≤ k so that µik(ai) = µjk(bj). If µi(xi) = 0, then (xi) is equivalent
to 0, hence there exists k with i, j ≤ k so that µik(xi) = µjk(0) = 0.

Exercise 16. Show that the direct limit is characterized (up to isomorphism)
by the following property. Let N be an A-module and for each i ∈ I let αi :
Mi → N be an A-module homomorphism such that αi = αj◦µij whenever i ≤ j.
Then there exists a unique homomorphism α :M → N such that αi = α ◦ µi.

Proof. First, we note that the direct limit has this property by letting αi = µi
and α be the identity map.

Next, let N be an A-module and for each i ∈ I let αi : Mi → N be an
A-module homomorphism such that αi = αj ◦ µij whenever i ≤ j.

Define α : M → N as follows. Let x ∈ M . By the preceding problem, we
can write x = µi(xi) for some xi ∈ Mi. Define α(x) = αi(xi). Notice that
this is the only way to define α so that αi = α ◦ µi. So, α is unique if it is a
well-defined homomorphism.

We first must show that this function is well-defined. Suppose x = µj(xj)
for some xj ∈Mj . Since I is a directed set, we can find k ∈ I so that i ≤ k and
j ≤ k so that µik(xi) = µjk(xj). Then in M , we have

µi(xi) = µk(µik(xi)) = µk(µjk(xj)) = µj(xj).
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Hence, µk(µik(xi)− µjk(xj)) = 0. By a preceding problem, we can find m ∈ I
so that k ≤ m and

µkm(µik(xi)− µjk(xj)) = 0.

That is,

µim(xi)− µjm(xj) = 0

µim(xi) = µjm(xj).

Then

αi(xi) = αm(µim(xi)) = αm(µjm(xj)) = αj(xj),

as desired. So α is well-defined.
Let x, y ∈ M . By the preceding problem, we can find indices i, j ∈ I so

that x = µi(xi) and y = µj(xj). As in proving that the map α is well-defined,
we can find k ∈ I so that i ≤ k and j ≤ k, and

µi(xi) + µj(xj) = µk(µik(xi)) + µk(µjk(xj))

= µk(µik(xi) + µjk(xj)),

so, by definition, for λ, ν ∈ A, we have

α(λx+ νy) = αk(µik(λxi) + µjk(νxj))

= αk(λµik(xi)) + αk(νµjk(xj))

= λαk(µik(xi)) + ναk(µjk(xj))

= λαi(xi)) + ναj(xj))

= λα(x) + να(y).

So, α is a homomorphism of A-modules.
Now, let N , with maps αi :Mi → N and αi = αj ◦µij , satisfy this universal

property. and let M be the direct limit, with maps µi : Mi → M and µi =
µj ◦ µij , which also satisfies this universal property.

By the universal property forM with respect toN , we have a homomorphism
α :M → N satisfying αi = α◦µi. By the universal property for N with respect
to M , we have a homomorphism β : N →M satisfying µi = β ◦ αi.

Let x ∈ M . Then there exists xi ∈ Mi for some i ∈ I so that µi(xi) = x .
Then

β ◦ α(x) = β ◦ α(µi(xi)) = β ◦ αi(xi) = µi(xi) = x.

Let y ∈ N . Then there exists yj ∈Mj for some j ∈ I so that αj(yj) = y . Then

α ◦ β(y) = α ◦ β(αj(yj)) = α(µj(yj)) = αj(yj)) = y.

So, we see that α and β are inverse homomorphisms, soM andN are isomorphic.
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Exercise 17. Let (Mi)i∈I be a family of submodules of an A-module, such that
for each pair of indices i, j in I there exists k ∈ I such that Mi +Mj ⊆ Mk.
Define i ≤ j to mean that Mi ⊆ Mj and let µij : Mi → Mj be the embedding
of Mi in Mj . Show that

lim−→Mi =
∑

Mi =
⋃
Mi.

In particular, any A-module is the direct limit of its finitely generated submod-
ules.

Proof. Let (Mi)i∈I be a family of submodules of an A-module, such that for
each pair of indices i, j in I there exists k ∈ I such that Mi+Mj ⊆Mk. Define
i ≤ j to mean that Mi ⊆Mj and let µij :Mi →Mj be the embedding of Mi in
Mj .

Let M ′ =
⋃
i∈IMi. Then M ′ is an A-module. Let µ′

i : Mi → M ′ be
inclusion. Then µ′

i = µ′
j ◦ µij .

We show M ′ has the universal property of the direct limit. Let N be any
A-module and suppose αi :Mi → N be homomorphisms so that αi = αj ◦ µij .

Let x ∈ M ′. Then there exists i ∈ I so that x = µ′
i(xi) for some xi ∈ Mi.

Define α : M ′ → N by α(x) = αi(xi). Suppose x ∈ Mj as well so that
µ′
j(xj) = x. Then there exists k with i, j ≤ k so that µik(xi) = µjk(xj). Then

we have
αi(xi) = αk ◦ µik(xi) = αk ◦ µjk(xj) = αj(xj),

so α is well-defined. Being a composition of homomorphisms, α is a homomor-
phism, and from its construction it is unique.

Let M ′′ = Σi∈IMi. Then M ′′ is an A-module. Let µ′
i
′ : Mi → M ′′ be the

inclusion of Mi. Then µ
′
i
′ = µ′

j
′ ◦ µij .

We show M ′′ has the universal property of the direct limit. Let N be any
A-module and suppose αi :Mi → N be homomorphisms so that αi = αj ◦ µij .

Let x ∈M ′′. Since x is a (finite) sum of elements of theMi’s, we can use the
defining property of a directed set inductively to find one i ∈ I so that x ∈Mi.
Suppose x ∈ Mj as well so that µ′

j
′(x) = x. Then there exists k with i, j ≤ k

so that µik(xi) = µjk(xj). Then we have

αi(x) = αk ◦ µik(x) = αk ◦ µjk(x) = αj(x),

so α is well-defined. Being a composition of homomorphisms, α is a homomor-
phism, and from its construction it is unique.

Since M ′ =
⋃
i∈IMi and M ′′ = Σi∈IMi have the universal property of a

direct limit, lim−→Mi =
∑
Mi =

⋃
Mi.

Exercise 18. Let M = (Mi, µij), N = (Ni, νij) be direct systems of A-modules
over the same directed set. Let M , N be the direct limits and µi : Mi → M ,
νi : Ni → N the associated homomorphisms. A homomorphism Φ : M → N
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is by definition a family of A-module homomorphisms ϕi : Mi → Ni such that
ϕj ◦µij = νij ◦ϕi whenever i ≤ j. Show that Φ defines a unique homomorphism
ϕ = lim−→ϕi :M → N such that ϕ ◦ µi = νi ◦ ϕi for all i ∈ I.

Proof. Let M = (Mi, µij), N = (Ni, νij) be direct systems of A-modules over
the same directed set. Let M , N be the direct limits and µi : Mi → M ,
νi : Ni → N the associated homomorphisms.

LetΦ : M→ N be a homomorphism of directed systems, so that there exists
a family of A-module homomorphisms ϕi :Mi → Ni such that ϕj ◦µij = νij ◦ϕi
whenever i ≤ j. We wish to define a unique homomorphism ϕ = lim−→ϕi :M → N
such that ϕ ◦ µi = νi ◦ ϕi for all i ∈ I.

Let x ∈M . By Exercise 15 there exists xi ∈Mi so that x = µi(xi) for some
i ∈ I. By the requirement that ϕ ◦ µi = νi ◦ ϕi for all i ∈ I, we must define

ϕ(x) = ϕ ◦ µi(xi) = νi ◦ ϕi(xi) = νi(ϕi(xi)).

This shows ϕ is unique provided it is well-defined.

If x = µj(xj) for some j ∈ I, xj ∈Mj , as well, then there exists k ∈ I with
i, j ≤ k so that µik(xi) = µjk(xj). Then

(νi ◦ ϕi)(xi) = νi(ϕi(xi))

= (νk ◦ νik)(ϕi(xi))
= νk((νik ◦ ϕi)(xi))
= νk((ϕk ◦ µik)(xi))
= νk(ϕk(µik(xi)))

= νk(ϕk(µjk(xj)))

= νk((ϕk ◦ µjk)(xj))
= νk((νjk ◦ ϕj)(xj))
= (νk ◦ νjk)(ϕj(xj))
= νj(ϕj(xj))

= (νj ◦ ϕj)(xj).

so ϕ is well-defined.

For x, y ∈ M , we can choose xi ∈ Mi and yj ∈ Mj so that µi(xi) = x and
µj(yj) = y. Since I is a directed set, there exists k ∈ I so that i, j ≤ k. Then

µk(µik(xi)) = (µk ◦ µik)(xi) = µi(xi) = x.

Similarly, µk(µjk(yj)) = y. So, we may choose a representative for both x and
y lying in the same Mk.

For λ, µ ∈ A and x, y ∈M , we can choose xk, yk ∈Mk so that µk(xk) = x
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and µk(yk) = y. Then

ϕ(λx+ µy) = νk(ϕk(λxk + µyk))

= νk(λϕk(xk) + µϕk(µyk))

= λνk(ϕk(xk)) + µνk(ϕk(yk))

= λ(νk ◦ ϕk)(xk) + µ(νk ◦ ϕk)(yk)
= λϕ(x) + µϕ(y).

This proves ϕ is a homomorphism.

Exercise 19. A sequence of direct systems and homomorphisms

M→ N→ P

is exact if the corresponding sequence of modules and module homomorphisms
is exact for each i ∈ I. Show that the sequence M → N → P of direct limits is
then exact.

Proof. Let

M
Φ→ N

Ψ→ P

be an exact sequence of direct systems and homomorphisms, so that

Mi
ϕi→ Ni

ψi→ Pi

is exact for each i ∈ I. We use the notation from Exercise 14 with connecting
homomorphisms µij : Mi → Mj , νij : Ni → Nj , and ρij : Pi → Pj whenever
i ≤ j with the properties that µj ◦ µij = µi, νj ◦ νij = νi, and ρj ◦ ρij = ρi.

By the result of Exercise 18, there exists unique module homomorphism
ϕ = lim−→ϕi : M → N satisfying ϕ ◦ µi = νi ◦ ϕi, where µi : Mi → M and νi :
Ni → N , as in Exercise 14. Similarly there exists unique module homomorphism
ψ = lim−→ψi : N → P satisfying ψ ◦ νi = ρi ◦ ψi, where νi : Ni → N and
ρi : Pi → P .

Suppose m ∈ M and consider its image n = ϕ(m) ∈ N . By the first result
in Exercise 15, there exists mi ∈Mi with µi(mi) = m for some i ∈ I. Then we
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compute

ψ(n) = ψ(ϕ(m))

= ψ(ϕ(µi(mi)))

= ψ((ϕ ◦ µi)(mi))

= ψ((νi ◦ ϕi)(mi))

= (ψ ◦ νi)(ϕi(mi))

= (ρi ◦ ψi)(ϕi(mi))

= ρi((ψi ◦ ϕi)(mi))

= ρi(0)

= 0,

since the sequence Mi
ϕi→ Ni

ψi→ Pi is exact. This shows the image of ϕ is
contained in the kernel of ψ.

On the other hand, let n be in the kernel of ψ. By the first result in Exer-
cise 15, there exists ni ∈ Ni with νi(ni) = n for some i ∈ I. Then we compute

0 = ψ(n)

= ψ(νi(ni))

= (ψ ◦ νi)(ni)
= (ρi ◦ ψi)(ni)
= ρi(ψi(ni)).

This says that ψi(ni) lies in the kernel of ρi.

By second part of Exercise 15, there exists j ≥ i so that ρij(ψi(ni)) = 0.
Then we have

0 = ρij(ψi(ni))

= (ρij ◦ ψi)(ni)
= (ψj ◦ νij)(ni)
= ψj(νij(ni))

So, νij(ni) is in the kernel of ψj .

Since the sequence Mj
ϕj→ Nj

ψj→ Pj is exact, there exists mj ∈ Mj so that
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ϕj(mj) = νij(ni). Let m = µj(mj) ∈M . Then

ϕ(m) = ϕ(µj(mj))

= (ϕ ◦ µj)(mj)

= (νj ◦ ϕj)(mj)

= νj(ϕj(mj))

= νj(νij(ni))

= νi(ni)

= n,

so the kernel of ψ is contained in the image of ϕ. This shows that the sequence

M → N → P

is exact.

Mark, start here.

Exercise 20. Keeping the same notation as in Exercise 14, let N be any A-
module. Then (Mi ⊗N,µij ⊗ 1) is a direct system; let P = lim−→(Mi ⊗N) be its
direct limit. For each i ∈ I we have a homomorphism µi⊗1 :Mi⊗N →M ⊗N
hence by Exercise 16 a homomorphism ψ : P → M ⊗ N . Show that ψ is an
isomorphism, so that

lim−→(Mi ⊗N) ∼= (lim−→Mi)⊗N.

[For each i ∈ I, let gi : Mi ×N → Mi ⊗N be the canonical bilinear mapping.
Passing to the limit we obtain a mapping g : M × N → P . Show that g is
A-bilinear and hence define a homomorphism ϕ :M ⊗N → P . Verify that ϕ◦ψ
and ψ ◦ ϕ are identity mappings.]

Proof. Keeping the same notation as in Exercise 14, let N be any A-module.
Then (Mi ⊗ N,µij × 1) is a direct system; let P = lim−→(Mi ⊗ N) be its direct
limit. For each i ∈ I we have a homomorphism µi⊗1 :Mi⊗N →M ⊗N hence
by Exercise 16 a homomorphism ψ : P →M ⊗N .

Let gi : Mi × N → Mi ⊗ N be the canonical bilinear mapping. Passing to
the limit we obtain a mapping g :M ×N → P .
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Exercise 21. Let (Ai)i∈I be a family of rings indexed by a directed set I, and
for each pair i ≤ j in I let αij : Ai → Aj be a ring homomorphism, satisfying
condition (1) and (2) of Exercise 14. Regarding each Ai as a Z-module we can
then form the direct limit A = lim−→Ai. Show that A inherits a ring structure
from the Ai so that the mappings Ai → A are ring homomorphisms. The ring
A is the direct limit of the system (Ai, αij). If A = 0 prove that Ai = 0 for
some i ∈ I. [Remember that all rings have identity elements!]

Proof. Let (Ai)i∈I be a family of rings indexed by a directed set I, and for each
pair i ≤ j in I let αij : Ai → Aj be a ring homomorphism, satisfying conditions:

i) αii is the identity mapping of Mi, for all i ∈ I;

ii) αik = αjk ◦ αij whenever i ≤ j ≤ k.

Regarding each Ai as a Z-module, define A to be the direct limit lim−→Ai.
Define + and × on lim−→Ai as follows. Let x, y ∈ lim−→Ai. By Exercise 1, we

can choose xi in Ai so that µi(xi) = x and yi in Ai so that µi(yi) = y. By
the argument in Exercise 15, we may take these representatives in the same Ai.
Now define

x+ y = µi(xi + yi) xy = µi(xiyi),

where the elements are the right are elements in lim−→Ai.
Suppose xi and xj represent x and yi and yj represent y. Since I is a directed

set, there exists k ∈ I so that i, j ≤ k. Then µik(xi) = xk and µjk(xj) = xk, as
well as µik(yi) = yk and µjk(yj) = yk. So, we have

µi(xi + yi) = µi(xi) + µi(yi)

= µi(xi) + µi(yi) + (µik(µi(xi))− µi(xi)) + (µik(µi(yi))− µi(yi))
= µik(µi(xi)) + (µik(µi(yi))

Mark, finish this.

Exercise 22. Let (Ai, αij) be a direct system of rings and let Ni be the nilrad-
ical of Ai. Show that lim−→Ni is the nilradical of lim−→Ai. If each Ai is an integral
domain, then lim−→Ai is an integral domain.

Proof. Let (Ai, αij) be a direct system of rings and let Ni be the nilradical of
Ai.
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Exercise 23. Let (Bλ)λ∈Λ be a family of A-algebras. For each finite subset J of
Λ let BJ denote the tensor product (over A) of the Bλ for λ ∈ J . If J ′ is another
finite subset of Λ and J ⊆ J ′, there is a canonical A-algebra homomorphism
BJ → BJ′ . Let B denote the direct limit of the rings BJ as J runs through all
finite subsets of Λ. The ring B has a natural A-algebra structure for which the
homomorphisms BJ → B are A-algebra homomorphisms. The A-algebra B is
the tensor product of the family (Bλ)λ∈Λ.

Proof.

Exercise 24. If M is an A-module, the following are equivalent:

i) M is flat;

ii) TorAn (M,N) = 0 for all n > 0 and all A-modules N ;

iii) TorA1 (M,N) = 0 for all A-modules N .

[To show that (i)⇒ (ii), take a free resolution of N and tensor it withM . Since
M is flat, the resulting sequence is exact and therefore its homology groups,
which are the TorAn (M,N) = 0, are zero for n > 0. To show that (iii) ⇒ (i),
let 0 → N ′ → N → N ′′ → 0 be an exact sequence. Then, from the Tor exact
sequence,

Tor 1(M,N ′)→M ⊗N ′ →M ⊗N →M ⊗N ′′ → 0

is exact. Since Tor1(M,N ′) = 0, it follows that M is flat.]

Proof.

Exercise 25. Let 0 → N ′ → N → N ′′ → 0 be an exact sequence, with N ′′

flat. Then N ′ is flat ⇔ N is flat.

Proof. Let 0→ N ′ → N → N ′′ → 0 be an exact sequence, with N ′′ flat.

Exercise 26. Let N is an A-module. Then N is flat⇔ Tor1(A/a, N) = 0 for all
finitely generated ideals a in A. [Show first that N is flat if Tor1(M,N) = 0 for
all finitely generated A-modules M , by using (2.19). If M is finitely generated,
let x1, . . . , xn be a set of generators of M , and let Mi be the submodule
generated by x1, . . .xi. By considering the successive quotients Mi/Mi−1 and
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using Exercise 25, deduce that N is flat if Tor1(M,N) = 0 for all cyclic A-
modules M , i.e., all M generated by a single element, and therefore of the form
A/a for some ideal a. Finally use (2.19) again to reduce to the case where a is
a finitely generated ideal.]

Proof.

Exercise 27. A ring A is absolutely flat if every A-module is flat. Prove that
the following are equivalent:

i) A is absolutely flat.

ii) Every principal ideal is idempotent.

iii) Every finitely generated ideal is a direct summand of A.

[(i)⇒ (ii). Let x ∈ A. Then A/(x) is a flat A-module, hence in the diagram

(x)⊗A
β- (x)⊗A/(x)

A
?

- A/(x)

α

?

the mapping α is injective. Hence im(β) = 0, hence (x) = (x2). (ii)⇒ (iii). Let
x ∈ A. Then x = ax2 for some a ∈ A, hence e = ax is idempotent and we have
(e) = (x). Now if e, f are idempotents, then (e, f) = (e+ f − ef). Hence every
finitely generated ideal is principal, and generated by an idempotent e, hence
is a direct summand because A = (e) ⊕ (1 − e). (iii)⇒(i). Use the criterion of
Exercise 26.

Proof. i)⇒ii) Suppose A is absolutely flat. Let x ∈ A be nonzero. Let
(x) be the principal ideal generated by x. Since A is absolutely flat, the
A-module A/(x) is flat. The map (x) → A is injective, and since A/(x)

is a flat A-module, the map (x) ⊗ A/(x)
α- A ⊗ A/(x) = A/(x) is

also injective by Proposition 2.19. The diagram commutes, and since the
composition (x) ⊗ A → A → A/(x) is the zero map, the composition

(x) ⊗ A → (x) ⊗ A/(x) α- A/(x) must likewise be the zero map. We
have just shown that α is injective, so β must be the zero map. It follows
that (x) = (x2) = (x)2, and (x) is idempotent.

ii)⇒iii) Suppose every principal ideal is idempotent. Let x ∈ A. Since
(x) = (x2), x = ax2 for some a ∈ A, hence e = ax is idempotent. If e, f are
idempotents, then (e, f) = (e+ f + ef). So, every finitely generated ideal
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is principal, and therefore idempotent, so it’s generated by an idempotent
e. But then A = (e)⊕ (1− e), so every finitely generated ideal is a direct
summand of A.

iii)⇒i) Suppose every finitely generated ideal is a direct summand of A.
Let a be a finitely generated ideal of A. Then there exists an ideal b ⊂ A
with a⊕ b = A.

Let N be any A-module. We have the split exact sequence of A-modules

0 → a → A → b → 0. Tensoring this with N , we get 0 → a ⊗A N
φ→

A ⊗A N → A/a ⊗A N → 0. By definition, Tor1(A/a, N) is the kernel of
the map φ, so Tor1(A/a, N) = 0. By Exercise 26, N is flat and since N is
arbitrary, A is absolutely flat.

Exercise 28. A Boolean ring is absolutely flat. The ring of Chapter 1, Exer-
cise 7 is absolutely flat. Every homomorphic image of an absolutely flat ring is
absolutely flat. If a local ring is absolutely flat, then it is a field.

If A is absolutely flat, every non-unit in A is a zero-divisor.

Proof. i) Let A be a Boolean ring. Since x2 = x for all x ∈ A, it’s clear that
(x)2 = (x2) = (x), so every principal ideal is idempotent. By Exercise 27,
A is absolutely flat.

ii) Let A be a ring in which every element x satisfies xn = x for some n > 1.
For x ∈ A, we have (x)2 = (x2) ⊇ (xn) = (x). Since the reverse inclusion
is clear, we have (x)2 = (x). So, every principal ideal is idempotent. By
Exercise 27, A is absolutely flat.

iii) Let A be an absolutely flat ring and let h : A → B be a surjective ho-
momorphism. Let (g) be a principal ideal in B. Since h is surjective,
there exists f ∈ A so that h(f) = g. Then the image of (f) under h is
(g) since h is surjective. Since A is absolutely flat, the principal ideal (f)
is idempotent by Exercise 27. So, (f2) = (f)2 = (f). But the image of
this under h is (g2) = (g)2 = (g), so (g) is idempotent. Since (g) is an
arbitrary principal ideal in B, B is absolutely flat, by Exercise 27 again.

iv) Let A be an absolutely flat local ring. Let x ∈ m, the unique maximal
ideal of A. Since A be an absolutely flat ring, the principal ideal (x) is
idempotent by Exercise 27. Then (x) must be generated by an idempotent
element. But in a local ring, there are only two idempotents: 0 and 1.
Since x ∈ m, we must have x = 0. This shows that every nonzero element
is a unit, so A is a field.

v) Suppose A is absolutely flat and let x ∈ A be a non-unit. By Exercise 27,
every principal ideal is idempotent. Since the ideal (x) is idempotent,
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there exists a ∈ A so that ax2 = x. Hence x(ax − 1) = 0. If ax − 1 = 0,
then x is a unit contrary to assumption. So, ax − 1 ̸= 0, whereby x is a
divisor of zero by definition.

Mark, do this last part.
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Chapter 3

Rings and Modules of
Fractions

Exercises

Exercise 1. Let S be a multiplicatively closed subset of a ring A, and let M
be a finitely generated A-module. Prove that S−1M = 0 if and only if there
exists s ∈ S such that sM = 0.

Proof. Let S be a multiplicatively closed subset of a ring A and let M be a
finitely generated A-module.

(⇒) Suppose S−1M = 0. Let {m1, . . .mn} be a set of generators for M . For
each i, 1 ≤ i ≤ n, mi/1 ∈ S−1M = 0, so there exists si ∈ S so that misi = 0.
Let s = s1 · · · · · sn. Since s annihilates each generator of M , sM = 0.

(⇐) Suppose there exists s ∈M such that sM = 0.
Let m/s′ ∈ S−1M , where m ∈ M and s′ ∈ S. Since sm = 0, we have that

m/s′ = 0/s = 0. Since m/s′ ∈ S−1M is arbitrary, S−1M = 0.

Exercise 2. Let a be an ideal of a ring A, and let S = 1 + a. Show that S−1a
is contained in the Jacobson radical of S−1A.

Use this result and Nakayama’s lemma to give a proof which does not depend
on determinants of the following fact:

Let M be a finitely generated A-module and let a be an ideal of
A such that aM = M . Then there exists x ≡ 1(mod a) such that
xM = 0.
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[If M = aM , then S−1M = (S−1a)(S−1M), and hence by Nakayama’s
Lemma we have S−1M = 0.]

Proof. Let a be an ideal of a ring A, and let S = 1 + a.
Let x/(1 + a) ∈ S−1a, with x, a ∈ a. Let y/(1 + b) ∈ S−1A, with y ∈ A and

b ∈ a be arbitrary. Then

1−
(

x

1 + a

)(
y

1 + b

)
=

(1 + a)(1 + b)− xy
(1 + a)(1 + b)

=
1 + a+ b+ ab− xy

(1 + a)(1 + b)
.

Since a, b, and x are in the ideal a, we see the numerator here is an element of
1 + a, so this element is a unit in S−1A. By Proposition 1.9 in Chapter 1, the
element x/(1+ a) lies in the Jacobson radical of S−1A. Since x/(1+ a) ∈ S−1a
is arbitrary, S−1a is contained in the Jacobson radical of S−1A.

Now, suppose M is a finitely generated A-module and suppose a is an ideal
of A such that aM =M . Note that

aM =M

S−1(aM) = S−1M

S−1(a)S−1M = S−1M.

Since S−1(a) is contained in the Jacobson radical of S−1A and S−1M is finitely
generated, we may apply Nakayama’s Lemma to obtain

S−1M = 0.

By Exercise 1 of this section, we have that there exists x ∈ S so that xM = 0.
Since x ∈ S = 1 + a, we have that x ≡ 1(mod a), as desired.

Exercise 3. Let A be a ring, let S and T be two multiplicatively closed subsets
of A, and let U be the image of T in S−1A. Show that the rings (ST )−1A and
U−1(S−1A) are isomorphic.

Proof. Let A be a ring, let S and T be two multiplicatively closed subsets of A,
and let U be the image of T in S−1A. Define

φ : A→ (ST )−1A

φ(a) 7→ a

1

For s ∈ S ⊂ A, φ(s) is a unit in (ST )−1A, so φ induces a homomorphism

φ′ : S−1A→ (ST )−1A

φ′(a/s) 7→ a/s

1
=
a

s
.
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For t/1 ∈ U ,

φ′(t/1) =
t/1

1
=
t

1
,

which is a unit in (ST )−1A, so φ′ induces a homomorphism

φ′′ : U−1(S−1A)→ (ST )−1A

φ′′
(
a/s

t/s′

)
7→ as′

st
.

The map φ′′ is certainly surjective. Suppose φ′′
(
a/s
t/s′

)
= 0. Then

φ′′
(
a/s

t/s′

)
=
as′

st
= 0.

This happens if and only if some element of s0t0 ∈ ST satisfies s0t0as
′ = 0. But

then
a/s

t/s′
=
as′

st
=
as′s0t0
sts0t0

=
0

sts0t0
= 0.

So, we see φ′′ is injective as well. So, the rings (ST )−1A and U−1(S−1A) are
isomorphic.

Exercise 4. Let f : A → B be a homomorphism of rings and let S be a
multiplicatively closed subset of A. Let T = f(S). Show that S−1B and T−1B
are isomorphic as S−1A-modules.

Proof. Let f : A → B be a homomorphism of rings and let S be a multiplica-
tively closed subset of A. We remark that the map f makes B an A-module by
defining a · b to mean f(a)b ∈ B. Since S is a multiplicatively closed subset of
A, we have s · b to mean f(s)b ∈ B.

Let T = f(S). Since S is multiplicatively closed and f is a homomorphism,
T is also multiplicatively closed. Define

φ : S−1B → T−1B

φ

(
b

s

)
7→ b

f(s)
.

Let b/s, b′/s′ ∈ S−1B. Then

φ

(
b

s
+
b′

s′

)
= φ

(
s′b+ sb′

ss′

)
=
s′b+ sb′

f(ss′)
.
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By the way multiplication is defined between A and B, this equals

f(s′)b+ f(s)b′

f(ss′)
=
f(s′)b+ f(s)b′

f(s)f(s′)

=
b

f(s)
+

b′

f(s′)

= φ

(
b

s

)
+ φ

(
b

s′

)
.

Let a/s ∈ S−1A and b/s′ ∈ S−1B. Then

φ

(
a

s
· b
s′

)
= φ

(
ab

ss′

)
=

ab

f(ss′)

=
ab

f(s)f(s′)
.

By the way multiplication is defined between A and B, this equals

f(a)b

f(s)f(s′)
=
f(a)

f(s)

b

f(s′)

= f
(a
s

) b

f(s′)

Once again, by the way multiplication is defined, this equals

a

s
· b

f(s′)
=
a

s
· φ
(
b

s′

)
.

So, φ is a homomorphism of S−1A modules.
Suppose φ(b/s) = 0. Then b/f(s) = 0 in T−1(B), which means that there

exists f(s′) ∈ f(S) = T so that bf(s′) = 0. By the way multiplication is defined,
this means b · s′ = 0, which shows b/s = 0 in S−1B. So, φ is injective.

This map is easily seen to be surjective, so φ is an isomorphism of S−1A-
modules.

Exercise 5. Let A be a ring. Suppose that, for each prime ideal p, the local
ring Ap has no nilpotent element ̸= 0. Show that A has no nilpotent element
̸= 0. If each Ap is an integral domain, is A necessarily an integral domain?

Proof. Let A be a ring. Suppose that, for each prime ideal p, the local ring Ap

has no nilpotent element ̸= 0.
Let x ∈ A be nilpotent. Assume x ̸= 0 and let a be the annihilator of A.

Since every (proper) ideal is contained in a maximal ideal, let p be a maximal
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ideal containing a. Since x ∈ A is nilpotent, x/1 ∈ Ap is also nilpotent. Since
Ap has no nilpotent element unequal to zero, we must have x/1 = 0 in Ap.
Hence, there exists some m /∈ p such that mx = 0, but this contradicts the fact
that p contains the annihilator of x. Thus, x ∈ A must be zero, whereby A does
not contain any nilpotents unequal to zero.

For the second part, let A = Z/6Z, the ring of integers modulo 6. This ring
has two prime ideals: (2) and (3).

I claim that A(2) is an integral domain. From Proposition 3.3, is follows that

(Z/6Z)(2) ∼= Z(2)/6Z(2).

But Z(2)/6Z(2) = Z(2)/2Z(2) since 3 is a unit in Z(2). So, we have

(Z/6Z)(2) ∼= Z(2)/6Z(2)
∼= Z(2)/2Z(2)

∼= (Z/2Z)(2)

from Proposition 3.3 again. However, Z/2Z is a field and its localization (Z/2Z)(2)
is that same field. So, we have A(2) = (Z/6Z)(2) is a field, so it’s certainly an
integral domain.

Similarly A(3) is also an integral domain.
So, here’s an example of a ring A so that the localization Ap at each prime

ideal p ⊆ A is a domain, but A itself is not a domain.

Exercise 6. Let A be a ring ̸= 0 and let Σ be the set of all multiplicatively
closed subsets S of A such that 0 /∈ S. Show that Σ has maximal elements, and
that S ∈ Σ is maximal if and only if A \ S is a minimal prime ideal of A.

Proof. Let A be a ring ̸= 0 and let Σ be the set of all multiplicatively closed
subsets S of A such that 0 /∈ S.

We apply Zorn’s Lemma to show that Σ contains maximal elements. Let
S1 ⊂ S2 ⊂ S3 ⊂ · · · be a chain in Σ. Let S = ∪iSi, so that certainly Si ⊂ S
for all i. Suppose x, y ∈ S. Then x ∈ Si and y ∈ Sj for some i, j. Let
k = max{i, j}. Since the Sℓ’s are a nested family of sets, x, y ∈ Sk. Since Sk is
multiplicatively closed, xy ∈ Sk ⊂ S. Hence, S is multiplicatively closed. Since
0 /∈ Si for all i, 0 /∈ S. Hence, S ∈ Σ. By Zorn’s Lemma, Σ contains maximal
elements.

Let S be a maximal element in Σ. Since 0 /∈ S, S−1A is not the zero ring.
Let m be any maximal ideal in S−1A and let p be its contraction in A. Note
that p must be a prime ideal. Since p is the contraction of an ideal in S−1A,
S ∩ p = ∅, so S ⊂ A− p. However, A− p is multiplicatively closed since p is a
prime ideal, by maximality, S = A− p.

Suppose q ⊊ p is likewise a prime ideal. Then S′ = A\q is a multiplicatively
closed set which does not contain 0, so S′ ∈ Σ. Since q ⊊ p, we have S′ ⊋ S,
which contradicts the maximality of S in Σ. Thus, p is a minimal prime ideal
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of A. It is easily seen that this argument is reversible, so that if p is a minimal
prime ideal of A, then S is a maximal multiplicatively closed subset of A not
containing 0.

Exercise 7. A multiplicatively closed subset S of a ring A is said to be saturated
if

xy ∈ S ⇐⇒ x ∈ S and y ∈ S.

Prove that

i) S is saturated ⇐⇒ A \ S is a union of prime ideals.

ii) If S is any multiplicatively closed subset of A, there is a unique smallest
saturated multiplicatively closed subset S containing S, and that S is the
complement in A of the union of the prime ideals which do not meet S.
(S is called the saturation of S.)

If S = 1 + a, where a is an ideal of A, find S.

i) Proof. Let A be a ring and let S ⊂ A be a multiplicatively closed subset.

(⇒) Suppose S is a saturated multiplicatively closed set in A. We need to
show that every element x ∈ A \ S lies in a prime ideal p disjoint from S.

Let x ∈ A \ S. Since S is saturated, (x) ∩ S = ∅. So, (x)e ̸= (1) in S−1A
by Proposition 3.3.11(ii). So, x is a not a unit in S−1A. Since (x)∩S = ∅,
we have 0 /∈ S, so S−1A is not the zero ring. Let m be any maximal ideal
in S−1A containing (x)e. Note that m ∩ S = ∅. Let p = mc = A ∩ m.
Then p is a prime ideal containing x and disjoint from S.

(⇐) Suppose A \ S = ∪ipi is a union of prime ideals.

Suppose xy ∈ S. Then xy /∈ ∪ipi. So, for all i ∈ I, xy /∈ pi, and since pi
is an ideal, x /∈ pi and y /∈ pi. So, x /∈ ∪ipi and y /∈ ∪ipi. That is, x ∈ S
and y ∈ S.
Suppose x ∈ S and y ∈ S. Then x /∈ ∪ipi and y /∈ ∪ipi. Then x, y /∈ pi
for all i ∈ I. Since pi is a prime ideal, xy /∈ pi for all i ∈ I. That is,
xy /∈ ∪ipi, whereby xy ∈ S.
This shows S is saturated.

ii) Proof. Let Σ be the collection of all saturated sets containing S. This set
is nonempty since A itself is an element. Let S be the intersection of all
elements of Σ. We show S is saturated. Suppose xy ∈ S. Then xy ∈ S′

for all S′ ∈ Σ. Since S′ is saturated, x ∈ S′ and y ∈ S′. Since this is
true for all S′ ∈ Σ, x ∈ S and y ∈ S. Conversely, suppose x ∈ S and
y ∈ S. Then x and y are in S′ for all S′ ∈ Σ. Since S′ is multiplicatively
closed, xy ∈ S′ ∈ Σ for all S′ ∈ Σ. That is, xy ∈ S. This shows S is
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saturated. Clearly it’s the smallest saturated set containing S (since it’s
the intersection of all of them).

By part (i) of this problem, since S is saturated, A \S is a union of prime
ideals disjoint from S.

For notation, let

S =
⋂
S′∈Σ

S′.

For each saturated set S′ ∈ Σ, by part (i), the set A \ S′ is a union of
prime ideals disjoint from S′. Since S′ ⊇ S, these prime ideals are disjoint
from S. Say A \ S′ = ∪αpα where pα is a prime ideal disjoint from S.
Then

A \ S = A \
⋂
S′∈Σ

S′

=
⋃
S′∈Σ

A \ S′

=
⋃
S′∈Σ

∪αpα.

Is every prime ideal not meeting S in this union? Let p be a prime ideal
disjoint from S. Then S′ := A \ p is saturated and contains S, so S′ ∈ Σ.
It follows from the definition of S that p is in this union. So, we see that
the complement of S is the union of all prime ideals in A not meeting
S.

Let S = 1 + a. We know from (ii) that A \ S is the union of all prime
ideals disjoint from S.

Suppose p is a prime ideal meeting S. Then there exist x ∈ p and a ∈ a
so that x = 1 + a. That is, 1 ∈ p+ a. Conversely, if 1 ∈ p+ a, then there
exist x ∈ p and a ∈ a so that x = 1+a. That is, p is a prime ideal meeting
S.

So, we have

S =
⋃

p:1/∈p+a

p

Which prime ideals are these?

If m is a maximal ideal containing a, then 1 /∈ m + a, so m is one of the
prime ideals in this union.

Conversely, if p is a prime ideal with 1 /∈ p+a, then there exists a maximal
ideal m containing p + a, and this implies that a ⊂ m. It follows that
1 /∈ m+ a.

So, we see that

S = A \
⋃

m:m⊇a

m.
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Exercise 8. Let S, T be a multiplicatively closed subsets of A, such that S ⊆ T .
Let φ : S−1A→ T−1A be the homomorphism which maps each a/s ∈ S−1A to
a/s considered as an element of T−1A. Show that the following statements are
equivalent:

i) φ is bijective.

ii) For each t ∈ T , t/1 is a unit in S−1A.

iii) For each t ∈ T there exists x ∈ A such that xt ∈ S.

iv) T is contained in the saturation of S.

v) Every prime ideal which meets T also meets S.

Proof. Let S, T be a multiplicatively closed subsets of A, such that S ⊆ T . Let
φ : S−1A→ T−1A be the homomorphism which maps each a/s ∈ S−1A to a/s
considered as an element of T−1A.

i)⇒ ii) Suppose φ is bijective. For t ∈ T , φ(t/1) = t/1 is a unit in T−1A.
So there exists a multiplicative inverse v ∈ T−1A. Since φ is bijective,
there exists a/s ∈ S−1A with φ(a/s) = v. Then we have φ(a/s · t/1) =
φ(a/s)φ(t/1) = v · t/1 = 1. Since φ is bijective and φ(1) is also 1, we must
have a/s · t/1 = 1 in S−1A. This makes t/1 a unit in S−1A.

ii) ⇒ iii) Suppose for each t ∈ T , t/1 is a unit in S−1A. Let t ∈ T . By
hypothesis, t/1 is a unit in S−1A, so there exists a/s ∈ S−1A so that
(a/s) · (t/1) = at/s = 1 ∈ S−1A. This means there exists s′ ∈ S so that
s′(at − s) = 0. So, we see that s′at = s′s ∈ S. Setting x = s′a ∈ A, we
have xt ∈ S.

iii)⇒ iv) Suppose for each t ∈ T there exists x ∈ A such that xt ∈ S.
Let t ∈ T . Suppose t /∈ S. By Exercise 7(ii), t ∈ p, where p is a prime ideal
in A not meeting S. By hypothesis, there exists x ∈ A so that xt ∈ S.
But then xt ∈ p ∩ S, a contradiction. So t ∈ S. Since t ∈ T is arbitrary,
T ⊆ S.

iv) ⇒ v) Suppose T ⊆ S. Let p ⊂ A be a prime ideal which meets T .
Let t ∈ T ∩ p. Recall A \ S is the union of all prime ideals not meeting
S. Since t ∈ T ⊆ S, t does not lie in any prime ideal not meeting S. It
follows that p meets S.

v)⇒ iii) Suppose every prime ideal which meets T also meets S.

Suppose (iii) is false. Then for some t ∈ T , we have (t) ∩ S = ∅. Since
(t) ∩ S = ∅, t/1 is not a unit in S−1A, so there exists a maximal ideal m
in S−1A with t/1 ∈ m. Then t is an element of the prime ideal p = A∩m.
By hypothesis, we must have that p meets S. But if p meets S, then m
meets S and m = (1) in S−1A, a contradiction. So, (iii) is true.
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iii)⇒ ii) Suppose for every t ∈ T there exists x ∈ A so that xt ∈ S.
Let t ∈ T . By hypothesis, there exists x ∈ A so that xt = s ∈ S. Then in
S−1A, we have (t/1)(x/s) = xt/s = 1, so t is a unit in S−1A. Since t ∈ T
is arbitrary, every element of T is a unit in S−1A.

ii) ⇒ i) Suppose every element of T is a unit in S−1A. Let φ : S−1A →
T−1A be the homomorphism which maps each a/s ∈ S−1A to a/s consid-
ered as an element of T−1A. Define ψ : T−1A → S−1A by ψ(a/t) = a/t.
Since every element of t ∈ T is a unit in S−1A, this makes sense.

Since φ ◦ ψ = idT−1A and ψ ◦ φ = idS−1A, we see that φ is a bijection.

Exercise 9. The set S0 of all non-zero-divisors in A is a saturated multiplica-
tively closed subset of A. Hence the set D of zero-divisors in A is a union of
prime ideals. Show that every minimal prime ideal of A is contained in D. (Use
Exercise 6.)

The ring S−1
0 A is called the total ring of fractions of A. Prove that

i) S0 is the largest multiplicatively closed subset of A for which the homo-
morphism A→ S−1

0 A is injective.

ii) Every element in S−1
0 A is either a zero-divisor or a unit.

iii) Every ring in which every non-unit is a zero-divisor is equal to its total
ring of fractions (i.e., A→ S−1

0 A is bijective).

Proof. Let S0 be the set of all non-zero-divisors in A. If x, y ∈ A, with xy ∈ S0,
it’s easily seen that x, y ∈ S0. Conversely, let x, y ∈ S0. If xy is zero-divisor,
there exists a nonzero a ∈ A so that axy = 0. Since x is not a divisor of zero,
ax ̸= 0. But then it follows that y is a zero-divisor, contrary to assumption. So,
xy ∈ S0 and S0 is a multiplicatively closed subset of A. These two implications
show that S0 is saturated. By Exercise 7(i), the set of zero divisors, D = A\S0,
is a union of prime ideals.

Let p be a prime ideal in A. Suppose x ∈ p is not a zero divisor. Consider
the set T = {xiy | y ∈ A− p}. Then T is multiplicatively closed and, since x is
not a zero divisor, T doesn’t contain zero. Further T properly contains A\p. By
Exercise 6, p is not a minimal prime ideal. So, any prime ideal not contained
in D is not a minimal prime ideal. Equivalently, any minimal prime ideal is
contained in D.

i) Let S be a multiplicatively closed set in A and let φ : A → S−1A be
the natural homomorphism. If a lies in the kernel of φ, then a/1 = 0 in
S−1A. It follows that there exists s ∈ S so that as = 0. So, a = 0 or
s is a zero divisor. Conversely, if s is a zero divisor, then there exist a
nonzero a ∈ A so that as = 0. It follows that a lies in the kernel of φ.
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Consequently, if φ is injective, S cannot contain any nonzero zero divisors.
Thus S ⊆ S0. Thus, S0 is the largest multiplicatively closed subset so that
φ : A→ S−1

0 A is injective.

ii) Let a/s be an element of S−1
0 A. If a is a non-zero divisor, then a ∈ S0

and a/s is a unit in S−1
0 A. If a is a zero-divisor, there exists b ∈ A, b ̸= 0,

so that ab = 0 But then a/s · b/1 = 0 in S−1
0 A. If b/1 = 0 in S−1

0 A, then
there exists t ∈ S0 so that tb = 0, but since b ̸= 0, this makes t a divisor of
zero, which contradicts the fact that t ∈ S0. So, a/s · b/1 = 0 and b/1 ̸= 0
in S−1

0 A, so a/s is a zero-divisor in S−1
0 A.

iii) Suppose A is a ring in which every non-unit is a zero-divisor. Consider the
natural map φ : A→ S−1

0 A. Suppose φ(a) = 0. Then there exists s ∈ S0

so that as = 0. Since s ∈ S0, s is not a zero-divisor, so this forces a = 0.
Hence φ is injective. Let a/s ∈ S−1

0 A. Since s ∈ S0, s is a non-zero-
divisor, so it follows that s is a unit in A. Then ϕ(as−1) = as−1/1 = a/s,
so φ is surjective. Hence, φ is an isomorphism.

Exercise 10. Let A be a ring.

i) If A is absolutely flat, and S is any multiplicatively closed subset of A,
then S−1A is absolutely flat.

ii) A is absolutely flat ⇔ Am is a field for each maximal ideal m.

Proof. Let A be a ring.

i) Suppose A is absolutely flat and let S be any multiplicatively closed subset
of A.

Let M be any S−1A-module and let 0 → P → Q → R → 0 be an exact
sequence of S−1A-modules.

We can considerM to be an A-module and 0→ P → Q→ R→ 0 an exact
sequence of A-modules by restriction of scalars. Since A is absolutely flat,
as have

0→ P ⊗AM → Q⊗AM → R⊗AM → 0

is exact. By Proposition 3.3, we have

0→ S−1(P ⊗AM)→ S−1(Q⊗AM)→ S−1(R⊗AM)→ 0

is exact, and then by Proposition 3.7, we have

0→ S−1P⊗S−1AS
−1M → S−1Q⊗S−1AS

−1M → S−1R⊗S−1AS
−1M → 0

is also exact.
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So, we’ve reduced the problem to showing that if M is an S−1A-module
and MA is M considered as an A-module by restriction of scalars, then
S−1(MA) =M .

Define φ : M → S−1MA by φ(m) = m. Suppose φ(m) = 0 in S−1MA.
Then there exists s ∈ S so that sm = 0. In S−1A, s is a unit, so this
last equation implies that m = 0. So, φ is injective. Let m/s ∈ S−1MA.
Since M is a S−1A-module, (1/s)m ∈ M . Then φ((1/s)m) = m/s, so φ
is surjective. Hence, φ is an isomorphism.

It now follows that S−1A is absolutely flat.

ii) (⇒) Suppose A is absolutely flat and let m be a maximal ideal in A. By
part (i), Am is an absolutely flat local ring. By Exercise 28 in Chapter 2,
Am is a field.

(⇐) Suppose Am is a field for each maximal ideal m in A. Let M be an
A-module and let m be a maximal ideal in A. ThenMm is a Am-module—
a Am vector space. A vector space is a free module, so it’s a direct sum
of copies of Am, so by Exercise 4 in Chapter 2, Mm is a flat Am-module.
Since m is an arbitrary maximal ideal in A, M is a flat A-module by
Proposition 3.10.

Exercise 11. Let A be a ring. Prove that the following are equivalent:

i) A/N is absolutely flat (N being the nilradical of A).

ii) Every prime ideal of A is maximal.

iii) Spec(A) is a T1-space (i.e., every subset consisting of a single point is
closed).

iv) Spec(A) is Hausdorff.

If these conditions are satisfied, show that Spec(A) is compact and totally dis-
connected (i.e., the only connected subsets of Spec(A) are those consisting of a
single point).

Proof. Let A be a ring and let N be the nilradical of A.

i)⇒ ii) Let A/N be absolutely flat. Let p be a prime ideal in A. Then p
is contained in a maximal ideal m by Corollary 1.4 in Chapter 1. Consider
the inclusion

0→ p→ m.

Tensoring with A/m and noting that A/m is an A/Nmodule, and therefore
flat, we get

0→ p⊗A/m→ m⊗A/m = 0.
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So, p ⊗ A/m = 0. The module p ⊗ A/m is isomorphic to p/m, so p = m
and p is a maximal ideal.

ii) ⇔ iii) A point xp is closed in Spec(A) if and only if the only prime
ideal containing p is p, that is, p is a maximal ideal.

iii) ⇒ iv) Suppose Spec(A) is a T1-space. Then each point of Spec(A) is
closed and therefore every prime ideal in A is a maximal ideal.

Let xp and xq be distinct points of Spec(A) corresponding to distinct
prime (and therefore maximal) ideals p and q in A. Since p ̸= q, there
exists f ∈ p with f /∈ q. The ring Ap has exactly one prime ideal, pAp,
which coincides with its nilradical. So, f/1 is nilpotent in Ap, whereby
there exists n ∈ N so that fn/1 = 0 in Ap. That is, there exists s ∈ A\p so
that fns = 0. Let D(s) = Spec(A) \V (s) and let D(f) = Spec(A) \V (f).
Then D(s) and D(f) are disjoint open sets in Spec(A), xp ∈ D(s), and
xq ∈ D(f). So, Spec(A) is Hausdorff.

iv) ⇒ i) Suppose Spec(A) is a Hausdorff space. Then Spec(A) is a T1-
space, whereby every point is closed, whereby every prime ideal is maxi-
mal.

Let N be the nilradical of A and consider A/N. Let m be a maximal
ideal in A/N. Then m corresponds to a maximal ideal m′ in A which
contains N. Let p be any prime ideal contained between N and m′. Since
every prime ideal is maximal, we must have that p = m′. It follows that
(A/N)m = Am/Nm contains only one maximal ideal, the 0 ideal. Hence
(A/N)m is a field, whereby A/N is absolutely flat, by Problem 10.

Exercise 12. Let A be an integral domain and M an A-module. An element
x ∈ M is a torsion element of M if Ann (x ) ̸= 0, that is if x is killed by some
non-zero element of A. Show that the torsion elements of M form a submodule
of M . This submodule is called the torsion submodule of M and is denoted by
T (M). If T (M) = 0, the module M is said to be torsion-free. Show that

i) If M is any A-module, then M/T (M) is torsion-free.

ii) If f :M → N is a module homomorphism, then f(T (M)) ⊆ T (N).

iii) If 0 → M ′ → M → M ′′ is an exact sequence, then the sequence 0 →
T (M ′)→ T (M)→ T (M ′′) is exact.

iv) If M is any A-module, then T (M) is the kernel of the mapping x 7→ 1⊗x
of M into K ⊗AM , where K is the field of fractions of A.

[For (iv), show that K may be regarded as the direct limit of its submodules Aξ
(ξ ∈ K); using Chapter 1, Exercise 15 and Exercise 20, show that if 1 ⊗ x = 0
in K ⊗M then 1⊗ x = 0 in Aξ ⊗M for some ξ ̸= 0. Deduce that ξ−1x = 0.]

64



CHAPTER 3. RINGS AND MODULES OF FRACTIONS

Proof. Let A be an integral domain. LetM be an A-module and let T (M) ⊆M
be the set of torsion elements of M . For x, y ∈ T (M), there exist a, a′ ∈ A,
both nonzero, so that ax = a′y = 0. Let λ ∈ A. Since A is a domain, aa′ ̸= 0
and

(aa′)(x+ y) = (aa′)x+ (aa′)y = a′(ax) + a(a′y) = a′ · 0 + a · 0 = 0

a(λx) = (aλ)x = λ(ax) = λ · 0 = 0.

So, we see that x+ y and λx lie in T (M). This shows T (M) is an A-submodule
of M .

i) Suppose x in M/T (M) is annihilated by some nonzero a ∈ A. Since
ax = 0 in M/T (M), we must have ax ∈ T (M). Since ax ∈ T (M),
there exists a nonzero a′ ∈ A so that a′(ax) = 0. Then (a′a)x = 0 and
since A is a domain, a′a is nonzero. It follows that x ∈ T (M) so x = 0
in M/T (M). This says the torsion submodule of M/T (M) is zero, so
M/T (M) is torsion-free.

ii) Suppose f : M → N is a module homomorphism. Let x ∈ T (M).
Since x ∈ T (M), there exists a nonzero a ∈ A so that ax = 0. Then
af(x) = f(ax) = f(0) = 0, so f(x) ∈ T (N). Since x ∈ T (M) is arbitrary,
f(T (M)) ⊆ T (N).

iii) Suppose 0 → M ′ f→ M
g→ M ′′ is an exact sequence of A-modules. By

part (ii), this induces maps f ′ : T (M ′)→ T (M), g′ : T (M)→ T (M ′′) .

We note that
ker (f ′) = ker (f) ∩ T (M ′) = {0},

since f is injective. Thus f ′ is injective.

We also note that

ker (g′) = ker (g) ∩ T (M) = im(f) ∩ T (M) = im(f ′).

This shows that sequence 0→ T (M ′)
f ′

→ T (M)
g′→ T (M ′′) is exact.

iv) Let M be any A-module. Let K be the field of fractions of A. Consider
the map φ :M → K ⊗AM given by x 7→ 1⊗A x.
If x ∈ T (M), then there exists a ∈ A, a ̸= 0, so that ax = 0. Then

φ(x) = 1⊗A x = (1/a)a⊗A x = (1/a)⊗A ax = (1/a)⊗A 0 = 0.

So, x ∈ kerφ.

Suppose x ∈ kerφ. The field K is the direct limit of submodules Aξ
for ξ ∈ K. (Separate proof for Q.) Hence 1 ⊗ x = 0 ∈ K ⊗ M =
(lim−→ξ∈K Aξ) ⊗M = lim−→ξ∈K(Aξ ⊗M), the latter equality by Exercise 20

in Chapter 1. By Exercise 15 in Chapter 1, 1⊗ x = 0 in Aξ⊗M for some
ξ ∈ K. Then we have 0 = 1 ⊗ x = ξ−1ξ ⊗ x = ξ ⊗ ξ−1x, which forces
ξ−1x = 0. So, x ∈ T (M).

65



CHAPTER 3. RINGS AND MODULES OF FRACTIONS

Exercise 13. Let S be a multiplicatively closed subset of an integral domain
A. In the notation of Exercise 12, show that T (S−1M) = S−1(TM). Deduce
that the following are equivalent:

i) M is torsion-free

ii) Mp is torsion-free for all prime ideals p.

iii) Mm is torsion-free for all maximal ideals m.

Proof. Let S be a multiplicatively closed subset of an integral domain A and let
M be an A module. Let T (M) be the torsion submodule ofM and let T (S−1M)
be the torsion submodule of S−1M .

If 0 ∈ S, then both S−1M and S−1(TM) are the zero module, so the equality
is immediate. So, suppose S doesn’t contain zero.

Let m/s ∈ T (S−1M). Then there exists a ∈ A, a ̸= 0, so that a · m/s =
am/s = 0 in S−1M . So there exists t ∈ S so that tam = 0. Since S doesn’t
contain zero, t ̸= 0, and since A is a domain, ta ̸= 0. It follows that m ∈ TM
and m/s ∈ S−1(TM).

On the other hand, let m/s ∈ S−1(TM). Then m/s = t/s′ in S−1(TM)
with t ∈ TM and s′ ∈ S. By the definition of S−1(TM), there exists s′′ ∈ S
so that s′′(s′m − ts) = 0, or s′s′′m = tss′′. Since t ∈ TM , there exists a ∈ A,
a ̸= 0, so that at = 0. Then as′s′′m = atss′′ = 0. Then m/s lies in T (S−1M).

The two inclusions show that T (S−1M) = S−1(TM).

i) ⇒ ii) Suppose M is torsion free. Then for any multiplicatively closed
set S ⊆ A, we have

T (S−1M) = S−1(TM) = S−1(0) = 0.

So S−1M is torsion free. In particular, Mp is torsion free for all prime
ideals p.

ii)⇒ iii) Since every maximal ideal is a prime ideal, this follows immedi-
ately.

iii) ⇒ i) Let m be any maximal ideal in A. Then T (M)m = T (Mm) = 0.
By Proposition 3.8, T (M) = 0, so M is torsion free.

Exercise 14. LetM be an A-module and a an ideal of A. Suppose thatMm = 0
for all maximal ideals m ⊇ a. Prove that M = aM . [Pass to the A/a-module
M/aM and use (3.8).]
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Proof. Let M be an A-module and a an ideal of A. Suppose that Mm = 0 for
all maximal ideals m ⊇ a.

Consider the quotient module M/aM . Let m be a maximal ideal containing
a. Then (M/aM)m

∼= Mm/aMm = 0 since Mm = 0. Since there is a one-to-
one correspondence between maximal ideals in A/a and maximal ideals in A
containing a, we have that (M/aM)m = 0 for all maximal ideals in A/a. By
Proposition 3.8, M/aM = 0. But this means M = aM .

Exercise 15. Let A be a ring, and let F be the A-module An. Show that every
set of n generators of F is a basis of F . [Let x1, . . . , xn be a set of generators
and e1, . . . , en the canonical basis of F . Define φ : F → F by φ(ei) = xi. Then
φ is surjective and we have to prove that it is an isomorphism. By (3.9) we may
assume that A is a local ring. Let N be the kernel of φ and let k = A/m be
the residue field of A. Since F is a flat A-module, the exact sequence 0→ N →
F

φ→ F → 0 gives an exact sequence 0→ k ⊗N → k ⊗ F 1⊗φ→ k ⊗ F → 0. Now
k ⊗ F = kn is an n-dimensional vector space over k; 1 ⊗ φ is surjective, hence
bijective, hence k ⊗N = 0.

Also, N is finitely generated, by Chapter 2, Exercise 12, hence N = 0 by
Nakayama’s lemma. Hence φ is an isomorphism.]

Proof. Let A be a ring and let F be the A-module An. Let {x1, . . . , xn} be a
set of generators of F and let e1, . . . , en the canonical basis of F .

Mark, finish this one.

Exercise 16. Let B be a flat A-algebra. Then the following conditions are
equivalent:

i) aec = a for all ideals a in A.

ii) Spec(B)→ Spec(A) is surjective.

iii) For every maximal ideal m of A we have me ̸= (1).

iv) If M is any non-zero A-module, then MB ̸= 0.

v) For every A-moduleM , the mapping x 7→ 1⊗x ofM intoMB is injective.

B is said to be faithfully flat over A.

Proof. (i)⇒(ii) Suppose aec = a for all ideals a in A. Let p ∈ Spec(A). Then pe

is a prime ideal in B and pec = p, so Spec(B)→ Spec(A) is surjective.

(ii)⇒(iii) Suppose Spec(B) → Spec(A) is surjective. Let m be a maximal
ideal in A. Since Spec(B)→ Spec(A) is surjective, there is a prime ideal p ⊆ B
so that pc = m. But then me ⊆ pce ⊆ p, so me ̸= (1).
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(iii)⇒(iv) Suppose for every maximal ideal m of A we have me ̸= (1). LetM
be any non-zero A-module. Let x be a non-zero element ofM and letM ′ = Ax.
The sequence of A-modules

0→M ′ →M →M/M ′ → 0

is exact, and since B is flat over A, we have

0→M ′
B →MB → (M/M ′)B → 0

is exact, too. To show MB ̸= 0, it’s sufficient to show that M ′
B ̸= 0.

The obvious map A→ Ax is surjective. If a is the kernel of this map, then
the sequence

0→ a→ A→ Ax→ 0

is exact, from which is follows that M ′ = A/a for some ideal a ̸= (1) Hence
M ′
B
∼= B/ae. Now a ⊆ m for some maximal ideal m, hence ae ⊆ me ̸= (1).

Hence M ′
B ̸= 0.

(iv)⇒(v) Suppose that if M is any non-zero A-module, then MB ̸= 0.
Let M ′ be the kernel of M →MB . Since B is flat over A, the sequence

0→M ′
B →MB → (MB)B

is exact. But by Chapter 2, Exercise 13, with N = MB , the mapping MB →
(MB)B is injective. So M ′

B = 0 and therefore M ′ = 0. So, the map x 7→ 1⊗ x
of M into MB is injective.

(v)⇒(i) Suppose that for every A-module M , the mapping x 7→ 1⊗ x of M
into MB is injective. Let a be any ideal in A. If we take M to be the A-module
A/a, then by hypothesis the mapping A/a → (A/a)B = B/ae is injective. But
this says aec = a.

Exercise 17. Let A
f→ B

g→ C be ring homomorphisms. If g ◦ f is flat and g
is faithfully flat, then f is flat.

Proof. The map f being flat means that f induces a flat A-algebra structure on
B. Let φ : N → M be an injective homomorphism of A-modules. Since C is a
flat A-module, φC : NC →MC is injective.

Consider the diagram

NB
ϕB- MB

NC
? ϕC- MC

?
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Note that

C ⊗B NB = C ⊗B (B ⊗A N) = (C ⊗B B)⊗A N ∼= NC .

Thus, NB → C ⊗B NB = NC defined by x 7→ 1 ⊗ x is the map defined in
Exercise 3.16(v). Since g is faithfully flat, this map is injective. Similarly,
MB → C ⊗B MB =MC is injective.

Since the diagram commutes, ϕB is injective, so f is flat.

Exercise 18. Let f : A→ B be a flat homomorphism of rings, let q be a prime
ideal of B and let p = qc. Then f∗ : Spec(Bq)→ Spec(Ap) is surjective.

Proof. Let f : A → B be a flat homomorphism of rings. Let S = A \ p and
T = B \ q. Then Bp = f(S)−1B, Bq = T−1B, and since f(s) ∈ T , there is an
induced map Ap → Bq given by a/s 7→ f(a)/f(s). Also, Exercise 3 gives an
isomorphism

Bq = T−1B ∼= U−1(f(S)−1B) = U−1(Bp).

where U = {1/t ∈ Bp : t ∈ T}. Then we can take a map

g : Ap → Bp → U−1(Bp) = Bq by x/s 7→ f(x)/f(s) 7→ f(x)/f(s).

By Proposition 3.10, Bp is flat over Ap by Ap → Bp. By Corollary 3.6, Bq is
a flat Bp module. Note that Ap is a local ring with maximal ideal pAp. Then
g(pAp) ⊆ qBq. Thus (pAp)

e ̸= (1). Hence g is faithfully flat by Exercise 16(iii),
thus Spec(Bq)→ Spec(Ap) is surjective, by Exercise 16(i).

Exercise 19. Let A be a ring, M an A-module. The support of M is defined
to be the set Supp(M) of prime ideals p of A such that Mp ̸= 0. Prove the
following results:

i) M ̸= 0⇔ Supp(M) ̸= ∅.

ii) V (a) = Supp(A/a).

iii) If 0 → M ′ → M → M ′′ → 0 is an exact sequence, then Supp(M) =
Supp(M′)∪Supp(M′′).

iv) if M =
∑
Mi, then Supp(M) =

⋃
Supp(Mi).

v) If M is finitely generated, then Supp(M) = V (Ann (M )) (and is therefore
a closed subset of Spec(A)).

vi) IfM , N are finitely generated, then Supp(M⊗A N) = Supp(M)∩Supp(N).

vii) If M is finitely generated and a is an ideal of A, then Supp(M/aM) =
V (a+Ann (M )).
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viii) If f : A → B is a ring homomorphism and M is a finitely generated
A-module, then Supp(B⊗A M) = f∗−1(Supp(M)).

Proof.

Exercise 20. Let f : A → B be a ring homomorphism, f∗ : Spec(B) →
Spec(A) the associated mapping. Show that

i) Every prime ideal of A is a contracted ideal ⇔ f∗ is surjective.

ii) Every prime ideal of B is an extended ideal ⇒ f∗ is injective.

Is the converse of (ii) true?

i) Proof. Let f : A→ B be a ring homomorphism, f∗ : Spec(B)→ Spec(A)
the associated mapping.

(⇒) Suppose every prime ideal of A is a contracted ideal. Let p ⊆ A be
a prime ideal. Since every ideal in A is a contracted ideal, there exists a
prime ideal q ⊆ B so that qc = p. But then f∗(q) = p. It follows that
f∗ : Spec(B)→ Spec(A) is surjective.

(⇐) Suppose f∗ is surjective. Let p ⊆ A be a prime ideal. Considering p
as a point in Spec(A), there exists a prime ideal q ⊆ B so that f∗(q) = p.
But this says that qc = p. So, every prime ideal in A is a contracted
ideal.

ii) Proof. Suppose every prime ideal of B is an extended ideal. Let q and q′

be prime ideals in B and suppose that f∗(q) = f∗(q′). Since every prime
ideal in B is an extended ideal, there exist prime ideals p and p′ so that
q = pe and q′ = p′e. Then

pec = f∗(pe) = f∗(q) = f∗(q′) = f∗(p′e) = p′ec.

Since pec = p′ec, we have

q = pe = pece = p′ece = p′e = q′.

by Proposition 1.17(ii). Hence, f∗ is injective.

Exercise 21. i) Let A be a ring, S a multiplicatively closed subset of A,
and φ : A → S−1A the canonical homomorphism. Show that φ∗ :
Spec(S−1A)→ Spec(A) is a homeomorphism of Spec(S−1A) onto its im-
age in X = Spec(A). Let this image be denoted by S−1X. In particular,
if f ∈ A, the image of Spec(Af ) in X is the basic open set Xf .
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ii) Let f : A → B be a ring homomorphism. Let X = Spec(A) and
Y = Spec(B), and let f∗ : Y → X be the mapping associated with
f . Identifying Spec(S−1A) with its canonical image S−1X in X, and
Spec(S−1B) = Spec(f(S)−1B) with its canonical image S−1Y in Y , show
that
S−1f∗ : Spec(S−1B) → Spec(S−1A) is the restriction of f∗ to S−1Y ,
and that S−1Y = f∗−1(S−1X).

iii) Let a be an ideal of A and let b = ae be its extension in B. Let f̃ : A/a→
B/b be the homomorphism induced by f . If Spec(A/a) is identified with
its canonical image V (a) in X, and Spec(B/b) with its image V (b) in Y ,
show that f̃∗ is the restriction of f∗ to V (b).

iv) Let p be a prime ideal of A. Take S = A \ p in (ii) and then reduce
mod S−1p as in (iii). Deduce that the subspace f∗−1(p) of Y is naturally
homeomorphic to Spec(Bp/pBp) = Spec(k(p) ⊗A B)), where k(p) is the
residue field of the local ring Ap. Spec(k(p) ⊗A B)) is called the fiber of
f∗ over p.

i) Proof. Let A be a ring, S a multiplicatively closed subset of A, and φ :
A → S−1A the canonical homomorphism. Consider the associated map
φ∗ : Spec(S−1A) → Spec(A). By Exercise 21(i) in Chapter 1, φ∗ is
continuous. Let S−1X denote the image of φ∗, so that φ∗ : Spec(S−1A)→
S−1X is continuous and surjective.

Let V (q) be a closed set in Spec(S−1A). Since every ideal in S−1A is an
extended ideal by Proposition 3.11(i), there exists a prime ideal p in A so
that pe = q. By Exercise 21 in Chapter 1,

ϕ∗(V (q)) = ϕ∗(V (pe)) = V (pec)

Mark, finish this.

ii) Proof. Let f : A → B be a ring homomorphism. Let X = Spec(A)
and Y = Spec(B), and let f∗ : Y → X be the mapping associated
with f . Identify Spec(S−1A) with its canonical image S−1X in X, and
Spec(S−1B) = Spec(f(S)−1B) with its canonical image S−1Y in Y .

The commutative diagram

A
f - B

S−1A

?
S−1f- f(S)−1B

?
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gives rise to a commutative diagram

X = Spec(A) � f∗
Spec(B) = Y

S−1X = Spec(S−1A)

6

�S
−1f∗

Spec(f(S)−1B) = S−1Y

6

Then it’s clear that S−1f∗ is the restriction of f∗ to S−1Y and S−1Y
maps into S−1X under this restriction.

iii) Proof. Let a be an ideal of A and let b = ae be its extension in B. Let
f̃ : A/a → B/b be the homomorphism induced by f . Let Spec(A/a) be
identified with its canonical image V (a) in X, and Spec(B/b) with its
image V (b) in Y .

The commutative diagram

A
f - B

A/a
? f - B/b

?

gives rise to a commutative diagram

X = Spec(A) � f∗
Spec(B) = Y

V (a) = Spec(A/a)

6

�f̃
∗
Spec(B/b) = V (b)

6

Then it’s clear that f̃∗ is the restriction of f∗ to V (b) and V (b) maps into
V (a) under this restriction.

iv) Proof. Let p be a prime ideal of A. Take S = A\p in (ii) and then reduce
mod S−1p as in (iii):
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The commutative diagram

A
f - B

Ap

? S−1f - Bp

?

Ap/pAp

? S−1f̃- Bp/pBp

?

gives rise to a commutative diagram

X = Spec(A) � f∗
Spec(B) = Y

Spec(Ap)

6

� (S−1f)∗
Spec(Bp)

6

Spec(Ap/pAp)

6

�(S
−1f̃)∗

Spec(Bp/pBp)

6

From this commutative diagram, it follows that the subspace f∗−1(p) of Y
is naturally homeomorphic to Spec(Bp/pBp) = Spec(k(p) ⊗A B)), where
k(p) is the residue field of the local ring Ap. Spec(k(p) ⊗A B)) is called
the fiber of f∗ over p.

Mark, check this last paragraph out.

Exercise 22. Let A be a ring and p a prime ideal of A. Then the canoni-
cal image of Spec(Ap) in Spec(A) is equal to the intersection of all the open
neighborhoods of p in Spec(A).

Proof. Let A be a ring and p a prime ideal of A. Let f : A → Ap be the
localization homomorphism and let f∗ : Spec(Ap)→ Spec(A) be the associated
map of spectra.

Let q be any point in Spec(Ap). By Proposition 3.11(i), q is an extended
ideal, so there exists a prime ideal p′ ⊂ A so that (p′)e = q. Then p ⊇ qc = (p′)ec
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Mark, finish this.

Exercise 23. Let A be a ring, let X = Spec(A) and let U be a basic open set
in X, i.e. U = Xf for some f ∈ A.

i) If U = Xf , show that the ring A(U) = Af depends only on U and not on
f .

ii) Let U ′ = Xg be another basic open set such that U ′ ⊆ U . Show that
there is an equation of the form gn = uf for some integer n > 0 and some
u ∈ A, and use this to define a homomorphism ρ : A(U)→ A(U ′) (that is,
Af → Ag) by mapping a/fm to aum/gmn. Show that ρ depends only on
U and U ′. This homomorphism is called the restriction homomorphism.

iii) If U = U ′, the ρ is the identity map.

iv) If U ⊇ U ′ ⊇ U ′′ are basic open sets in X, show that the diagram

A(U) - A(U ′′)

A(U ′)

-

-

(in which the arrows are restriction homomorphisms) is commutative.

v) Let x(= p) be a point of X. Show that

lim−→
U∋x

A(U) ∼= Ap

The assignment of the ring A(U) to each basic open set U of X, and the restric-
tion homomorphisms ρ, satisfying the conditions (iii) and (iv) above, constitutes
a presheaf of rings on the basis of open set (Xf )f∈A. (v) says that the stalk of
this presheaf at x ∈ X is the corresponding local ring Ap.

Proof.

Exercise 24. Show that the presheaf of Exercise 23 has the following property.
Let (Ui)i∈I be a covering of X by basic open sets. For each i ∈ I let si ∈ A(Ui)
be such that, for each pair of indices i, j, the images of si and sj in A(Ui ∩Uj)
are equal. then there exists a unique s ∈ A(= A(X)) whose image in A(Ui) is
si, for all i ∈ I. (This essentially implies that the presheaf is a sheaf.)
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Proof.

Exercise 25. Let f : A → B, g : A → C be ring homomorphisms and let
h : A → B ⊗A C be defined by h(x) = f(x) ⊗ g(x). let X, Y , Z, T be prime
spectra of A, B, C, B ⊗A C, respectively. Then h∗(T ) = fY ∩ g∗(Z).

[Let p ∈ X, and let k = k(p) be the residue field at p. By Exericse 21, the
fiber (h∗)−1(p) is the spectrum of (B ⊗A C) ⊗A k ∼= (B ⊗A k) ⊗k (C ⊗A k).
Hence, p ∈ h∗(T ) ⇔ (B ⊗A k) ⊗k (C ⊗A k) ̸= 0 ⇔ B ⊗A k ̸= 0 and C ⊗A k ̸=
0⇔ p ∈ f∗(Y ) ∩ g∗(Z).

Proof.

Exercise 26. Let (Bα, gαβ) be a direct system of rings and B the direct limit.
For each α, let fα : A→ Bα be a ring homomorphism such that gαβ ◦ fα = fβ
whenever α ≤ β. That is, the Bα form a direct system of A-algebras. The fα
induce f : A→ B. Show that

f∗(Spec(B)) =
⋂
α

f∗α(Spec(Bα)).

Proof.

Exercise 27. i) Let fα : A → Bα be any family of A-algebras and let
f : A→ B be their tensor product over A (Chapter 2, Exercise 23). Then

f∗(Spec(B)) =
⋂
α

f∗α(Spec(Bα)).

[Use Exercises 25 and 26.]

ii) Let fα : A→ Bα be any finite family of A-algebras and let B = ΠαBα. De-
fine f : A→ B by f(x) = (fα(x)). Then f

∗(Spec(B)) = ∪αf∗α(Spec(Bα)).

iii) Hence the subsets of X = Spec(A) of the form f∗(Spec(B)), where f :
A → B is a ring homomorphism, satisfy the axioms for closed sets in a
topological space. The associated topology is the constructible topology
on X. It is finer that the Zariski topology (i.e., there are more open sets,
or equivalently more closed sets).

iv) Let XC denote the set X endowed with the constructible topology. Show
that XC is quasi-compact.

Proof.

Exercise 28. (Continuation of the Exercise 27.)
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i) For each g ∈ A, the set Xg is both open and closed in the constructible
topology.

ii) Let C ′ denote the smallest topology on X for which the sets Xg are both
open and closed, and let XC′ denote the set X endowed with this topology.
Show that XC′ is Hausdorff.

iii) Deduce that the identity mappingXC → XC′ is a homeomorphism. Hence
a subset E of X is of the form f∗(Spec(B)) for some f : A → B if and
only if it is closed in the topology C ′.

iv) The topological space XC is compact, Hausdorff and totally disconnected.

Proof.

Exercise 29. Let f : A → B be a ring homomorphism. Show that f∗ :
Spec(B) → Spec(A) is a continuous closed mapping (i.e., maps closed sets to
closed sets) for the constructible topology.

Proof.

Exercise 30. Show that the Zariski topology and the constructible topology
on Spec(A) are the same if and only if A/N is absolutely flat (where N is the
nilradical of A).

Proof.

76



Chapter 4

Primary Decomposition

Exercises

Exercise 1. If an ideal a has a primary decomposition, then Spec(A/a) has
only finitely many irreducible components.

Proof. Let A be a ring and let the ideal a in A have a primary decomposition
q1 ∩ · · · ∩ qn.

rad (a) = rad (q1 ∩ · · · ∩ qn) = rad (q1) ∩ · · · ∩ rad (qn) = p1 ∩ · · · ∩ pn.

Since the radical of a is the intersection of all prime ideals containing a, the
prime ideals p1, . . . pn are the minimal ideals of a. So, V (p1), . . . , V (pn) are the
irreducible components of Spec(A/a).

Exercise 2. If a is decomposable and a = rad (a), then a has no embedded
prime ideals.

Proof. Suppose a is decomposable and a = rad (a). Then a = p1∩· · ·∩pn where
pi are the prime ideals belonging to a. So, this is the primary decomposition
of a. Suppose pj is an embedded prime ideal. Then pj ⊋ pk ⊃ ∩i ̸=jpi. This
contradicts the fact that a = p1 ∩ · · · ∩ pn is a minimal primary decomposition
of a.
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Exercise 3. If A is absolutely flat, every primary ideal is maximal.

Proof. Let A be absolutely flat and let q be a primary ideal.
Let x ∈ A/q is nonzero. Then x ∈ A \ q. Since A is absolutely flat, every

principal ideal is idempotent, so (x) = (x2). So, there exists a ∈ A so that
x = ax2. Then x(ax − 1) = 0 ∈ q, and since x /∈ q, (ax − 1)n ∈ q for some
n ∈ N. So, ax − 1 is nilpotent in A/q. Then ax = (ax − 1) + 1 is a unit, by
Exercise 1 in Chapter 1. It follows that x is a unit, so A/q is a field. Hence q
is a maximal ideal. So, we have that every primary ideal is maximal.

Exercise 4. In the polynomial ring Z[t], the ideal m = (2, t) is maximal and
the ideal q = (4, t) is m-primary, but is not a power of m.

Proof. The quotient ring Z[t]/(2, t) ∼= Z/2, a field, so the ideal m = (2, t) is
maximal. Let r be the radical of q. Since 22 = 4 ∈ q, 2 ∈ r, hence (2, t) = m ⊆ r.
Since m is maximal, m = r. Looking at the quotient ring, Z[t]/(4, t) ∼= Z/(4),
every zero divisor here is nilpotent. So, q is m-primary. However, m2 ⊊ q ⊊ m,
so q is not a power of m.

Exercise 5. In the polynomial ring K[x, y, z] where K is a field and x, y, z are
independent indeterminates, let p1 = (x, y), p2 = (x, z), m = (x, y, z); p1 and
p2 are prime, and m is maximal. Let a = p1p2. Show that a = p1 ∩ p2 ∩ m2

is a reduced primary decomposition of a. Which components are isolated and
which are embedded?

Proof. In the polynomial ring K[x, y, z] where K is a field and x, y, z are
independent indeterminates, let p1 = (x, y), p2 = (x, z), m = (x, y, z); p1 and p2
are prime, and m is maximal. Let a = p1p2.

The ideal a equals (x2, xz, xy, yz). The ideal m2 equals (x2, y2, z2, xy, xz, yz).
It follows that a ⊂ p1 ∩ p2 ∩m2. Let t ∈ p1 ∩ p2 ∩m2. Since t ∈ p1, t = rx+ qy
for r, q ∈ K[x, y, z]. Since t = rx + qy ∈ p2 and y /∈ p2, q ∈ p2. Thus,
q = ux + vz. Then t = rx + uxy + vyz. Since t ∈ m2, rx ∈ m2, so r ∈ m.
Thus, r = αx + βy + γz. So, we find t = (αx + βy + γz)x + uxy + vyz =
αx2 + (u+ β)xy + γxz + vyz. That is, t ∈ a. So, we see that a = p1 ∩ p2 ∩m2.
Since p1 and p2 are prime ideals, they are primary. Since rad

(
m2
)
= m is

maximal, m2 is also primary. So a = p1 ∩ p2 ∩ m2 is a primary decomposition
of a. Since p1 and p2 are contained in m, we see that p1 and p2 are isolated
components while m2 is an embedded component.
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Exercise 6. Let X be an infinite compact Hausdorff space, C(X) the ring of
real-valued continuous functions on X (Chapter 1, Exercise 26). Is the zero
ideal decomposable in this ring?

Proof.

Exercise 7. Let A be a ring and let A[x] denote the ring of polynomials in
one indeterminate over A. For each ideal a of A, let a[x] denote the set of all
polynomials in A[x] with coefficients in a.

i) a[x] is the extension of a to A[x].

ii) If p is a prime ideal in A, then p[x] is a prime ideal in A[x].

iii) If q is a p-primary ideal in A, then q[x] is a p[x]-primary ideal in A[x].

iv) If a = ∩ni=1qi is a minimal primary decomposition in A, then a[x] =
∩ni=1qi[x] is a minimal primary decomposition in A[x].

v) If p is a minimal prime ideal of a, then p[x] is a minimal prime ideal of
a[x].

Proof. Let A be a ring and let A[x] denote the ring of polynomials in one
indeterminate over A. For each ideal a of A, let a[x] denote the set of all
polynomials in A[x] with coefficients in a.

i) Certainly a ⊂ a[x], so ae ⊂ a[x]. On the other hand, for any a ∈ a,
axn ∈ ae, and it follows that a[x] ⊂ ae. Thus, we have a[x] is the extension
of a to A[x].

ii) Let p be a prime ideal in A and consider p[x] ⊂ A[x]. Then A[x]/p[x] ∼=
(A/p)[x] is a polynomial ring over an integral domain, so this is an integral
domain. Thus, p[x] is a prime ideal in A[x].

iii) Suppose q is a p-primary ideal and consider q[x]. We must show that every
divisor of zero in A[x]/q[x] ∼= (A/q)[x] is nilpotent. Let f = a0 + a1x +
· · · + anx

n ∈ (A/q)[x] be a zero divisor. By Exercise 2(iii) in Chapter 1,
there exists a ̸= 0 in A/q so that af = 0.

Fix i, 1 ≤ i ≤ n. Since af = 0, aai = 0 in A/q. This implies that aai ∈ q
and since q is a primary ideal, either a ∈ q, ai ∈ q or both a, ai ∈ rad (q).
By construction, a ̸= 0 in A/q, so a /∈ q. It follows that aji ∈ q for some
j ∈ N. So, ai is nilpotent in A/q. Since 1 ≤ i ≤ n is arbitrary, a0, . . . ,
an are nilpotent in A/q. By Exercise 2(ii) in Chapter 1, f is nilpotent.
Since f is an arbitrary divisor of zero in A[x]/q[x], every divisor of zero in
A[x]/q[x] is nilpotent. Hence, q[x] is a primary ideal.
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iv) Let a = ∩ni=1qi is a minimal primary decomposition in A. Then a[x] =
(∩ni=1qi) [x] = ∩ni=1qi[x] and by (iii), each qi[x] is a primary ideal. Since
∩ni=1qi is a minimal primary decomposition, all the pi = rad (qi) are dis-
tinct, so rad (qi[x ]) = pi[x] are all distinct.

v)

Exercise 8. Let k be a field. Show that in the polynomial ring k[x1, . . . , xn] the
ideals pi = (x1, . . . , xi), 1 ≤ i ≤ n, are prime and all their powers are primary.
[Hint: Use Exercise 7.]

Proof. Let k be a field. Consider the polynomial ring k[x1, . . . , xn] and the
ideals pi = (x1, . . . , xi), 1 ≤ i ≤ n.

Since k[x1, . . . , xn]/pi ∼= k[xi+1, . . . , xn] (or k if i = n), which are all integral
domains, the ideals pi = (x1, . . . , xi), 1 ≤ i ≤ n, are prime ideals.

We proceed with the remainder of the proof by induction on n. For n = 1,
we have p1 = (x1) in k[x1]. The quotient ring k[x1]/p1 ∼= k, so p1 is a maximal
ideal. Thus, pm1 is primary for all m by Proposition 4.2.

Assume the result is true for n − 1 and consider the prime ideals pi =
(x1, . . . , xi) in k[x1, . . . , xn]. By hypothesis, for 1 ≤ i ≤ n − 1, all powers of
p′i = (x1, . . . , xi) are primary in k[x1, . . . , xn−1]. By Exercise 7, all powers of
p′i[xn]

∼= pi are primary in k[x1, . . . , xn−1][xn] ∼= k[x1, . . . , xn]. For i = n, pn =
(x1, . . . , xn) is a maximal ideal, so all its powers are primary by Proposition 4.2.

Exercise 9. In a ring A, let D(A) denote the set of prime ideals p which satisfy
the following condition: there exists a ∈ A such that p is minimal in the set of
prime ideals containing (0 : a). Show that x ∈ A is a zero divisor ⇔ x ∈ p for
some p ∈ D(A).

Let S be a multiplicatively closed subset of A, and identify Spec(S−1A) with
its image in Spec(A) (Chapter 3, Exercise 21). Show that

D(S−1A) = D(A) ∩ Spec(S−1A).

If the zero ideal has a primary decomposition, show that D(A) is the set of
associated prime ideals of 0.

Proof. Let A be a ring and let D(A) denote the set of prime ideals p which
satisfy the following condition: there exists a ∈ A such that p is minimal in the
set of prime ideals containing (0 : a).
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Exercise 10. For any prime ideal p in a ring A, let Sp(0) denote the kernel of
the homomorphism A→ Ap. Prove that

i) Sp(0) ⊆ p

ii) r(Sp(0)) = p⇔ p is a minimal prime ideal of A.

iii) If p ⊇ p′, then Sp(0) ⊆ Sp′(0).

iv)
⋂

p∈D(A) Sp(0) = 0, where D(A) is defined in Exercise 9.

Proof. For any prime ideal p in a ring A, let Sp(0) denote the kernel of the
homomorphism A→ Ap.

i) Let x ∈ Sp(0). Then x/1 lies in the kernel of the homomorphism A→ Ap.
This implies there exists y /∈ p so that xy = 0. Since p is a prime ideal
and y /∈ p, we have x ∈ p. This shows Sp(0) ⊆ p.

ii) (⇒) Suppose rad (Sp(0)) = p. Suppose p′ ⊆ p is another prime ideal.

Mark, finish this.

(⇐) Suppose p is a minimal prime ideal of A. By part (i), Sp(0) ⊆ p, so
that rad(Sp(0)) ⊆ rad (p) = p. Since p is a minimal prime ideal, we must
have rad(Sp(0)) = p.

iii) Suppose p ⊇ p′. Let x ∈ Sp(0). Then in the map φp : A→ Ap, φp(x) = 0.
That is x/1 = 0/1 in Ap, so there exists y ∈ A\p so that xy = 0. But then
the same y lies outside p′, so that x/1 = 0/1 in Ap′ . That is, x ∈ Sp′(0).
Since x ∈ Sp(0) is arbitrary, Sp(0) ⊆ Sp′(0).

iv) Let D(A) denote the set of prime ideals p which satisfy the following
condition: there exists a ∈ A such that p is minimal in the set of prime
ideals containing (0 : a).

To show:
⋂

p∈D(A) Sp(0) = 0

Exercise 11. If p is a minimal prime ideal of a ring A, show that Sp(0) is the
smallest p-primary ideal.

Let a be the intersection of the ideals Sp(0) as p runs through the minimal
prime ideals of A. Show that a is contained in the nilradical of A.

Suppose that the zero ideal is decomposable. Prove that a = 0 if and only
if every prime ideal of 0 is isolated.
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Proof. Let p be a minimal prime ideal in a ring A and let Sp(0) denote the
kernel of the homomorphism A→ Ap.

Exercise 12. Let A be a ring, S a multiplicatively closed subset of A. For any
ideal a, let S(a) denote the contraction of S−1(a) in A. The ideal S(a) is called
the saturation of a with respect to S. Prove that

i) S(a) ∩ S(b) = S(a ∩ b)

ii) S(r(a)) = r(S(a))

iii) S(a) = (1)⇔ a meets S.

iv) S1(S2(a)) = (S1S2)(a)

If a has a primary decomposition, prove that the set of ideals S(a) (where S
runs through all multiplicatively closed subsets of A) is finite.

Proof. Let A be a ring, S a multiplicatively closed subset of A. For any ideal
a, let S(a) denote the contraction of S−1(a) in A. The ideal S(a) is called the
saturation of a with respect to S.

i) For ideals a, b in A, by Proposition 3.4, we have S−1(a ∩ b) = S−1(a) ∩
S−1(b). By Exercise 1.18, we have

S(a ∩ b) = [S−1(a ∩ b)]c

= [S−1(a) ∩ S−1(b)]c

= [S−1(a)]c ∩ [S−1(b)]c

= S(a) ∩ S(b).

ii)

iii)

iv)

Exercise 13. Let A be a ring and p be a prime ideal of A. The nth symbolic
power of p is defined to be the ideal (in the notation of Exercise 12)

p(n) = Sp(p
n)

where Sp = A \ p. Show that

i) p(n) is a p-primary ideal;

ii) if pn has a primary decomposition, then p(n) is its p-primary component;
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iii) if p(m)p(n) has a primary decomposition, then p(m+n) is its p-primary
component;

iv) p(n) = pn ⇔ p(n) is p-primary.

Proof.

Exercise 14. Let a be a decomposable ideal in a ring A and let p be a maximal
element of the set of ideals (a : x), where x ∈ A and a /∈ a. Show that p is a
prime ideal belonging to a.

Proof.

Exercise 15. Let a be a decomposable ideal in a ring A, let Σ be an isolated set
o prime ideals belonging to a, and let qΣ be the intersection of the corresponding
primary components. Let f be an element of A such that, for each prime ideal
p belonging to a, we have f ∈ p⇒ p /∈ Σ, and let Sf be the set of all powers of
f . Shwo that qΣ = Sf (a) = (afn) for all large n.

Proof.

Exercise 16. If A is a ring in which every ideal has a primary decomposition,
show that every ring of fractions S−1A has the same property.

Proof. Let a be an ideal in S−1A. By Proposition 3.11, every ideal in S−1A
is and extended ideal, so there exists and ideal b ⊂ A so that S−1b = a. By
hypothesis, b has a primary decomposition, so there exist primary ideals q1, . . . ,
qm in A so that

b = q1 ∩ · · · ∩ qm.

Then
a = S−1b = S−1(q1 ∩ · · · ∩ qm) = S−1(q1) ∩ · · · ∩ S−1(qm).

By Proposition 4.8, each ideal S−1(qi) is either a primary ideal in S−1A or is
the entire ring S−1A. Thus, this gives a primary decomposition of a. So, any
ideal in S−1A has a primary decomposition.

Exercise 17. Let A be a ring with the following property:
(L1) For every ideal a ̸= (1) in A and every prime ideal p, there exists x /∈ p
such that Sp(a) = (a : x), where Sp = A \ p.

Then every ideal in A is an intersection of (possibly infinitely many) prime
ideals.

[Let a be an ideal ̸= (1) in A, and let p1 be a minimal element of the set
of prime ideals containing a. Then q1 = Sp1

(a) is p1-primary (by Exercise 11),
and q1 = (a : x) for some x /∈ p1. Show that a = q1 ∩ (a+ (x)).
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Now let a1 be a maximal element of the set of ideals b ⊇ a such that q1∩b = a,
and choose a1 so that x ∈ a1, and therefore a1 ⊈ p1. Repeat the construction
starting with a1, and so on. At the nth stage we have a = q1 ∩ · · · ∩ qn ∩ an
where the qi are primary ideals, an is maximal among the ideals b containing
an−1 = an ∩ qn such that a = q1 ∩ · · · ∩ qn ∩ b, and an ⊈ pn. If at any stage
we have an = (1), the process stops, and a is a finite intersection of primary
ideals. If not, continue by transfinite induction, observing that each an strictly
contains an−1.]

Proof.

Exercise 18. Consider the following condition on a ring A:
(L2) Given an ideal a and a descending chain S1 ⊇ S2 ⊇ · · · ⊇ Sn ⊇ · · · of

multiplicatively closed subsets of A, there exists an integer n such that Sn(a) =
Sn+1(a) = · · · . Prove that the following are equivalent:

i) Every ideal in A has a primary decomposition;

ii) A satisfies (L1) and (L2).

[For (i)⇒(ii), use Exercises 12 and 15. For (ii)⇒(i) show, with the notation of
the proof of Exercise 17, that if Sn = Sp1

∩ · · · ∩ Spn
then Sn meets an, hence

Sn(an) = (1), and therefore Sn(a) = q1 ∩ · · · ∩ qn. Now use (L2) to show that
the construction must terminate after a finite number of steps.]

Proof.

Exercise 19. Let A be a ring and p a prime ideal of A. Show that every
p-primary ideal contains Sp(0), the kernel of the canonical homommorphism
A→ Ap.

Suppose that A satisfies the following condition: for every prime ideal p, the
intersection of all p-primary of A is equal to Sp(0). (Noetherian rings satisfy
this condition: See Chapter 10.) Let p1, . . . , pn be distinct prime ideals, none
of which is a minimal prime ideal of A. Then there exists an ideal a in A whose
associated prime ideals are p1, . . . , pn.

Proof.

Exercise 20. Let M be a fixed A-module, N a submodule of M . The radical
of N in M is defined to be

radM (N) = {x ∈ A : xqM ⊆ N for some q > 0}.

Show that radM (N) = rad(N : M) = rad (Ann (M /N )) In particular, rM (N)
is an ideal.

State and prove the formulas for rM analogous to (1.13).
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Proof.

Exercise 21. An element x ∈ A defines an endomorphism ϕx of M , namely
m 7→ xm. That element x is said to be a zero-divisor (resp. nilpotent) in M if
ϕx is not injective (resp. is nilpotent). A submodule Q of M is primary in M
if Q ̸=M and every zero-divisor in M/Q is nilpotent.

Show that if Q is primary in M , then (Q :M) is a primary ideal and hence
rM (Q) is a prime ideal p. We say that Q is p-primary (in M).

Proof.

Exercise 22. A primary decomposition of N in M is a representation of N as
an intersection

N = Q1 ∩ · · · ∩Qn
of primary submodules ofM ; it is a minimal primary decomposition if the ideals
pi = rM (Qi) are all distinct and if none of the components Qi can be omitted
from the intersection, that is if Qi ̸⊇

⋂
j ̸=iQj (1 ≤ i ≤ n).

Prove the analogue of (4.5), that the prime ideal pi depend only on N (and
M). They are called the prime ideals belonging to N in M . Show that they are
also the prime ideals belonging to 0 in M/N .

Proof.

Exercise 23. State and prove the analoges of (4.6)–(4.11) inclusive. (There is
no loss of generality in taking N = 0.)

Proof.
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Chapter 5

Integral Dependence and
Valuations

Exercises

Exercise 1. Let f : A→ B be an integral homomorphism of rings. Show that
f∗ : Spec(B) → Spec(A) is a closed mapping, i.e. that it maps closed sets to
closed sets. (This is a geometrical equivalent of Theorem 5.10.)

Proof. Let f : A → B be an integral homomorphism of rings and consider the
associated morphism of schemes f∗ : Spec(B)→ Spec(A).

Let V (a) be any closed set in Spec(B), where a ⊂ B is an ideal. We show
that f∗(V (a)) = V (f−1(a)). This will show that f∗ is a closed mapping.

First, if p ∈ V (a) so that p ⊇ a, then f−1(p) is a prime ideal containing
f−1(a). This shows f∗(V (a)) ⊆ V (f−1(a)). In the other direction, let p ∈
V (f−1(a)), so that p is a prime ideal in A containing f−1(a). Since B is integral
over A, by Theorem 5.10, there exists a prime ideal q ⊆ B so that q ∩ A =
f−1(q) = p. This shows that V (f−1(a)) ⊆ f∗(V (a)). The two inclusions show
that f∗(V (a)) = V (f−1(a)), so the map f∗ is a closed map.

Exercise 2. Let A be a subring of a ring B such that B is integral over A, and
let f : A→ Ω be a homomorphism A into an algebraically closed field Ω. Show
that f be be extended to a homomorphism of B into Ω.

Proof. Mark, finish this using Zorn’s Lemma.
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Exercise 3. Let f : B → B′ be a homomorphism of A-algebras, and let C be
an A-algebra. If f is integral, prove that f ⊗ 1 : B⊗A C → B′⊗A C is integral.
(This includes Proposition 5.6 (ii) as a special case.)

Proof. Let f : B → B′ be an integral homomorphism of A-algebras, and let
C be an A-algebra. We will identify B with its image in B′, so we consider
B ⊂ B′.

Consider the homomorphism f ⊗ 1 : B⊗A C → B′⊗A C. It suffices to show
that b′ ⊗ c ∈ B′ ⊗A C is integral over the image of f . Since f is integral, there
is a monic polynomial p(x) ∈ B[x] so that p(b′) = 0. Say

p(x) = xn + bn−1x
n−1 + · · ·+ b2x

2 + b1x+ b0.

Then we have
p⊗ 1(b′ ⊗ c) := p(b′)⊗ c = 0⊗ c = 0.

Hence, b′ ⊗ c is integral over B ⊗C. It follows that the map f ⊗ 1 : B ⊗A C →
B′ ⊗A C is integral.

Exercise 4. Let A be a subring of a ring B such that B is integral over A. Let
n be a maximal ideal of B and let n = m ∩ A be the corresponding maximal
ideal of A. Is Bn necessarily integral over Am?

[Consider the subring k[x2−1] of k[x], where k is a field, and let n = (x−1).
Can the element 1/(x+ 1) be integral?]

Proof.

Exercise 5. Let A ⊆ B be rings, B integral over A.

i) If x ∈ A is a unit in B then it is a unit in A.

ii) The Jacobson radical of A is the contraction of the Jacobson radical of B.

Proof. Let A ⊆ B be rings, B integral over A.

i) Let x ∈ A be a unit in B. Since x−1 ∈ B and B is integral over A, there
is a monic polynomial so that

(x−1)n + an−1(x
−1)n−1 + · · ·+ a1x

−1 + a0 = 0,

with ai ∈ A for all i. Then

(x−1)n = −
(
an−1(x

−1)n−1 + an−2(x
−1)n−2 + · · ·+ a2(x

−1)2 + a1x
−1 + a0

)
,

and

x−1 = −
(
an−1 + an−2x+ · · ·+ a2x

n−3 + a1x
n−2 + a0x

n−1
)
∈ A.

So, x is a unit in A.
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ii) Let x be in the Jacobson radical of B. By Proposition 1.9, for all y ∈ B,
1 − xy is a unit in B. Suppose in addition that x ∈ A. Then 1 − xy is
a unit in B for all y ∈ A ⊆ B. By part (i), 1 − xy is a unit in A for all
y ∈ A. Since this is true for all y ∈ A, x lies in the Jacobson radical of
A, by Proposition 1.9 again. This shows the contraction of the Jacobson
radical of B is the Jacobson radical of A.

Exercise 6. Let B1, . . . , Bn be integral A-algebras. Show that Πni=1Bi is an
integral A-algebra.

Solution. Proof.

Exercise 7. Let A be a subring of a ring B, such that the set B \ A is closed
under multiplication. Show that A is integrally closed in B.

Solution. Proof. Let A be a subring of a ring B, such that the set B \ A is
closed under multiplication. Since B \ A is multiplicatively closed, if xy ∈ A,
then x ∈ A or y ∈ A.

Let b ∈ B be integral over A. Say b satisfies the monic polynomial xn +
an−1x

n−1 + · · · + a1x + a0 ∈ A[x]. We proceed by induction on the degree of
this polynomial. For n = 1, we have b+ a0 = 0, so that b = −a0 ∈ A.

Assume the result is true for n < N .
Suppose that if b ∈ B is integral and satisfies a monic polynomial in A[x] of

degree N . Say b ∈ B satisfies a polynomial xN + aN−1x
N−1 + · · · + a1x + a0.

Then bN + aN−1b
N−1 + · · ·+ a1b+ a0 = 0, so that

b(bN−1 + aN−1b
N−2 + · · ·+ a2b+ a1) = −a0 ∈ A.

Since B \A is multiplicatively closed, we either have b ∈ A and we’re finished or
bN−1+aN−1b

N−1+· · ·+a2b+a1 ∈ A. In this case b satisfies a monic polynomial
in A[x] of degree N − 1. By induction, b ∈ A.

Thus, we see that A is integrally closed in B.

Mark, start here.

Exercise 8. a) Let A be a subring of an integral domain B, and let C be
the integral closure of A in B. Let f , g be monic polynomials in B[x] such
that fg ∈ C[x]. Then f , g ∈ C[x].

b) Prove the same result without assuming that B (or A) is an integral
domain.
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Solution. a) Proof. Let A be a subring of an integral domain B, and let C
be the integral closure of A in B. Let f , g be monic polynomials in B[x]
such that fg ∈ C[x]. Since fg is also monic, all its roots are integral over
C, and since C is the integral closure of A, all its roots are integral over
A. Since these roots are precisely the roots of f and the roots of g, the
coefficients of f and g are polynomials in the roots, and are therefore also
integral over A. So all the coefficients of f and g lie in C and f , g lie in
C[x].

b) Proof.

Exercise 9. Let A be a subring of a ring B and let C be the integral closure
of A in B. Prove that C[x] is the integral closure of A[x] in B[x]. [If f ∈ B[x]
is integral over A[x], then

fm + g1f
m−1 + · · ·+ gm = 0 (gi ∈ A[x]).

Let r be an integer larger than m and the degrees of g1, . . . , gm, and let
f1 = f − xr, so that

(f1 + xr)m + g1(f1 + xr)m−1 + · · ·+ gm = 0

or say
fm1 + h1f

m−1
1 + · · ·+ hm = 0,

where hm = (xr)m+ g1(x
r)m−1 + · · ·+ gm ∈ A[x]. Now apply Exercise 8 to the

polynomials −f1 and fm−1
1 + h1f

m−2
1 + · · ·+ hm−1.]

Solution. Proof.

Exercise 10. (a) A ring homomorphism f : A→ B is said to have the going-up
property if the conclusion of the going-up theorem Theorem 5.11 holds for B
and its subring f(A).

Let f∗ : Spec(B)→ Spec(A) be the mapping associated with f .

Consider the following three statements:

(a) f∗ is a closed mapping.

(b) f has the going-up property.

(c) Let q be any prime ideal of B and let p = qc. Then f∗ : Spec(B/q) →
Spec(A/p) is surjective.

Prove that (a)⇒(b)⇐⇒ (c). (See also Chapter 6, Exercise 11.)
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Solution. Proof.

Exercise 10. (b) A ring homomorphism f : A → B is said to have the going-
down property if the conclusion of the going-down theorem Theorem 5.16 holds
for B and its subring f(A).

Let f∗ : Spec(B)→ Spec(A) be the mapping associated with f .

Consider the following three statements:

(a) f∗ is a open mapping.

(b) f has the going-down property.

(c) For any prime ideal q of B, if p = qc, then f∗ : Spec(Bq) → Spec(Ap) is
surjective.

Prove the (a)⇒(b)⇐⇒ (c). (See also Chapter 7, Exercise 23.)
[To prove that (a)⇒(c), observe that Bq is the direct limit of the rings Bt

where t ∈ B \ q; hence, by Chapter 3, Exercise 26, we have f∗(Spec(Bq)) =
∩tf∗(Spec(Bt)) = ∩tf∗(Yt). Since Yt is an open neighborhood of q in Y , and
since f∗ is open, it follow that f∗(Yt) is an open neighborhood of p in X and
therefore contains Spec(Ap).

Solution. Proof.

Exercise 11. Let f : A→ B be a flat homomorphism of rings. Then f has the
going-down property. [Chapter 3, Exercise 18.]

Solution. Proof.

Exercise 12. Let G be a finite group of automorphisms of a ring A, and let
AG denote the subring of G-invariants, that is of all x ∈ A such that σ(x) = x
for all σ ∈ G. Prove that A is integral over AG.

Let S be a multiplicatively closed subset of A such that σ(S) ⊆ S for all
σ ∈ G, and let SG = S ∩ AG. Show that the action of G on A extends to an
action on S−1A, and that (SG)−1AG ∼= (S−1A)G.

Solution. Proof. Let G = {σ1, . . . , σn} be a finite group of automorphisms of
a ring A, and let AG denote the subring of G-invariants. Let a ∈ A and consider
the monic polynomial

p(x) =

n∏
i=1

(x− σi(a)) ∈ A[x].

Since G is a subgroup, one of the σi’s is the identity map, so p(a) = 0.
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For σj ∈ G, we have

σj(p(x)) =

n∏
i=1

(x− σj(σi(a))) =
n∏
k=1

(x− σk(a)) = p(x).

So, we see that the coefficients of this polynomial are invariant under the action
of G. So, a is integral over AG. Since a ∈ A is arbitrary, A is integral over AG.

Let S be a multiplicatively closed subset of A such that σ(S) ⊆ S for all
σ ∈ G, and let SG = S ∩ AG. We define an action σ′ on S−1A by σ′(a/s) =
σ(a)/σ(s). Since σ(S) ⊆ S, the image is an element in S−1A. Note that
σ′|A = σ.

We must show σ′ is well-defined. If a/s = a′/s′ in S−1A, then there exists
t ∈ S so that t(as′ − a′s) = 0. Then 0 = σ(t(as′ − a′s)) = σ(t)(σ(a)σ(s′) −
σ(a′)σ(s))). Since σ(s), σ(s′), σ(t) ∈ S, this says σ(a)/σ(s) = σ(a′)/σ(s′). So,
σ′ is well-defined.

Now we show that (SG)−1AG ∼= (S−1A)G. The canonical homomorphism
A → S−1A given by a 7→ a/1 takes AG to (S−1A)G, since both a and 1 lie in
AG. This gives us φ : AG → (S−1A)G. For s ∈ SG, φ(s) = s/1, which is a unit
in (S−1A)G. Thus, φ induces a homomorphism φ : (SG)−1AG → (S−1A)G.

Let a/s ∈ (SG)−1AG lie in the kernel of φ. Then 0 = φ(a/s) = φ(a)/φ(s).
Since this is zero in (S−1A)G. So, there exists t ∈ SG so that tφ(a) = ta/1 = 0.
There exists u ∈ S so that uta = 0 in A. But this says a/s = 0 in (SG)−1AG

Mark, finish this. You need u ∈ SG.

Exercise 13. In the situation of Exercise 12, let p be a prime ideal of AG, and
let P be the set of prime ideals of A whose contraction is p. Show that G acts
transitively on P . In particular, P is finite.

[Let p1, p2 ∈ P and let x ∈ p1. Then Πσσ(x) ∈ p1 ∩ AG = p ⊆ p2, hence
σ(x) ∈ p2 for some σ ∈ G. Deduce that p1 is contained in ∪σ∈Gσ(p2), and then
apply Proposition 1.11 and Corollary 5.9.]

Proof.

Exercise 14. Let A be an integrally closed domain, K its field of fractions and
L a finite normal separable extension of K. Let G be the Galois group of L
over K and let B be the integral closure of A in L. Show that σ(B) = B for all
σ ∈ G, and that A = BG.

Proof.
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Exercise 15. Let A, K be as in Exercise 14, let L be any finite extension field
of K, and let B be the integral closure of A in L. Show that, if p is any prime
ideal of A, then the set of prime ideals q of B which contract to p is finite (in
other words, that Spec(B)→ Spec(A) has finite fibers).

[Reduce to the two cases (a) L separable overK and (b) L purely inseparable
over K. In case (a), embed L in a finite normal separable extension of K, and
use Exercises 13 and 14. In case (b), if q is a prime ideal of B such that q∩A = p,
show that q is the set of all x ∈ B such that xp

m ∈ p for some m ≥ 0, where p
is the characteristic of K, and hence that Spec(B)→ Spec(A) is bijective.

Solution. Proof.

Exercise 16 (Noether’s Normalization Lemma). Let k be a field and let A ̸= 0
be a finitely generated k-algebra. Then there exist elements y1, . . . , yr ∈ A
which are algebraically independent over k and such that A is integral over
k[y1, . . . , yk].

We shall assume that k is infinite. (The result is still true if k is finite, but
a different proof is needed.) Let x1, . . . , xn generate A as a k-algebra. We can
renumber the xi so that x1, . . . , xr are algebraically independent over k and
each of xr+1, . . . , xn is algebraic over k[x1, . . . , xr]. Now proceed by induction
on n. If n = r there is nothing to do, so suppose n > r and the result true for
n−1 generators. The generator xn is algebraic over k[x1, . . . , xn−1], hence there
exists a polynomial f ̸= 0 in n variables such that f(x1, . . . , xn−1, xn) = 0. Let
F be the homogeneous part of highest degree in f . Since k is infinite, there
exist λ1, . . . , λn−1 ∈ k such that F (λ1, . . . , λn−1, 1) ̸= 0. Put x′i = xi − λixn
(1 ≤ i ≤ n−1). Show that the xn is integral over the ring A′[x′1, . . . , x

′
n−1], and

hence that A is integral over A′. Then apply the inductive hypothesis to A′ to
complete the proof.

From the proof it follows that y1, . . . , yr may be chosen to be linear combi-
nations of x1, . . . , xn. This has the following geometrical interpretation: if k is
algebraically closed and X is an affine algebraic variety in kn with coordinate
ring A ̸= 0, then there exists a linear subspace L of dimension r in kn and a
linear mapping to kn onto L which maps X onto L. [Use Exercise 2].

Solution. Proof.

Exercise 17 (Nullstellensatz (weak form)). Let X be an affine algebraic variety
in kn, where k is an algebraically closed field, and let I(X) be the ideal of X in
the polynomial ring k[t1, . . . , tn]. (Chapter 1, Exercise 27.) If I(X) ̸= (1) then
X is not empty. [Let A = k[t1, . . . , tn]/I(X) be the coordinate ring of X. Then
A ̸= 0, hence by Exercise 16 there exists a linear subspace L of dimension ≥ 0
in kn and a mapping of X onto L. Hence X ̸= ∅.]

Deduce that every maximal ideal in the ring k[t1, . . . , tn] is of the form
(t1 − a1, . . . , tn − an).
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Solution. Proof.

Exercise 18. Let k be a field and let B be a finitely generated k-algebra.
Suppose that B is a field. Then B is a finite algebraic extension of k. (This
is another version of Hilbert’s Nullstellensatz. The following proof is due to
Zariski. For other proofs, see (5.24) and (7.9).)

Let x1, . . . , xn generate B as a k-algebra. Thye proof is by induction on
n. If n = 1 the result is clearly true, so assume n > 1. Let A = k[x1] and
let K = k(x1) be the field of fractions of A. By the inductive hypothesis, B
is a finite algebraic extension of K, hence each of x2, . . . , xn satisfies a monic
polynomial equation with coefficients inK, i.e. coefficients of the form a/b where
a and b are in A. If f is the product of the denominators of all these coefficients,
then each of x2, . . . , xn is integral over Af . Hence B (and thereforeK) is integral
over Af .

Suppose x1 is transcendental over K. Then A is integrally closed, because
it is a unique factorization domain. Hence Af is integrally closed (??), and
therefore Af = K, which is clearly absurd. Hence x1 is algebraic over k, hence
K (and therefore B) is a finite extension of k.

Proof.

Exercise 19. Deduce the result of Exercise 17 from Exercise 18.

Solution. Proof.

Exercise 20. Let A be a subring of an integral domain B such that B is finitely
generated over A. Show that there exists s ̸= 0 in A and elements y1, . . . , yn in
B, algebraically independent over A and such that Bs is integral over B

′
s, where

B′ = A[y1, . . . , yn]. [Let S = A \ {0} and let K = S−1A, the field of fractions of
A. Then S−1B is a finitely generated K-algebra and therefore by the normal-
ization lemma (Exercise 16) there exist x1,. . . , xn in S−1B, algebraically inde-
pendent over K and such that S−1B is integral over K[x1, . . . , xn]. Let z1,. . . ,
zm generate B an an A-algebra. Then each zj (regarded as an element of S−1B)
is integralover K[x1, . . . , xn]. By writing an equation of integral dependence for
each zj , show that there exists s ∈ S such that xi = yi/s (1 ≤ i ≤ n) with
yi ∈ B, and such that each szj is integral over B′. Deduce that this s satisfies
the conditions stated.]

Solution. Proof.

Exercise 21. Let A, B be as in Exercise 20. Show that there exists s ̸= 0 in A
such that, if Ω is an algebraically closed field and f : A→ Ω is a homomorphism
for which f(s) ̸= 0, then f can be extended to a homomorphism B → Ω. [With
the notation of Exercise 20, f can be extended first of all to B′, for example
by mapping each yi to 0; then to B′

s (because f(s) ̸= 0), and finally to Bs (by
Exercise 2, because Bs is integral over B′

s).]
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Solution. Proof.

Exercise 22. Let A, B be as in Exercise 20. If the Jacobson radical of A is
zero, then so is the Jacobson radical of B. [Let v ̸= 0 be an element of B. We
have to show that there is a maximal ideal of B which does not contain v. By
applying Exercise 21 to the ring Bv and its subring A, we obtain an element
s ̸= 0 in A. Let m be a maximal ideal of A such that s /∈ m, and let k = A/m.
Then the canonical mapping A→ k extends to a homomorphism g of Bv into an
algebraic closure Ω of k. Show that g(v) ̸= 0 and that Ker (g)∩B is a maximal
ideal of B.]

Solution. Proof.

Exercise 23. Let A be a ring. Show that the following are equivalent:

i) Every prime ideal in A is an intersection of maximal ideals.

ii) In every homomorphic image of A the nilradical is equal to the Jacobson
radical.

iii) Every prime ideal in A which is not maximal is equal to the intersection
of the prime ideals which contain it strictly.

[The only hard part is (iii)⇒(i). Suppose (i) is false, then there is a prime ideal
which is not an intersection of maximal ideals. Passing to the quotient ring,
we may assume that A is an integral domain whose Jacobson radical R is not
zero. Let f be a non-zero element of R. Then Af ̸= 0, hence Af has a maximal
ideal, whose contraction in A is a prime ideal p such that f /∈ p, and which is
maximal with respect to this property. Then p is not maximal and is not equal
to the intersection of the prime ideals strictly containing p.]

A ring A with the three equivalent properties above is called a Jacobson
ring.

Solution. Proof.

Exercise 24. Let A be a Jacobson ring (Exercise 23) and B an A-algebra. Show
that if B is either (i) integral over A or (ii) finitely generated as an A-algebra,
then B is Jacobson. [Use Exercise 22 for (ii).]

In particular, every finitely generated ring, and every finitely generated al-
gebra over a field, is a Jacobson ring.

Solution. Proof.

Exercise 25. Let A be a ring. Show that the following are equivalent:

i) A is a Jacobson ring;
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ii) Every finitely generated A-algebra B which is a field is finite over A.

[(i)⇒(ii). Reduce to the case where A is a subring of B, and use Exercise 21 . If
s ∈ A is as in Exercise 21, then there exists a maximal idealm ofA not containing
s, and the homomorphism A → A/m = k extends to a homomorphism g of B
into the algebraic closure of k. Since B is a field, g is injective, and g(B) is
algebraic over k, hence finite algebraic over k.

(ii)⇒(i). Use criterion (iii) of Exercise 23. Let p be a prime ideal of A which
is not maximal, and let B = A/p. Let f be a non-zero element of B. Then Bf
is a finitely generated A-algebra. If it is a field it is finite over B, hence integral
over B and therefore B is a field by (5.7). Hence Bf is not a field an therefore
has a non-zero prime ideal, who contraction in B is a non-zero ideal p′ such that
f /∈ p′.]

Solution. Proof.

Exercise 26. Let X be a topological space. A subset of X is locally closed if
it is the intersection of an open set an a closed set, or equivalently if it is open
in its closure.

The following conditions on a subset X0 of X are equivalent:

(1) Every non-empty locally closed subset of X meets X0;

(2) Fore very closed set E in X we have E ∩X0 = E;

(3) The mapping U 7→ U ∩ X0 of the collection of open sets of X onto the
collection of opensets of X0 is bijective.

A subset X0 satisfying these conditions is said to be very dense in X.
If A is a ring, show that the following are equivalent:

i) A is a Jacobson ring;

ii) The set of maximal ideals of A is very dense in Spec(A);

iii) Every locally closed subset of Spec(A) consisting of a single point is closed.
[ii) and iii) are geometrical formulations of conditions ii) and iii) of Exer-
cise 23 .]

Solution. Proof.

Exercise 27. Let A, B be two local rings. B is said to dominate A if A is a
subring of B and the maximal ideal m of A is contained in the maximal ideal n
of B (or, equivalent, if m = A ∩ n). Ket J be a field and let Σ be the set of all
local subrings of K. If Σ is ordered by the relation of domination, show that Σ
has maximal elements and that A ∈ Σ is maximal if and only if A is a valuation
ring of K. [Use (??).]
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Solution. Proof.

Exercise 28. Let A be an integral domain, K its field of fractions. Show that
the following are equivalent:

i) A is a valuation ring of K;

ii) if a, b, are any two ideals of A, then either a ⊂ b or b ⊂ a.

Deduce that if A is a valuation ring and p is a prime ideal of A, then Ap and
A/p are valuation rings of their fields of fractions.

Solution. Proof.

Exercise 29. Let A be a valuation ring of a field K. Show that every subring
of K which contains A is a local ring of A.

Solution. Proof.

Exercise 30. Let A be a valution ring of a field K. The group U of units of A
is a subgroups of the multiplicative group K∗ of K.

Let Γ = K∗/U . If ξ, η ∈ Γ are represented by x, y ∈ K, define ξ ≥ η to mean
xy−1 ∈ A. Show that this defines a total ordering on Γ which is compatible
with the group structure (i.e. ξ ≥ η ⇒ ξω ≥ ηω for all ω ∈ Γ). In other words,
Γ is a totally ordered abelian group. It is called the value group of A.

Let v : K∗ → Γ be the canonical homomorphism. Show that v(x + y) ≥
min(v(x), v(y)) for all x, y ∈ K∗.

Solution. Proof.

Exercise 31. Conversely, let Γ be a totally ordered abelian group (written
additively), and let K be a field. A valuation of K with values in Γ is a mapping
v : K∗ → Γ such that

1) v(xy) = v(x) + v(x)

2) v(x+ y) ≥ min(v(x), v(y)), for all x, y ∈ K∗.

Show that the set of elements of x ∈ K∗ such that v(x) ≥ 0 is a valuation
ring of K. This ring is called the valuation ring of v, and the subgroup
v(K∗) of Γ is the value group of v.

Thus the concepts of valuation ring and valuation are essentially equiva-
lent.

Solution. Proof.
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Exercise 32. Let Γ be a totally ordereed abelian group. A subgroup ∆ of Γ is
isolated in Γ if, whenever 0 ≤ β ≤ α and α ∈ ∆, we have β ∈ ∆. Let A be a
valuation ring of a field K, with vale group Γ (Exercise 31.) If p is a prime ideal
of A, show that v(A\p) is the set of element ≥ 0 in an isolated subgroup ∆ of Γ,
and that the mapping so defined of Spec(A) into the set of isolated subgroups
of Γ is bijective.

If p is prime ideal of A, what are the value groups of the valuation rings
A/p, Ap

Solution. Proof.

Exercise 33. Let Γ be a totally ordered abelian group. We shall show how to
construct a field K and a valuation v of K with Γ as value group. Let k be
any field and let A = k[Γ] be the group algebra of Γ over k. By definition, A
is freely generated as a k-vector space by the elements xα (α ∈ Γ) such that
xαxβ = xα+β . Show that A is an integral domain.

If u = λ1xα1
+ · · · + λnxαn

is any non-zero element of A, where the λi
are all ̸= 0 and α1 < · · · < αn, define v(u) = α1. Show that the mapping
v0 : A \ {0} → Γ satisfies condition (1) and (2) of Exercise 31.

Let K be the field of fractions of A. Show that v0 be be uniquely extended
to a valuation v of K, and that the value group of v is precisely Γ.

Solution. Proof.

Exercise 34. Let A be a valuation ring and K its field of fractions. Lt f :
A→ B be a ring homomorphism such that f∗ : Spec(B)→ Spec(A) is a closed
mapping. Then if g : B → K is any A-algebra homomorphism (i.e., if g ◦ f is
the embedding of A in K) we have g(B) = A.

[Let C = g(B); obviously C ⊇ A. Let n be a maximal ideal of C. Since f∗

is closed, m = n ∩ A is the maximal ideal of A, when Am = A. Also the local
ring Cn dominates Am. Hence by Exercise 27 we have Cn = A and therefore
C ⊆ A.]

Solution. Proof.

Exercise 35. From Exercises 1 and 3 it folows that, if f : A → B is integral
and C is any A-algebra, then the mapping (f ⊗ 1)∗ : Spec(B ⊗A C)→ Spec(C)
is a closed map.

Conversely, supose that f : A→ B has this property and that B is an itegral
domain. Then f is integral. [Replacing A by its image in B, reduce to the case
where A ⊆ B and f is the injection. Let K be the field of fractions of B and
let A′ be a valuation ring of K containing A. By (5.22) it is enough to show
that A′ contains B. By hypothesis Spec(B ⊗A A′)→ Spec(A′) is a closed map.
Apply the result of Exercise 34 to the homomorphism B⊗AA′ → K defined by

98



CHAPTER 5. INTEGRAL DEPENDENCE AND VALUATIONS

b⊗ a′ 7→ ba′. It follows that ba′ ∈ A for all b ∈ B and all a′ ∈ A′; taking a′ = 1,
we have what we want.]

Show that the result just proved remains valid if B is a ring with only
finitely many minimal prime ideal (e.g., if B is Noetherian). [Let pi be the
minimal prime ideals. Then each composite homomorphism A→ B → B/pi is
integral, hence A→

∏
(B/pi) is integral, hence A→ B/N is integral (where N

is the nilradical of B), hence finally A→ B is integral.]

Solution. Proof.
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Chapter 6

Chain Conditions

Exercises

Exercise 1. i) LetM be a Noetherian A-module and u :M →M a module
homomorphism. If u is surjective, then u is an isomorphism.

ii) If M is Artinian and u is injective, then again u is an isomorphism.
[For (i), consider the submodules Ker (un); for (ii) the quotient modules

Coker (un).]

Solution. i) Proof. Let M be a Noetherian A-module and u : M → M a
surjective module homomorphism.

Consider the chain of submodules of M

Ker (u) ⊂ Ker
(
u2
)
⊂ Ker

(
u3
)
⊂ Ker

(
u4
)
⊂ · · ·

Since M is Noetherian, this chain must be stationary. So, there exists
some n ∈ N so that Ker (un) = Ker

(
un+1

)
.

Suppose x ∈ Ker (u). We remark that since u is surjective, so is uk for all
k ∈ N, so un is surjective. Since un is surjective, there exists y ∈M so that
un(y) = x. Since x ∈ Ker (u), we have 0 = u(x) = u(un(y)) = un+1(y).
Thus, y ∈ Ker

(
un+1

)
= Ker (un). Hence, we see that x = un(y) = 0.

Thus, u is also injective.

This shows u is an isomorphism.

ii) Proof. Suppose M is an Artinian A-module and u : M → M a injective
module homomorphism.

Consider the chain of submodules of M

Coker (u) ⊃ Coker
(
u2
)
⊃ Coker

(
u3
)
⊃ Coker

(
u4
)
⊃ · · ·
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Since M is Artinian, this chain must be stationary. So, there exists
some n ∈ N so that Coker (un) = Coker

(
un+1

)
. Since Coker (un) =

Coker
(
un+1

)
, we must have un(M) = un+1(M).

Let y ∈ M and consider un(y). Since un(M) = un+1(M), there exists
x ∈ M so that un+1(x) = un(y). Then un(u(x)) = un(y). Since u is
injective, so is uk for all k ∈ N. Hence un is injective, so we see that
u(x) = y. Since y ∈M is arbitrary, this shows u is surjective as well.

Hence u is an isomorphism.

Exercise 2. LetM be an A-module. If every non-empty set of finitely generated
submodules of M has a maximal element, then M is Noetherian.

Solution. Proof. Let M be an A-module and suppose that every non-empty
set of finitely generated submodules of M has a maximal element.

Let N ⊂M be any A-submodule ofM . Let Σ be the collection of all finitely
generated submodules of N . Since submodules of N are also submodules of M ,
by hypothesis Σ has a maximal element, N ′.

Choose x ∈ N . Then the module generated by N ′ and {x} is finitely gen-
erated, so by maximality, this module is N ′. But this says that x ∈ N ′. Since
x ∈ N is arbitrary, it follows that N = N ′. So, N is finitely generated.

Since N ⊂ M is an arbitrary A-submodule of M , M is Noetherian by defi-
nition.

Exercise 3. Let M be an A-module and let N1, N2 be submodules of M . If
M/N1 and M/N2 are Noetherian, so is M/(N1 ∩N2). Similarly with Artinian
in place of Noetherian.

Solution. Proof. Let M be an A-module and let N1, N2 be submodules of M .
Suppose M/N1 and M/N2 are Noetherian.

Exercise 4. Let M be a Noetherian A-module and let a be the annihilator of
M in A. Prove that A/a is a Noetherian ring.

If we replace “Noetherian” by “Artinian”, is it still true?

Solution. Proof. LetM be a Noetherian A-module and let a be the annihilator
of M in A.

Exercise 5. A topological space X is said to be Noetherian if the open subsets
of X satisfy the ascending chain condition (or, equivalently, the maximal con-
dition). Since closed subsets are complements of open subsets, it comes to the
same thing to say that the closed subsets of X satisfy the descending chain con-
dition (or, equivalently, the minimal condition). Show that, if X is Noetherian,
then every subspace of X is Noetherian, and that X is quasi-compact.
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Solution. Proof. Let X be a Noetherian topological space and let Y ⊆ X be
a subspace. Let V1 ⊆ V2 ⊆ V3 ⊆ · · · be a chain open subsets of Y . Since Y
is a subspace, each Vi is of the form Y ∩ Ui for an open set Ui in X. Since X
is a Noetherian topological space, the chain U1 ⊆ U2 ⊆ U3 ⊆ · · · is eventually
stationary. It then follows that the chain V1 ⊆ V2 ⊆ V3 ⊆ · · · is also eventually
stationary. Since this chain is arbitrary, Y is Noetherian. Since Y is arbitrary,
every subspace of X is Noetherian.

Let U be an open cover of X. Assume U has no finite subcover. Choose
U1 ∈ U . Since U has no finite subcover, U1 doesn’t cover X, so there exists
U2 ∈ U so that U1 ⊊ U1 ∪ U2. Suppose U1, . . . , Un are in U so that

U1 ⊊ U1 ∪ U2 ⊊ U1 ∪ U2 ∪ U3 ⊊ · · · ⊊ U1 ∪ · · · ∪ Un
Since U has no finite subcover, {U1, . . . , Un} doesn’t cover X, so there exists
Un+1 ∈ U so that U1 ∪ · · · ∪Un ⊊ U1 ∪ · · · ∪Un ∪Un+1. This produces a chain

U1 ⊊ U1 ∪ U2 ⊊ U1 ∪ U2 ∪ U3 ⊊ · · · ⊊ U1 ∪ · · · ∪ Un ⊊ · · · .

Since X is Noetherian, this chain of open sets must be stationary. This is a
contradiction. So, U has a finite subcover and since U is an arbitrary open
cover of X, X is quasi-compact.

Exercise 6. Prove the following are equivalent:

i) X is Noetherian

ii) Every open subspace of X is quasi-compact.

iii) Every subspace of X is quasi-compact.

Solution. Proof. i)⇒ii) Suppose X is Noetherian and let Y be an open
subspace of X. By Exercise 5, Y is also Noetherian, and by Exercise 5
again, Y is quasi-compact. Since Y be an arbitrary open subspace of X,
every open subspace of X is quasi-compact.

ii)⇒iii) Suppose every open subspace of X is quasi-compact. Let Y be
any subspace of X. Let U be any open cover of Y . Then Z =

⋃
U∈U U is

an open subspace of X, so it’s quasi-compact. So, there is a subcover U1,
. . . , Un that covers Z. However, Z contains Y , so the collection U1, . . . ,
Un also covers Y . So, U has a finite subcover of Y . Since U is arbitrary,
every Y is quasi-compact, and since Y is an arbitrary subspace of X, every
subspace of X is quasi-compact.

iii)⇒i) Suppose every subspace of X is quasi-compact. Let

U1 ⊆ U2 ⊆ U3 ⊆ · · · ⊆ Un ⊆ · · · (6.1)

be a chain of open sets in X. Then Y = ∪∞i=1Ui is a subspace of X.
By hypothesis, Y is quasi-compact, and it follows that the chain (6.1) is
stationary.
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Exercise 7. A Noetherian space is a finite union of irreducible closed sub-
spaces. [Consider the set Σ of closed subsets of X which are not finite unions
of irreducible closed subspaces.] Hence the set of irreducible components of a
Noetherian space is finite.

Solution. Proof. Let X be a Noetherian space and let Σ be the set of closed
subsets ofX which are not finite unions of irreducible closed subspaces. Suppose
Σ is not empty. By the minimal property, Σ contains a smallest element, F .
Then F is not a finite union of irreducible closed subspaces, so in particular, F
is not irreducible. So, F = F1 ∪ F2, where F1, F2 are proper, closed subsets of
F . By the minimality of F , F1 and F2 are finite unions of irreducible closed
subspaces. But then so is F , a contradiction. So, Σ is empty and X itself
is a finite union of irreducible closed subspaces. Hence the set of irreducible
components of a Noetherian space is finite.

Exercise 8. If A is a Noetherian ring then Spec(A) is a Noetherian topological
space. Is the converse true?

Solution. Proof. Let A be a Noetherian ring. Let V (p1) ⊃ V (p2) ⊃ V (p3) ⊃
· · · be a nested sequence of closed subsets of A. Then p1 ⊂ p2 ⊂ p3 ⊂ · · ·
is an increasing nested sequence of prime ideals in A. Since A is Noetherian,
this sequence is stationary. So, eventually pN = pn for all n ≥ N . But then
V (pN ) = V (pn) for all n ≥ N . That is, the chain V (p1) ⊃ V (p2) ⊃ V (p3) ⊃ · · ·
is stationary. It follows that Spec(A) is a Noetherian topological space.

Find a counter example.

Exercise 9. Deduce from Exercise 8 that the set of minimal prime ideals in a
Noetherian ring is finite.

Solution. Proof. Let A be a Noetherian ring. By Exercise 8, Spec(A) is a
Noetherian topological space. By Exercise 7, Spec(A) is a finite union of irre-
ducible closed subspaces.

Exercise 10. If M is a Noetherian module (over an arbitrary ring A) then
Supp(M) is a closed Noetherian subspace of Spec(A).

Solution. Proof.

Exercise 11. Let f : A → B be a ring homomorphism and suppose that
Spec(B) is a Noetherian space (Exercise 5). Prove that f∗ : Spec(B)→ Spec(A)
is a closed mapping if and only if f has the going-up property (Chapter 5,
Exercise 10).
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Solution. Proof.

Exercise 12. Let A be a ring such that Spec(A) is a Noetherian space. Show
that the set of prime ideals of A satisfies the ascending chain condition. Is the
converse true?

Solution. Proof.
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Chapter 7

Noetherian Rings

Exercises

Exercise 1. Let A be a non-Noetherian ring and let Σ be the set of ideals in A
which are not finitely generated. Show that Σ has maximal elements and that
the maximal elements of Σ are prime ideals.
[Let a be a maximal element of Σ, and suppose that there exist x, y ∈ A such
that x /∈ a and y /∈ a and xy ∈ a. Show that there exists a finitely generated
ideal a0 ⊆ a such that a0 + (x) = a + (x), and that a = a0 + x · (a : x). Since
(a : x) strictly contains a, it is finitely generated and therefore so is a.]

Solution. Proof. Let A be a non-Noetherian ring and let Σ be the set of ideals
in A which are not finitely generated. The set Σ clearly satisfies Zorn’s lemma,
so Σ has maximal elements.

Let a be a maximal element of Σ, and suppose that there exist x, y ∈ A such
that x /∈ a and y /∈ a and xy ∈ a. Since a + (x) properly contain a, it must be
finitely generated. Any finite set of generators for a+ (x) must include x since
x /∈ a. Choose a finite set of generators {a1, . . . , an, x} for a + (x). Similarly,
choose a finite set of generators {b1, . . . , bm, y} for a+ (y).

Mark, finish this one.

Exercise 2. Let A be a Noetherian ring and let f =
∑∞
n=0 anx

n ∈ [[A]]. Prove
that f is nilpotent if and only if each an is nilpotent.

Solution. Proof. Let A be a Noetherian ring and let f =
∑∞
n=0 anx

n ∈ [[A]].
We note that A[[x]] is Noetherian since A is.

By Exercise 5(ii) in Chapter 1, if f is nilpotent, then an is nilpotent for all
n ≥ 0.

Suppose an is nilpotent for all n ≥ 0.
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Exercise 3. Let a be an irreducible ideal in a ring A. Then the following are
equivalent:

i) a is primary;

ii) for every multiplicatively closed subset S of A we have (S−1a)c = (a : x)
for some x ∈ S;

iii) the sequence (a : xn) is stationary, for every x ∈ A.

Solution. Proof. i) ((i) ⇒ (ii)). Suppose a is primary. Let S be a mul-
tiplicatively closed subset of A and let a/b ∈ (S−1a)c. Then a/b = c/1
for some c ∈ a, and hence there exists x ∈ S so that x(a − bc) = 0. So,
xbc = xa ∈ a. But then c ∈ (a : x) . . .

Mark, start here.

ii) ((ii)⇒ (iii))

iii) ((iii)⇒ (i))

Exercise 4. Which of the following rings is Noetherian?

i) The ring of rational functions of z having no pole on the circle |z| = 1.

ii) The ring of power series in z with a positive radius of convergence.

iii) The ring of power series in z with an infinite radius of convergence.

iv) The ring of polynomials in z whose first k derivatives vanish at the origin
(k being a fixed integer).

v) The ring of polynomials in z, w all of whose partial derivatives with respect
to w vanish for = 0.

In all cases, the coefficients are complex numbers.

Solution. Proof.

Exercise 5. Let A be a Noetherian ring, B a finitely generated A-algebra, G
a finite group of A-automorphisms of B, and BG the set of all elements of B
which are left fixed by every element of G. Show that BG is a finitely generated
A-algebra.

Solution. Proof.
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Exercise 6. If a finitely generated ring K is a field, it is a finite field. [If K
has characteristic 0, we have Z ⊂ Q ⊆ K. Since K is finitely generated over Z
it is finitely generated over Q, hence by (??) is a finitely generated Q-module.
Now apply (??) to obtain a contradiction. Hence K is of characteristic p > 0,
hence if finitely generated as a Z/(p)-algebra. Use (??) to complete the proof.]

Solution. Proof.

Exercise 7. Let X be an affine algebraic variety given by a family of equations
fα(t1, . . . , tn) = 0 (α ∈ I). (Chapter 1, Exercise 27). Show that there exists
a finite subset I0 of I such that X if given by the equations fα(t1, . . . , tn) =
0(α ∈ I0).

Proof.

Exercise 8. If A[x] is Noetherian, is A necessarily Noetherian?

Solution. Proof.

Exercise 9. Let A be a ring such that

(1) for each maximal ideal m of A, the local ring Am is Noetherian;

(2) for each x ̸= 0 in A, the set of maximal ideals of A which contains x is
finite.

Show that A is Noetherian.
[Let a ̸= 0 be an ideal in A. Let m1, . . . , mr be the maximal ideals which

contain a. Choose x0 ̸= 0 in a and let m1, . . . , mr+s be the maximal ideals
which contain x0. Since mr+1, . . . , mr+s do not contain a, there exist xj ∈ a
such that xj /∈ mr+j , (1 ≤ j ≤ s). Since each Ami

(1 ≤ i ≤ r) is Noetherian,
the extension of a in Ami is finitely generated. Hence there exist xs+1, . . . , xt
in a whose images in Ami generate Amia for i = 1, . . . , r. Let a0 = (x0, . . . , xt).
Show that a0 and a have the same extension in Am for every maximal ideal m,
and deduce by (??) that a0 = a.]

Solution. Proof.

Exercise 10. Let M be Noetherian A-module. Show that M [x] (Chapter 2,
Exercise 6) is a Noetherian A[x]-module.

Solution. Proof.

Exercise 11. Let A be a ring such that each local ring Ap is Noetherian. Is A
necessarily Noetherian?
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Solution. Proof.

Exercise 12. Let A be a ring and B a faithfully flat A-algebra (Chapter 3,
Exercise 16). If B is Noetherian, show that A is Noetherian. [Use the ascending
chain condition.]

Solution. Proof.

Exercise 13. Let f : A → B be a ring homomorphism of finite type and let
f∗ : Spec(B) → Spec(A) be the mapping associated with f . Show that the
fibers of f∗ are Noetherian subspaces of B.

Solution. Proof.

Exercise 14. Let k be an algebraically closed field, let A denote the polynomial
ring k[t1, . . . , tn] and let a be an ideal in A. Let V be the variety in kn defined by
the ideal a, so that V is the set of all x = (x1, . . . , xn) ∈ kn such that f(x) = 0
for all the f ∈ a. Let I(V ) be the ideal of V , i.e. the ideal of all polynomials
g ∈ A such that g(x) = 0 for all x ∈ V . Then I(V ) = rad (a).

[It is clear that rad (a) ⊂ I(V ). Conversely, let f /∈ rad (a), then there is
a prime ideal p containing a such that f /∈ p. Let f be the image of f in
B = A/p, let C = Bf = B[1/f ], and let m be a maximal ideal of C. Since C
is a finitely generated k-algebra we have C/m ∼= k, by (??). The images xi in
C/m of the generators ti, of A thus define a point x = (x1, . . . , xn) ∈ kn, and
the construction shows that x ∈ V and f(x) ̸= 0.]

Solution. Proof.

Exercise 15. Let A be a Noetherian local ring, m its maximal ideal and k its
residue field, and let M be a finitely generated A-module. Then the following
are equivalent:

i) M is free;

ii) M is flat;

iii) the mapping of m⊗M into A⊗M is injective;

iv) TorA1 (k,M) = 0.

[To show that iv)⇒i), let x1, . . . , xn be elements of M whose images in M/mM
form a k-basis of this vector space. By (??), the xi generate M . Let F be the
free A-module with basis e1, . . . , en and define ϕ : F → M by ϕ(ei) = xi. Let
E = Ker (ϕ). Then the exact sequence 0→ E → F →M → 0 gives us an exact
sequence

0→ k ⊗A E → k ⊗A F → k ⊗AM → 0.
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Since k ⊗ F and k ⊗ M are vector sapces of the same dimension over k, it
follows that 1 ⊗ ϕ is an isomorphism, hence k ⊗ E = 0, hence E = 0 by
Nakayama’s lemma (E is finitely generated because it is a submodule of F , an
A is Noetherian).]

Solution. Proof.

Exercise 16. Let A be a Noetherian ring, M a finitely generated A-module.
Then the following are equivalent:

i) M is free;

ii) M is flat;

iii) the mapping of m⊗M into A⊗M is injective;

iv) TorA1 (k,M) = 0.

Solution. Proof.

Exercise 17. Let A be a ring and M a Noetherian A-module. Show (by
imitating the proofs of (??) and (??)) that every submodule N of M has a
primary decomposition (Chapter 4, Exercises 20–23).

Solution. Proof.

Exercise 18. Let A be a Noetherian ring, p a prime ideal of A, andM a finitely
generated A-module. Show that the following are equivalent:

i) p belongs to 0 in M ;

ii) there exists x ∈M such that Ann (x ) = p;

iii) there exists a submodule of M isomorphic to A/p.

Deduce that there exist a chain of submodules

0 =M0 ⊂M1 ⊂ · · · ⊂Mr =M

suc that each quotient Mi/Mi−1 is of the form A/pi, where pi is a prime ideal
of A.

Solution. Proof.

111



CHAPTER 7. NOETHERIAN RINGS

Exercise 19. Let a be an ideal in a Noetherian ring A. Let

a =

r⋂
i=1

bi =

s⋂
j=1

cj .

be two minimal decompositions of a as intersection of irreducible ideals. Prove
that r = s and that (possibly after re-indexing the cj) rad (bi) = rad (ci) for all
i.

[Show that for each i = 1, . . . , r there exists j such that

a = b1 ∩ · · · ∩ bi−1 ∩ cj ∩ bi+1 ∩ · · · ∩br.]

Stat and prove an analogous result for modules.

Solution. Proof.

Exercise 20. Let X be a topological space and let F be the smallest collection
of subsets of X which contains all open subsets of X and is closed with respect
to the formation of finite intersections and complements.

i) Show that a subset E of X belongs to F if and only if E is a finite union
of sets of the form U ∩ C, where U is open and C is closed.

ii) Suppose that X is irreducible and let E ∈ F . Show that E is dense in
X (i.e. that E = X) if and only if E contains a non-empty closed set
X0 ⊆ X.

Solution. Proof.

Exercise 21. Let X be a Noetherian topological space (Chapter 6, Exercise 5)
and let E ⊆ X. Show that E ∈ F if and only if, for each irreducible closed
set X0 ⊆ X, either E ∩X0 ̸= X0 or else E ∩ X0 contains a non-empty open
subset of X0. [Suppose E /∈ F . Then the collection of closed sets X ′ ⊆ X such
that E ∩X ′ /∈ F is not empty and therefore has a minimal element X0. Show
that X0 is irreducible and then that each of the alternatives above leads to the
conclusion that E ∩X0 ∈ F .] The sets belonging F are called the constructible
subsets of X.

Solution. Proof.

Exercise 22. Let X be a Noetherian topological space and let E bee a subset
of X. Show that E is open in X if and only if, for each irreducible closed subset
X0 in X, either E ∩X0 = ∅ or else E ∩X0 contains contains a non-empty open
subset of X0. [The proof is similar to that of Exercise 21.]
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Solution. Proof.

Exercise 23. Let A be a Noetherian ring, f : A→ B a ring homomorphism of
finite type (so that B is Noetherian). Let X = Spec(A), Y = Spec(B) and let
f∗ : Y → X be the mapping associated with f . Then the image under f∗ of a
constructible subset E of Y is a constructible subset of X.

[By Exercise 20 it is enough to take E = U ∩ C where U is open and C is
closed in Y ; then, replacing B by a homomorphic image, we reduce to the case
where E is open in Y . Since Y is Noetherian, E is quasi-compact and therefore
a finite union of open sets of the form Spec(Bg). Hence reduce to the case
E = Y . To show that f∗(Y ) is constructible, use the criterion of Exercise 21.
Let X0 be an irreducible closed subset of X such that f∗(Y ) ∩ X0 is dense in
X0. We have f∗(Y )∩X0 = f∗(f∗−1(X0)), and f

∗−1(X0) = Spec((A/p)⊗AB),
where X0 = Spec(A/p). Hence to reduce to the case where A is an integral
domain and f is injective. If Y1,. . . , Yn are irreducible components of Y , it is
enough to show that some f∗Yi contains a non-empty open set inf X. So finally
we are brought down to the situation in which A, B are integral domains and f
is injective (and still of finite type); now use Chapter 5, Exercise 21 to complete
the proof.]

Solution. Proof.

Exercise 24. With the notation and hypotheses of Exercise 23, f∗ is an open
mapping ⇔ f has the going-down property (Chapter 5, Exercise ??). [Suppose
f has the going-down property. As in Exercise 23, reduce to proving that
E = f∗(Y ) is open in X. The going-down property asserts that if p ∈ E and
p′ ⊆ p, then p′ ∈ E: in other words, that if X0 is an irreducible closed subset of
X and X0 meets E, then E ∩X0 is dense in X0. By Exercises 20 and 22, E is
open in X.]

Solution. Proof.

Exercise 25. Let A be Noetherian, f : A → B of finite type and flat (i.e., B
is flat as an A-module). Then f∗ : Spec(B) → Spec(A) is an open mapping.
[Exercise 24 and Chapter 5, Exercise ??.]

Solution. Proof.

Grothendieck groups

Exercise 26. Let A be a Noetherian ring and let F (A) denote the set of all
isomorphism classes of finitely generated A-modules. Let C be the free abelian
group generated by F (A). With each short exact sequence 0 → M ′ → M →
M ′′ → 0 of finitely generated A-modules we associate the element (M ′)−(M)+
(M ′′) of C, where (M) is the isomorphism class of M , etc. Let D be the
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subgroup of C generated by these elements, for all short exact sequences. The
quotient group C/D is called the Grothendieck group of A, and is denoted by
K(A). If M is a finitely generated A-module, let γ(M), or γA(M), denote the
image of (M) in K(A).

i) Show that K(A) has the following universal property: for each additive
function λ on the class of finitely generated A-modules with values in an
abelian group G, there exists a unique homomorphism λ0 : K(A) → G
such that λ(M) = λ0(γ(M)).

ii) Show that K(A) is generated by the element γ(A/p), where p is a prime
ideal of A. [Use Exercise 18.]

iii) If A is a field, or more generally if A is a principal ideal domain, then
K(A) ∼= Z.

iv) Let f : A → B be a finite ring homomorphism. Show that restriction
of scalars gives rise to a homomorphism f! : K(B) → K(A) such that
f!(γB(N)) = γA(N) for a B-module N . If g : B → C is another finite ring
homomorphism, show that (g ◦ f)! = f! ◦ g!.

Solution. Proof.

Exercise 27. Let A be a Noetherian ring and let F1(A) be the set of all isomor-
phism classes of finitely generated flat A-modules. Repeating the construction
of Exercise 26 we obtain a group K1(A). Let γ1(M) denote the image of (M)
in K1(A).

i) Show that tensor product of modules over A induces a commutative ring
structure on K1(A), such that γ1(M) · γ1(N) = γ1(M ⊗N). The identity
element of this ring is γ1(A).

ii) Show that tensor product induces a K1(A)-module structure on the group
K(A), such that γ1(M) · γ(N) = γ(M ⊗N).

iii) If A is a (Noetherian) local ring, then K1(A) ∼= Z.

iv) Let f : A → B be a ring homomorphism, B being Noetherian. Show
that extension of scalars gives rise to a ring homomorphism f ! : K1(A)→
K1(B) such that f !(γ1(M)) = γ1(B ⊗A M). [If M is flat and finitely
generated over A, then B ⊗A M is flat and finitely generated over B.]
If g : B → C is another ring homomorphism (with C Noetherian), then
(f ◦ g)! = f ! ◦ g!.

v) If f : A→ B is a finite ring homomorphism then

f!(f
!(x)y) = xf!(y)

for x ∈ K1(A), y ∈ K(B). In other words, regarding K(B) as a K1(A)-
module by restriction of scalars, the homomorphism f! is a K1(A)-module
homomorphism.
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Remark 1. Since F1(A) is a subset of F (A) we have a group homomorphism ϵ :
K1(A)→ K(A), given the ϵ(γ1(M)) = γ(M). If the ring A is finite-dimensional
and regular, i.e., if all its local rings Ap are regular (Chapter 11), it can be
shown that ϵ is an isomorphism.

Solution. Proof.
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Chapter 8

Artin Rings

Exercises

Exercise 1. Let q1 ∩ · · · ∩ qn = 0 be a minimal primary decompostion of the

zero ideal in a Noetherian ring, and let qi be pi-primary. Let p
(r)
i be the rth

symbolic power of pi (Chapter 4, Exercise 13). Show that for each i = 1, . . .n

there exists an integer ri such that p
(ri)
i ⊆ qi.

Suppose qi is an isolated primary component. Then Api
is an Artin local

ring, hence if mi is its maximal ideal we have mri = 0 for all sufficiently large r,

hence qi = p
(r)
i for all large r.

If qi is an embedded primary component, then Api is not Artinian, hence

the powers mri are all distinct, and so the p
(r)
i are all distinct. Hence in the given

primary decomposition we can replace qi by any of the infinite set of pi-primary
decompositions of 0 which differ only in the pi-component.

Solution. Proof.

Exercise 2. Let A be a Noetherian ring. Prove that the following are equiva-
lent:

i) A is Artinian;

ii) Spec(A) is discrete and finite;

iii) Spec(A) is discrete

Solution. Proof.

Exercise 3. Let k be a field and A a finitely generated k-algebra. Prove that
the following are equivalent:
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i) A is Artinian;

ii) A is a finite k-algebra.

Solution. Proof.

[To prove that (i)⇒(ii), use (8.7) to reduce to the case where A is an Artin
local ring. By the Nullstellensatz, the residue field of A is a finite extension of k.
Now use the fact that A is of finite length as an A-module. To prove (ii)⇒(i),
observe that the ideals of A are k-vector subspaces and therefore satisfy d.c.c.]

Exercise 4. Let f A → B be a ring homomorphism of finite type. Consider
the following statements:

i) f is finite;

ii) the fibres of f∗ are discrete subspaces of Spec(B);

iii) for each prime ideal p of A, the ring B ⊗A k(p) is a finite k(p)-algebra.
(k(p) is the residue field of Ap);

iv) the fibres of f∗ are finite.

Prove that (i)⇒ (ii)⇔ (iii)⇒ (iv). [Use Exercises 2 and 3.]

Is f is integral and the fibres of f∗ are finite, is f necessarily finite?

Solution. Proof.

Exercise 5. In Chapter 5, Exercise 16, show that X is a finite covering of
L (i.e., the number of points of X lying over a given point of L is finite and
bounded).

Solution. Proof.

Exercise 6. Let A be a Noetherian ring and q a p-primary ideal in A. Consider
chains of primary ideals from q to p. Show that all such chains are of finite
bounded length, and that all maximal chains have the same length.

Solution. Proof.
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Discrete Valuation Rings
and Dedekind Domains

Exercises

Exercise 1. Let A be a Dedekind domain, S a multiplicatively closed subset
of A. Show that S−1A is either a Dedekind domain or the field of fractions of
A.

Suppose that S ̸= A \ {0}, and let H, H ′ be the ideal class groups of
A and S−1A respectively. Show that extension of ideals induces a surjective
homomorphism H → H ′.

Solution. Proof.

Exercise 2. Let A be a Dedekind domain. If f = a0 + a1x + · · · + anx
n is a

polynomial with coefficients in A, the content of f is the ideal c(f) = (a0, . . . , an)
in A. Prove Gauss’s lemma that c(fg) = c(f)c(g).

[Localize at each maximal ideal.]

Solution. Proof.

Exercise 3. A valuation ring (other than a field) is Noetherian if and only if
it is a discrete valuation ring.

Solution. Proof.

Exercise 4. Let A be a local domain which is not a field and in which the
maximal ideal m is principal and ∩∞n=1m

n = 0. Prove that A is a discrete
valuation ring.
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Solution. Proof.

Exercise 5. Let M be a finitely-generated module over a Dedekind domain.
Prove that M is flat ⇔ M is torsion-free.

[Use Chapter 3, Exercise 13 and Chapter 7, Exercise 16.]

Solution. Proof.

Exercise 6. Let M be a finitely-generated torsion module (T (M) =M) over a
Dedekind domain A. Prove that M is uniquely representable as a finite direct
sum of modules A/pni

i , where pi are nonzero prime ideals of A. [For each
p ̸= 0, Mp is a torsion Ap-module; use the structure theorem for modules over
a principal ideal domain.]

Solution. Proof.

Exercise 7. Let A be a Dedekind domain and a ̸= 0 an ideal in A. Show that
every ideal in A/a is principal.

Deduce that every ideal in A can be generated by at most 2 elements.

Solution. Proof.

Exercise 8. Let a, b, c be three ideals in a Dedekind domain. Prove that

a ∩ (b+ c) = (a ∩ b) + (a ∩ c)

a+ (b ∩ c) = (a+ b) ∩ (a+ c).

[Localize.]

Solution. Proof.

Exercise 9. (Chinese Remainder Theorem). Let a1, . . . , an be ideals and let
x1, . . . , xn be elements in a Dedekind domain A. Then the system of congruences
x ≡ xi (mod ai) (1 ≤ i ≤ n) has a solution x in A ⇔ xi ≡ xj (mod ai + aj)
whenever i ̸= j.

[This is equivalent to saying that the sequence of A-modules

A
ϕ- ⊕ni=1 A/ai

ψ- ⊕i<j A/(ai + aj)

is exact, where ϕ and ψ are defined as follows:
ϕ(x) = (x + a1, . . . , x + an); ψ(x1 + a1, . . . , xn + an) has (i, j)-component xi −
xj + a+ aj . To show that this sequence is exact it is enough to show that it is
exact when localized at any p ̸= 0: in other words we may assume that A is a
discrete valuation ring, and then it is easy.]

Solution. Proof.
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Chapter 10

Completions

Exercises

Exercise 1. Let αn : Z/pZ → Z/pnZ be the injection of abelian groups given
by αn(1) = pn−1,and let α : A→ B be the direct sum of all the αn (where A is a
countable direct sum of copies of Z/pZ, and B is the direct sum of the Z/pnZ).
Show that the p-adic completion of A is just A but that the completion of A
for the topology induced from the p-adic topology on B is the direct product of
the Z/pZ. Deduce that p-adic completion is not a right-exact functor on the
category of all Z-modules.

Solution. Proof.

Exercise 2. In Exercise 1, let An = α−1(pnB), and consider the exact sequence

0→ An → A→ A/An → 0.

Show that lim←− is not right exact, and compute lim←−
1An.

Solution. Proof.

Exercise 3. Let A be a Noetherian ring, a an ideal and M a finitely-generated
A-module. Using Krull’s Theorem and Exercise 14 of Chapter 3, prove that

∞⋂
n=1

anM =
⋂
m⊇a

Ker (M → Mm),

where m runs over all maximal ideals containing a.
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Deduce that

M̂ = 0⇔ Supp(M)∩V (a) = ∅ (in Spec(A)).

[The reader should think of M̂ as the “Taylor expansion” of M transversal to
the subscheme V (a): the above result then show that M is determined in a
neighborhood of V (a) by its Taylor expansion.]

Solution. Proof.

Exercise 4. Let A be a Noetherian ring, a an ideal in A, and Â the a-adic
completion. For any x ∈ A, let x̂ be the image of x in Â. Show that

x is not a zero-divisor in A⇒ x̂ is not a zero-divisor in Â.

Does this imply that

A is an integral domain⇒ Â is an integral domain?

Solution. Proof.

Exercise 5. Let A be a Noetherian ring and let a, b be ideals in A. If M is
any A-module, let Ma. , Mb denote its a-adic and b-adic, respectively. If M is
finitely generated, prove that (Ma)b ∼= (Ma+b.

[Take the a-completion of the exact sequence

0→ bmM →M →M/bmM → 0

and apply ??. then use the isomorphism

lim←−
m

(
lim←−
n

M/(anM + bmM)

)
∼= lim←−M/(anM + bnM)

and the inclusion (a+ b)2n ⊆ an + bn ⊂ (a+ b)n.]

Solution. Proof.

Exercise 6. Let A be a Noetherian ring and a an ideal in A. Prove that a is
contained in the Jacobson radical of A if and only if every maximal ideal of A is
closed for the a-topology. (A Noetherian topological ring in which the topology
is defined by an ideal contained in the Jacobson radical is called a Zariski ring.
Examples are local rings and (by ??(iv)) a-adic completions.)

Solution. Proof.
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Exercise 7. Let A be a Noetherian ring, a an ideal of A, and Â the a-adic
completion. Prove that Â is faithfully flat over A (Chapter 3, Exercise 16) if
and only if A is a Zariski ring (for the a-topology).
[Since Â is flat over A, it is enough to show that

M → M̂ injective for all finitely generated M ⇔ A is Zariski;

now use (??) and Exercise 6.

Solution. Proof.

Exercise 8. Let A be the local ring of the origin in Cn (i.e., the ring of all
rational functions f/g ∈ C(z1, . . . , zn) with g(0) ̸= 0), let B be the ring of power
series in z1, . . . , zn which converge in some neighborhood of the origin, and let
C be the ring of formal power series in z1, . . . , zn, so that A ⊂ B ⊂ C. Show
that B is a local ring and that its completion for the maximal ideal topology
is C. Assuming that B is Noetherian, prove that B is A-flat. [Use Chapter 3,
Exercise 17, and Exercise 7 above.]

Solution. Proof.

Exercise 9. Let A be a local ring, m its maximal ideal. Assume that A is m-
adically complete. For any polynomial f(x) ∈ A[x], let f(x) ∈ (A/m)[x] denote
its reduction mod m. Prove Hensel’s lemma: if f(x) is monic of degree n and if
there exist coprime monic polynomials g(x), h(x) ∈ (A/m)[x] of degrees r, n−r
with f(x) = g(x)h(x), then we can lift g(x), h(x) back to monic polynomials
g(x), h(x) ∈ A[x] such that f(x) = g(x)h(x). [Assume inductively that we have
constructed gk(x), hk(x) ∈ A[x] such that gk(x)hk(x) − f(x) ∈ mkA[x]. Then
use the fact that since g(x) and h(x) are coprime we can find ap(x) and bp(x), of
degrees ≤ n− r, r respectively, such that xp = ap(x)gk(x) + bp(x)hk(x), where
p is any integer such that 1 ≤ p ≤ n Finally, use the completeness of A to show
that the sequences gk(x), hk(x) converge to the required g(x), h(x).]

Solution. Proof.

Exercise 10. i) With the notation of Exercise 9, deduce from Hensel’s lemma
that if f(x) has a simple root α ∈ A/m, then f(x) has a simple root a ∈ A
such that
α = a mod m.

ii) Show that 2 is a square in the ring of 7-adic integers.

iii) Let f(x, y) ∈ k[x, y], where k is a field, and assume that f(0, y) has y = a0
as a simple root. Prove that there exists a formal power series y(x) =∑∞
n=0 anx

n such that f(x, y(x)) = 0. (This gives the “analytic branch” of
the curve f = 0 through the point (0, a0).)
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Solution. Proof.

Exercise 11. Show that the converse of (10.26) is false, even if we assume that
A is local and that Â is a finitely-generated A-module. [Take A to be the ring
of germs of C∞ functions of x at x = 0, and use Borel’s Theorem that every
power series occurs as the Taylor expansion of some C∞ function.]

Solution. Proof.

Exercise 12. If A is Noetherian, then A[[x1, . . . , xn]] is a faithfully flat A-
algebra. [Express A → A[[x1, . . . , xn]] as a composition of flat extensions, and
use Exercise 5(v) of Chapter 1.]

Solution. Proof.
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Dimension Theory

Exercises

Exercise 1. Let f ∈ k[x1, . . . , xn] be an irreducible polynomial over an alge-
braically closed field k. A point P on the variety f(x) = 0 is non-singular ⇔
not all partial derivatives ∂f/∂xi vanish at P . Let A = k[x1, . . . , xn]/(f), and
let m be the maximal ideal of A corresponding to the point P . Prove that P is
non-singular ⇔ Am is a regular local ring.
[By (11.18) we have dim (Am) = n− 1. Now

m/m2 ∼= (x1, . . . , xn)/(x1, . . . , xn)
2 + (f)

and has dimension n− 1 if and only if f /∈ (x1, . . . , xn)
2.]

Solution. Proof.

Exercise 2. In (11.21) assume that A is complete. Prove that the homomor-
phism
k[[t1, . . . , td]] → A given by ti 7→ xi (1 ≤ i ≤ d) is injective and that A is
a finitely-generated module over k[[t1, . . . , td]]. [Use (10.24).]

Solution. Proof.

Exercise 3. Extend (11.25) to non-algebraically-closed field. [If k is the alge-
braic closure of k, then k[x1, . . . , xn] is integral over k[x1, . . . , xn].]

Solution. Proof.
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Exercise 4. An example of a Noetherian domain of infinite dimension (Nagata).
Let k be a field and let A = k[x1, x2, . . . , xn, . . . ] be a polynomial ring over k
in a countably infinite set of indeterminates. Let m1, m2, . . . be and increasing
sequence of positive integers such that mi+1 −mi > mi −mi−1 for all i > 1.
Let pi = (xmi+1, . . . xmi+1

) and let S be the complement in A of the union of
the ideals pi.

Each pi is a prime ideal and therefore the set S is multiplicatively closed.
The ring S−1A is Noetherian by Chapter 7, Exercise 9. Each S−1pi has height
equal to mi+1 −mi, hence dim

(
S−1A

)
=∞.

Solution. Proof.

Exercise 5. Reformulate (11.1) in terms of the Grothendieck group K(A0)
(Chapter 7, Exercise 25).

Solution. Proof.

Exercise 6. Let A be a ring (not necessarily Noetherian). Prove that

1 + dim (A) ≤ dim (A[x]) ≤ 1 + 2dim (A) .

[Let f : A → A[x] be the embedding and consider the fiber f∗ : Spec(A[x]) →
Spec(A) over a prime ideal p of A. This fiber can be identified with the spectrum
of k ⊗A A[x] ∼= k[x], where k is the residue field of p (Chapter 3, Exercise 21),
and dim (k[x]) = 1. Now use Exercise 7(ii) of Chapter 4.]

Solution. Proof.

Exercise 7. Let A be a Noetherian ring. Then

dim (A[x]) = 1 + dim (A) ,

and hence, by induction on n,

dim (A[x1, . . . , xn]) = n+ dim (A) .

[Let p be a prime ideal of height m in A. Then there exist a1, . . . , am ∈ p
such that p is a minimal prime ideal belonging to the ideal a = (a1, . . . , am). By
Exercise 7 of Chapter 4, p[x] is a minimal prime ideal of a[x] and therefore height
p[x] ≤ m. On the other hand, a chain of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pm = p
gives rise to a chain p0[x] ⊂ · · · ⊂ pm[x] = p[x], hence height p[x] ≥ m. Hence
height p[x] = height p. Now use the argument of Exercise 6.]

Solution. Proof.
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